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I. INTRODUCTION 

Critique of Some Neural 
Network Architectures and 
Claims for Control and 
Estimation 

THOMAS H. KERR, Senior Member, IEEE 
TeK Associates 

While there is great potential for successful use of neural 
network (NN) algorithms in automatic target recognition (ATR) 
and other pattern identificatiodclassification applications, 
significant barriers have been encountered (as summarized 
herein) that, to date, defy rigorous use of NNs within feedback 
control designs. The status of several problems and contradictions 
involving NNs relating to control and estimation theory 
applications (and to practical failure detection within INS/GPS 
navigation systems) are summarized here. To give a positive spin 
and for a balanced perspective, we also mention many novel 
laudable NN results obtained by invoking the techniques and 
resuits of control and estimation theory. 
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While the present author prefers to engage 
in completely constructive investigations and 
development activities without conveying negative 
overtones, he occasionally finds it necessary to issue 
warnings to assist others along the path (e.g., [l-6, 
1211). There is obviously great potential for successful 
use of neural network (NN) algorithms in automatic 
target recognition (ATR) [7, 151, speech recognition 
[8], and other pattern identification/classification 
applications [56-591 that appropriately match the 
underlying NN architectures. To date, there has been 
good symbiosis between NN and the methodology 
and techniques of control and estimation theory 
such as: 1) invoking Lyapunov functions to establish 
stabilitykonvergence in NN learning [6 1-64], 
and 2) use of (extended) Kalman filters instead 
of backpropagation to accomplish NN learning in 
fewer iterations [37-39, 42, 591; however, significant 
barriers have been encountered in going in the 
opposite direction of seeking to apply NN in areas 
of control and estimation. While NN critiques and 
NN control implementation surveys have appeared 
before [96, 97, 1041 there is virtually no overlap with 
the new topics covered, questions raised, and insights 
offered here. 

I I .  APPLYING HISTORICAL ADAPTIVE CONTROL 
RESULTS TO NN 

Addressing individual contributions: Kumpati 
“Bob” S. Narendra resurrected his old sensitivity 
analysis technique from adaptive control (an area 
that he admits was previously somewhat heuristic 
prior to [34]) from 15 years ago and adapted it 
to understanding backpropagation learning in 
feedforward NNs (since it’s similar to earlier gradient 
matrix techniques). From this particular specialist 
in nonlinear systems, results are always interesting 
and he always has proper explicit delimiters of 
applicability (somewhere) in the prose. While 
Narendra’s four case representation [ll, p. 121 is 
appealing and at first glance looks to be fairly general, 
encompassing not only purely linear structures 
(Case 1) but also nonlinear structures of three 
different kinds of increasing generality (Cases 24), 
it is noted from the examples considered in his 
paper that although having the initial appearance of 
total generality, they are in fact fairly restrictive and 
selected so that the denominator usually exceeds or 
matches the degree of the numerator asymptotically 
with time and the denominator structure is also such 
that no singular points’ (regular or otherwise) are ever 

‘In comparison, the familiar Sturm-Louville (S-L) 2nd-order ODES 
[47] that arise naturally in applying separation-of-variables to 
Maxwell’s partial differential equations of EM theory result in the 
special functions of Bessel, Legendre, Hermite, etc., as solutions, 
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encountered. In fact the time domain evolution in each 
case is always so benign that the solutions will never 
be unbounded (as can be seen immediately without 
having to solve them). 

a global Lipschitz condition to be satisfied in order 
to be applicable. R.ecall that ordinary differential 
equations ODES naed satisfy merely a local Lipschitz 
condition to guarantee existence and uniqueness of 
solutions while, by way of comparison, stochastic 
differential equations (e.g., of Stratonovitch, Ito, or 
McShane type) historically must satisfy the more 
stringent global Lipschitz condition for existence and 
uniquencss of solutions (as required for a rigorous 
proof in the more challenging stochastic situation 
[106, p. 191 that also requires invocation of the 
Borel-Cantelli lemma [ 105, p. 42, expression 3.5.51 
but which doesn’t occur for the deterministic case) 
and so this global requirement constitutes a much, 
much narrower class of differential equations that one 
can rigorously obtain useful results for via Narendra’s 
technique than is anticipated to exist for most practical 
applications. Yet this restrictive form is to be used just 
for “representation” of the applications’ underlying 
mathematical mod el before proceeding to other goals 
of identification, estimation, or control using NNs 
(in other words, these later more standard goals are 
applicable using PJNs only for systems that can be 
characterized as being of the form that fits within one 
of the four enumerated cases or categories that are 
declared to be a standard representation repertoire). 

What if the actual system of interest doesn’t 
fit nicely into the above four pigeon holes? Are 
all bets off in using NNs to handle it? How does 
this compare with prevalent techniques that invoke 
Weirstrass’ or KO Imogorov’ s Approximation Theorem 
and claim NNs can accommodate or capture the 
essence of any type of nonlinearity (cf., [92])? Prof. 
Thomas Poggio (IMIT) has been rigorously looking 
into the latter question (and into other questions) 
using Approximai ion Theory, splines, and functional 
analysis in splendid expositions [69-721. 

Another second barrier to general engineering 
utility of Narendra’s award winning paper is the 
likely non-applicability to the multi-output case. 
While plausible applicability to the multi-output 
case is demonstrated as a few special case examples, 
Narendra reveals that his primary analysis tool is 
feedback linearizi3tion of all nonlinearities present. 
The use of feedback linearization presumes: 1) exact 
knowledge of bolh the nonlinear structure and its 
parameters* with 2) no measurement noise being 

Narendra states, up front that his approach requires 

and each associated precursor ODE routinely possesses singularities 
in the real domain that make S-L challenging and useful to solve 
and their utility motivates why they are so extensively tabulated. 
2My thanks to a revic:wer who admonishes that two further 
presumptions under category 1 are 1‘ that the inverse dynamics 
(nonlinear zero dynamics) must be stable, and 1” that the relative 
degree must be known (but now being mitigated somewhat by the 
results of [115, 1161). 

present, and 3) capability of instantaneous full access 
to exact control implementation variables (in order 
to exactly cancel any nonlinearities present). Each 
of the above three assumptions for applying input 
linearization appear to be questionable in actual 
pra~t ice ,~  as explained below. 

Any transport delay incurred can aggravate the 
situation and interfere with successful cancellation, as 
would occur in trying to apply this technique to a real 
system. Narendra’s usage is as follows. For a system 
described by a nonlinear ODE of the form 

i ( t )  = f ( x , t )  + G(x,t)u(t) (1) 

where u(t) is a deterministic control to be user 
specified. The desired control is then taken to be 

u(t) = G-’(x,t)[-f(x,t) + Ax(t)] (2) 

for square invertible G ( x , ~ ) , ~  which when applied to 
the original system (Le., (2) is substituted back into 
the original ODE of (l)), yielding 

i ( t )  = Ax(t) (3) 

for a well-behaved matrix A that the analyst specifies 
to suit his needs. Furthermore, (3) can be serviced 
with additional residual control as an additional term 
Bu”(t) that can be included within the brackets of (2) 
to result in 

X(t) = Ax(t) + Bu”(t). (4) 

Thus (4) can then be manipulated to accomplish 
any stipulated goals, such as guiding the system 
to a designated location in state space as the target 
set to be attained at a specified time or to exhibit 
desirable behavior characteristics of overshoot and 
rise time (such as being critically damped as opposed 
to being under-damped or over-damped), or to possess 
desirable gain and phase margins for stability. 

The technique works in simulations because one 
cancels precisely what one had originally modeled 
as the nonlinearity in the first place as it would 
have occurred in the simulation. However, for 
actual physical systems consisting of real analog 
components, the digitally implemented solution for 
cancellation is usually thwarted due to inaccuracies 
in machine representation, effects of quantization, 
truncation, and roundoff (and, more significantly, by 
likely transport delay since, in instrumented systems 
and processes, information about measured quantities 
doesn’t appear instantly just where it is needed in 

31t’s somewhat amusing that certain authors warn about feedback 
linearization one place [30] yet embrace it elsewhere [94]. 
41n general systems usage outside of or predating NNs, there is no 
need for the control gain matrix G(x,t) to be square or invertible 
and any nonlinear controllability present could still be demonstrated 
via the techniques of [117] when necessary. 

KEiRR. CRITIQUE OF SOME NEURAL NETWORK ARCHITECTURES AND CLAIMS FOR CONTROL AND ESTIMATION 407 



computations but travels through wires, through 
relays, through hydraulic actuators, etc. and, as a 
consequence, incurs some finite delay5) such that 
received results almost never exactly match as being 
synchronized in time to the nonlinearities present in 
the physical system that one seeks to cancel in order 
to control the physical system. In seeking to apply the 
methodology of feedback linearization, the control to 
be used for actual systems would be of the form: 

u(t) = G,’ (x(t - 7 )  + w(t - T ) ,  t )  

x [-fo(x(t - 7 )  + w(t - T ) , t )  

+ A{X(t - T )  + w(t - T ) } ]  (5 )  

but is an inexact match and wouldn’t yield (3) as 
a result. Even if fo = f ,  Go = G (other problems 
occur when G is not invertible [88]), and the noise 
effect were negligible as w 0, perfect cancellation 
would still not occur because of the delay term 
and the resulting differential-difference equation 
(being of the retarded type [17]) are subject to likely 
instabilities (just as one’s bathroom shower water 
temperature adjustment attempt is unstable due to 
transport delay unless a predictive control strategy 
is employed that takes into account the slight time 
delay between what is currently sensed by the body 
and what will be sensed down stream in time as a 
result of making an adjustment) due to the magnitude 
of the delay. (Evidence of disappointing behavior 
being finally astonishingly concluded in [89] when 
no acceptable feedback control could be obtained 
using the techniques of [88] that correspond to above 
(1)-(4) at the heart of [l 11 for NN applications. Also 
see [95, 1131 for other representative examples of 
feedback linearization.) 

Furthermore, even in Narendra’ s ideal situation, 
if at least two controls are not present as effectively 
independent noninterfering controls in each of two 
channels for finagling with along his guidelines as 
extensions to basic feedback linearization, then all 
bets are off and Narendra’s technique cannot be 
applied at all for even the two channel case (2 inputsl2 
outputs) as the simplest multi-input/multi-output 
(MIMO) situation. More explicit substantiation 
behind this revelation is offered next since advocates 
claim that feedback linearization can be successfully 
applied in the MIMO case if the system exhibits the 
special “triangular” structure. We agree that their 
proposed technique can be applied to this particular 
type of MIMO system (if the issues of transport 

5These comments are revelant as well In another context to control 
applications using a PC platform with M/S Windows 3.1x, /95, /NT 
operating systems since Wndows messaging delays cause Comm 
traffic bottlenecks despite the presence of caching and processor 
independent 16-bit DMA busses and/or 32-bit PCI busses that don’t 
drop or loose any data. However, there are remedies here such as 
use of a real-time Wndows’ OS with a pricetag that IS an order of 
magnitude or two more expensive than routinely extracted by M/S. 

delay incurred and presence of sensor measurement 
noise are ignored or are negligible in a particular 
application) but we caution that these “triangular” 
systems are an extreme special case, as will be 
examined next to reveal just how “special” they 
are and whether any general transformations exist 
to convert arbitrary systems to be of this special 
triangular form. 

general nonlinear system: 
Consider the state-variable representation of a 

Compare this with the considerably more restrictive 
structure of the following triangular systems (being 
the most general MIMO structure to which control 

(7) 

where the single dot above a variable denotes a 
derivative with respect to time, while a primed 
function merely distinguishes it from the unprimed 
symbol as being a different function. The lure 
of the above nth-order triangular system is its 
tractability under feedback linearization, because it 
exhibits an autonomous (i.e., the A’(.) are not explicit 
functions of time t )  upper triangular structure and 
additionally n independently specifiable linearly 
additive noninterfering controls (that no longer 
appear in the fi’(.)). Its tractable manipulations are 
analogous to those encountered in applying the 
back substitution step of Gauss-Jordan reduction 
or Gaussian elimination for matrices (but requiring 
further subsequent symbol manipulation algebra here). 
Starting with the last row, choose the control u,(.) to 
cancel out the nonlinearity present as in this obvious 
generalization of (2), 

(8) 

under the tacit assumption that each gj(t) # 0 for all 
t > 0, then the resulting linear ODE may be explicitly 
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solved for x,(t). This solution may be explicitly 
substituted in all the rows of (7) above this row and 
the ODE in the next row above may be solved for in 
like manner. Proceed up each row of (7) in the same 
way. Thus this “triangular” system can be handled or 
solved in principle and made to perform any task with 
the u;(t)s. (The details of actual handling is another 
story.) 

To better undeistand the limitations or low 
likelihood of encountering real systems possessing or 
exhibiting this restrictive structure of (7) and to know 
how to handle them if they do possess it, consider the 
barriers exhibited by a more benign simpler merely 
linear time-varying versions of (6) and (7) being, 
respectively: 

+ I  i I 
Again, (10) appears to be tractably handled 
by proceeding as in the backwards substitution 
step of Gauss-Joi,dan matrix reduction or 
Gaussian-eliminalion (familiar as arising in the 
machine solution of a system of linear constant 
coefficient algebraic equations). Starting from the 
bottom row of (lo), this simple scalar ODE 

~ 
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is recognized to have the following structural solution 
(by utilizing an integrating factor) of the form: 

which can be solved completely then explicitly 
substituted back into the next row up from the bottom 
as 

(13) 

which is recognized to be of the same fundamental 
form as (1 1) and so has a solution of a form similar to 
that of (1 2) as 

where everything within the final brackets is a known 
specified function and consequently can be completely 
evaluated numerically. This same solution technique 
proceeds up the triangle, row by row (all of the same 
form), to the top row where it terminates naturally 
and the system has now been completely solved 
in principle. (Messy details are in how to properly 
convey the entire solution history of one row’s xi(t) 
to all the rows of (10) above it. A task that must be 
accomplished for n - 1 xi(t)’s in n - 1 rows!) 

There was a decades long quest by engineers 
and mathematicians well aware of the potential 
highly lucrative payoff (in the 1960s 1100-102, 
ch. 101) to transform and convert (9) into (10) using 
a time-varying transformation as x(t) = T(t)x’(t) (but 
still this aspect, related to so-designated algebraic 
equivalence and topological equivalence [ 101, p. 1571 
unfortunately came to no real consequence [ 1031 
although strict equivalence, for the time-invariant 
similarity transformation x(t)  = Tx’(t) 1101, p. 1581 
did and resoundingly so). Taking just the benign 
linear time-varying triangular system of (10) to 
practical fruition using the approach described 
above has proved to be impossibly complex and 
daunting, despite the fact that it is seen to be possible 
theoretically. The challenge of successfully handling 
nonlinear triangular systems is no less daunting 
and the outlook no less bleak. No conversion or 
transformation path from general nonlinear system (6) 



to triangular (7) appears likelyS6 Equations 7 to 10 can 
be solved numerically by conventional Runge-Kutta 
predictor-corrector techniques for calculating solutions 
but can’t be easily manipulated as an obvious strategy 
for control using the techniques that are the topic of 
this section except via heroic efforts for special cases 
of extremely low dimension and low complexity. 
Perhaps the situation is improving since [107, p. 6, 
col. 11 states that his “paper presents an architecture 
for on-line adaptive control that employs a neural 
network to compensate for inversion error present 
when feedback linearization methods are employed 
(by prior NNs) to control a dynamic process.” 

New bothersome worry is that [ 131 concludes 
“that ARMA7 representation of systems in the 
frequency domain is more useful to achieve control 
goals in NN applications than time domain state 
variable representation.” The historical trend has 
been the opposite: 1) the Wiener filter in the 
frequency domain, tractable for just the scalar single 
channel time-invariant linear case, gave way to 
the state variable-based Kalman filter (for optimal 
linear estimation), formulated in the time domain 
and tractable for MIMO and linear time-varying 
nonstationary situations; 2) the Burg Maximum 
Entropy algorithm, being an exact spectral estimator 
for only single channel situations and being merely 
an approximate linear estimation scheme for the 
multichannel MIMO case, required recasting in state 
variable form for Toeplitz matrices to emerge before 
applying Levinson-Durbin recursions in obtaining 
a multichannel spectral estimate. A contest between 
ARMA or state variable representation should be 
a moot point for the linear time-invariant situation 
considering the simple transformations that can be 
used to get between the two representations [9, p. 31, 
ex. 2.141 (cf. [IO, eqs. 82, 1091 for accomplishing the 
same type of conversion). 

The above examples are just the tip of the iceberg 
relating to incompatibilities between use of neural 
networks for real world control and estimation 
applications. Many other examples will be given of 
open questions that need to be resolved to enable 
practical application of NN to control and estimation 
situations. 

6Historically, other variants of these “triangular” systems have 

transformed versions of (10) with all the u:(t)s being polynomials in 
t but with closed-form solution similarly stymied). I thank the G.E. 
statistician, Dr. Paul Feder, for introducing me to them in 1971. 
7A word of caution is that two different names have appeared to 
describe the same notion of controlled auto-regressive moving 
average (CARMA) in [96] and ARMAX by most statisticians and 
engineers specializing in the related area of parameter identification, 
where the X represents an exogenous input. One of the reviewers 
believes that [118] offers a way forward in this area by availing a 
procedure to interpolate between multiple linear ARMAX models 
to better approximate a nonlinear ARMAX model by optimizing a 
global cost criterion. 

appeared (such as in the frequency domain or Laplace domain for 

I l l .  NN APPROACHES TO FAILURE DETECTION IN 
DYNAMIC SYSTEMS 

We have provided occasional surveys of the 
status of failure detection technology (elucidating the 
various emerging approaches) on several previous 
occasions (e.g., [5,  6, 161) in keeping abreast of this 
fast changing area. We have developed first hand, 
identified, specified, or recommended preferred 
implementations for particular application situations 
or scenarios including that of detecting anomalous 
behavior of new navigation systems introduced on 
submarines (for details, see TASC reports TR-418-20, 
TR-512-3-1, TR-678-3-1, dated 1974, 1975, 1976) 
and for a multisensor navigation filter and failure 
detection, identification, and reconfiguration (FDIR) 
strategy in the Advanced Tactical Fighter (ATF) 
[14, 161. 

has strong reservations about [18] along the lines 
that E [ f ( x ) ]  is not the same as E[f(i)] when x is 
non-Gaussian or when f ( . )  is nonlinear8 (as it is 
in [18]) and, moreover, is unknown (but bandied 
about later within [ 181 as if it were in fact known 
despite specifically acknowledging it to be unknown 
following [18, eq. 81 so that their eqs. 6, 7, and 8 are 
useless in their subsequent analytic endeavors). Shell 
games like this shouldn’t occur. A ray of hope for 
using NN in inertial navigation system (INS) failure 
detection is exhibited in the evolving results of [60] 
supported by classical analysis [ 1 1 1, 1 121 and not 
deferred to the mysteries of NN learning. 

While I am flattered that my prior failure 
detection algorithms [ 191 were deemed worthy of 
NN cloning, as cited in [109, 1101, it alerted me 
to yet another area of concern in using NNs in 
discriminant analysis, pattern identification, and 
fault/failure detection. Namely, that NNs can be 
productively used as an alternative computational path 
to provide a test statistic, but the proper setting of the 
decision threshold level to correspond to prescribed 
consequential false alarm rates appears to still 
require the diligence of human analysis interceding 
as performed for [I91 in [20, 211. Just how one 
would proceed to specify a constant false alarm rate 
(CFAR) implementation for failure detection (or 
for radar or for any practical detection application) 
without a detailed human analysis to analytically 
specify the expressions for false alarm and correct 
detection eludes this author other than by massive 
experimental trials in an attempt to sort out receiver 
operating characteristic (ROC) curves which vary 

While not desiring to be a “nay-sayer,” the author 

‘These lessons were learned in the early days of nonlinear 
filtering but are evidently still being forgotten (since there was no 
acknowledgement of a possible approximation being invoked here). 
In the notation of the author of [18], expectation is denoted by a 
carat above the symbol as in .2 rather than by the symbol E[.] ,  as 
used here. 
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with intensity level of the signal being sought and 
naturally the intensity of background noise (as an 
effective signal-to-noise ratio (SNR)). Lacking a 
supporting rational analytic basis for NN decision 
inference (with guaranteed levels of false alarm rates 
and correct detection) does not automatically flow 
from just a collection of test cases provided for NN 
training, especially if noise is present (as always arises 
in trying to insert NNs into the practical application 
scenario). Similarly, to enable a CFAR detection 
for radar applications requires prescribing a varying 
decision threshold io  maintain the false alarm rate 
at the specified constant level, where, apparently, 
all intermediate steps must be analytically specified 
explicitly. 

IV. THE LURE ANI1 LORE OF NN FOR CONTROL 
AND ESTIMATION 

A. NN Lore 

Gentle introductions to NNs are offered in [22, 231 
regarding terminology, viewpoint, history, progress, 
and results. In part Icular, the utility of Lyapunov 
functions, familiar in control theory, and its important 
theoretical generalizations by Cohen and Grossberg 
[62], and Kosko [61] for NN that were crucial to 
guarantee stability/convergence and which influenced 
the development of NN architectures are highlighted 
in an extremely accessible form on [22, sec. 3.7, 
pp. 20-221. An overview of NN from a control 
theorist's viewpoint is offered in [24] and further 
control theory ramifications are addressed in [26], 
Other applications of NN in control and synergisms 
are addressed within the two special NN issues of 
IEEE Control System Magazine, Vol. 10, No. 3, 1990 
and in Vol. 12, No. 2, Apr. 1992 and in Vol. 78, 
Nos. 9, 10 of the IEEE Proceedings (Sept., Oct.). 
New handbooks hiive also appeared [29] as well as 
more thorough and pedagogically correct self-study 
textbooks [27]. 

B. Some Caution!; and Concerns 

While not meaning to single out any one person 
since it was somewhat representative of all the 
papers in the afternoon NN session of the 1991 
American Control iConference in Boston, L. Gordon 
Kraft (Univ. of N. H.) has discussed Shennandoah's 
CMAC (Cerebellar Model Articulation C~ntrol ler)~ 
control applicatiors [84] that are apparently also 
for exclusively feedforward applications. Some of 
his overhead transparencies at the 199 1 American 
Control Conference (ACC) unfortunately tended to 
nudge a viewer in to believing otherwise (leading 
to a false sense of security) but eventually Kraft 

gMany NN practitione,-s characterize CMAC as a glorified table 
look-up routine. 

admitted (under direct questioning),to exclusively 
feedforward applicability and that their overhead 
transparencies should have had an (absent) link 
present in the feedforward path and one (portrayed 
to be in the feedback path) removed to be correct. Use 
of feedback (or feedforward along with feedback) is 
a mainstay of control engineers [91]. Its importance 
having been recognized and appreciated since the 
1940s as 1) the means to reduce sensitivity of a design 
solution to parameter changes due to component aging 
(applications frequently arising in vacuum tube and 
transistor amplifiers). Other well-known benefits of 
using feedback control solutions are, 2) reducing 
adverse effects of nonlinearities and distortion, 
3) providing an increased effective bandwidth or 
range of frequencies over which the system yields 
a satisfactory response or behavior, 4) increased 
accuracy for tracking or input-following (in faithfully 
reproducing a scaled version of it at the output). 
Perhaps other NN architectures such as Hopfield nets 
or other recurrent NNs [82, pp. 30-331, [113] can 
successfully accommodate this necessary feedback 
aspect usually needed in control for long term stability 
and robustness under varying conditions. 

In too many NN applications addressing control, 
block diagrams appear to be somewhat contorted 
and shenanigans are played with connecting lines 
from one output device to a subsequent input. These 
shenanigans defy clarity of intent and vigilance 
has to be increased to ferret out the intent in such 
inpudoutput block diagrams that were so clear for 
the past three decades before being abused this 
way. Evidently more than a few NN researchers 
looking into control related applications need to be 
watched fairly closely regarding what they convey 
in their figures and slides (even though they freely 
admit only feedforward applicability in the prose) 
because many busy viewers focus on these possibly 
misleading diagrams during public presentations at 
conferences instead of reading the disclaimers in the 
prose and, unfortunately, are lead to initially infer 
greater applicability to the feedback situation than 
has yet been rigorously established. As this article 
goes into review, a clear (planar) feedback diagram 
(without kinks) for control using NN was finally 
encountered in [90, Fig. 5 ,  p. 7341 by Lockheedlo 
for lateral-directional control for high performance 
aircraft. 

C. The Lure of NN 

Some of the exciting new applications being 
pursued using NNs are: 1) classification of correlation 

"An interesting outcome since a prior internally funded Lockheed 
IR&D project [lo41 had pointed out perceived weaknesses in prior 
perceptronbackpropagation applications. However, Lockheed 
rejoined the NN fray in [114]. 
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signatures of spread spectrum signals, 2) speech 
recognition, 3) image processing, 4) characterization 
of radar signals, 5 )  ATR, 6 )  implementing dynamic 
programming (DP)Niterbi algorithm (DP = VA), 
7) fault detection/diagnosis," 8) multitarget 
tracking.12 

theorist are: 1) use of Kalman filters and/or extended 
Kalman filters of NN as a more expedient alternative 
(requiring fewer iterations to c~nvergence'~) to the 
use of back-propagation for setting the weights (Le., 
learning) in multilayer Perceptron type NNs, 2) utility 
of sophisticated Lyapunov functions for guaranteed 
NN convergence and its interaction in allowing the 
specification or design of candidate NN architectures 
that are likely to be fruitful by having theoretically 
guaranteed convergence properties. Another lure of 
NN use is in circumventing the need to totally specify 
the detailed mathematical model for the physical 
system beforehand but to merely allow the NN to 
adaptively learn on-line what the control actions 
should be to elicit the desired system response. Thus, 
the NN could successfully accommodate a changing 
environment or aging components with characteristics 
that deviate from the original status quo. 

for control (handling/implementing sliding mode 
control) and use of control-based techniques to 
expedite NN learning (via use of Kalman filters and/or 
extended Kalman filters instead of back propagation, 
as mentioned above). A pressing question, touched 
on in Section IVB, is whether NNs can actually be 
used to implement feedback control, as is highly 
desirable from a practical point of view, but which to 
date appears to defy rigorous theoretical justification 
or even experimental confirmation (while reputable 
researchers, like Jim Spa11 [JHU/APL], reported at 
the 1991 Boston ACC [85] on his attempt at using 
NN feedback control using a type of Stochastic 
Approximation, it appeared to be too preliminary and 
not yet convincing). l4 Negative results were also 
reported at [45] by Henry Jex (Systems Technology, 
Inc.) regarding use of an Adaptive Clustering NN for 
feedback flight control of aircraft experiencing battle 
damage and seeking reconfiguration that augmented 
vectored thrusting and sought fail-safe limp home 
capability. The technique of [46] is somewhat 
ambiguous about whether the NN is feedback or 
feedforward in implementing an ART-based adaptive 

Two NN aspects that may further interest a control 

There is recent interplay between use of NN 

"Some remedies to bad NN performance in this application area 
have been offered [52, 531. 
"An overview of this area is [44], with new ideas expressed for use 
of NN within its pursuits. 
I3But perhaps with comparable operations counts [39] so its 
advantages are questionable, 
14See follow-up work by Prof. Hanfu Chen, Chinese Academy of 
Sciences, visiting UC Santa Barbara and University of Kansas. 

pole placement neurocontroller, The compatibility 
of NN implementations with feedback control will 
undoubtedly be clarified in future investigations. 

From control theory we know that there is strong 
duality (as established by Kalman in 1959) between 
optimal regulation and optimal estimation (Le., both 
applications possess similar quadratic cost functions 
for application situations involving an underlying 
linear system with positive definite weighting matrices 
appearing where needed and possessing a similar 
solution methodology involving a matrix Riccati 
equation because both problems have identical 
underlying mathematical s t ruct~re '~) .  Notable recent 
applications of basic control theory within NN 
technology has been as follows. 

Realization that problem of specifying appropriate 
NN weights is a dynamic programming problem, 
as explicitly posed in [31],16 with simplifying 
approximations likely [32]; 

(previously developed 20+ years ago in model 
adaptive control in using a gradient descent 
optimi~ation'~ approach even though it lacked 
explicit analytical guarantee of convergence) to 
also be applicable to NN learning via so-designated 
dynamic back propagation [ 121 [also without analytic 
convergence guarantees] (cf., [35, 431); 

classical optimal control, using familiar Hamiltonian 
formulation, can be adapted to serve as an overview 
for gauging the utility of differing learning approaches 
and even for suggesting other approaches to learning 
to expedite convergence as well as providing a 
unifying perspective for common understanding since 
several special cases are outer product rule, recurrent 
back propagation, and spectral methods; 

Resurrection of sensitivity analysis approach 

Recent revelation in [41] that techniques of 

I5A distinction is that Kalman filter Riccati Equation is to be solved 
forwards in time while that of the quadratic feedback regulator is to 
be solved backwards in time. 
16The reverse has also occurred here where a NN has been 
proposed to provide approximate solution to dynamic programming 
problems [40] similar to those (Traveling Salesman Problem) 
initially investigated by Hopfield/Tank and criticized by 
WilsonPawley. We can't help but notice that in the same issue of 
the same journal, one paper says that NN learning in perceptrons 
(hidden Markov models) is a fundamental dynamic programming 
(DP) problem, while the other paper says that perceptron NNs can 
solve DP problems (a classic Round Robin or vicious cycle) but 
mitigated by the disclaimer or limitation that the type of DP claimed 
to be solvable by perceptron NNs are less difficult than the DP 
problem claimed to be equivalent to perceptron learning. 
"The recent approach of [55] avoids gradient-based learning 
and as such exhibits great promise as well as exhibiting novel 
combinations of expert systems [54]. Researchers at University of 
Texas (Austin) are looking into similar implementations (1996) 
that involve a hierarchy of Kalman filters (treated as the experts) 
gated by NN-like structures and also similarly invoke the EM 
(Expectation-Maximization) algorithm. 

412 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 34, NO. 2 APRIL 1998 



Concepts of structural stability being exploited 
to gauge utility of unsupervised learning (ABAM, 
RABAM18) in feedback NN [36]; 

Use of extended Kalman filter instead of 
back propagation (tiemonstrated to be an extreme 
degenerate form of extended Kalman filter) for 
implementing a learning algorithm for a multilayered 
perceptron to set the weights [37-391 (but admitting 
that while fewer iterations were required, the overall 
operations counts were comparable and sometimes 
more for the extended Kalman filter). Reference [42] 
was able to avoid use of an extended Kalman filter 
entirely and instead. use a much simpler standard 
linear Kalman filter to expedite learning in layered 
NN where it is noted that the effective learning rate 
is adaptive rather than constant as it is for back 
propagation and this variable rate is claimed to be an 
advantage in an auto-associative image compression 
application; 

For multitarget tracking, typically the domain for 
use of Kalman filters, (M. Caudill and C. Butler, TRW 
Mead, 1987) investigate using Grossberg-Mingolla 
boundary contour system (BCS) NN to correlate 
sequences of target reports. BCS is interpreted as 
an interpolative probability field (IPF) (covering 
the region of space. scanned by the sensor) with the 
impressive claim that the resulting multitarget tracking 
algorithm has a pe:rformance that is independent of 
the number of objects tracked. (Comment: usually, 
conventional multitarget trackers get saturated 
by having a computational architecture and fixed 
maximum track-file size and report association tree 
structure that must be searched (with increasing 
computational delay) for scan-to-scan data correlation 
continuity of same targets tracked, a computer 
burden that b1osso:ms exponentially (NP-complete). 
Compare sparsely documented abstract NN approach 
to recent novel concrete advances made using explicit 
conventional analysis techniques in [ 1191 that abstract 
NN studies siphon funds fromI9); 

Multitarget tracking (E. Barnard and D. P. 
Casasent, Carnegie-Mellon, 1989) optical NN 
inference processor, NN imaging spectrometer, and 
NN matrix inversion device are described with initial 
results provided. E,xtensions made to Kalman filter 
implementation although its an energy-minimization 
approach; 

Multitarget track initiation problem claimed to 
be solved (M. Lennmon, Carnegie-Mellon, 1989) 

‘*An explicit countere:tample to this approach has appeared 
relatively recently in [119]. 
‘9Perhaps this explains: the recent request made by Paul J. Werbos 
at a public forum at MIT in April 1996 “for researchers to submit 
control and estimation proposals to him for possible NSF funding 
under the NN umbrella even if they don’t have anything to do 
with Neural Networks per se”. I fully expect the nice “Team 
Theory”resu1ts of fifte’m years ago to resurface under the guise of 
NN. 

by NN that is self-organizing and dominated by 
self-inhibition. The claim is that the NN will 
eventually cluster its internal states about the modes 
of a stimulating source and as a consequence can 
be used for parameter identification in situations 
characterized by non-Gaussian or other multimodal 
densities. (Comment: this situation exists in nonlinear 
filtering target tracking applications as well); 

Problem of missing observations or missing 
measurement data treated using NN (M. Nakao 
and K. Hara and M. Kimura and R. Sato, Tohoku 
University, 1985). A counting process or point process 
of intensity is observed as the additional info for 
estimation. An extended Kalman filter is used for the 
estimation task. Algorithm is applied to artificial NN 
and to cat’s visual nervous system; 

Use of Hopfield NN probabalistic data association 
(NPDA) algorithm*’ to perform data association [50] 
within an application of multitarget tracking in clutter 
as an approximate recasting of the so-designated 
Joint Probabilistic Data Association (JPDA) 
scheme. (Comment: JPDA originally developed by 
Yaakov Bar-Shalom over the years (at University of 
Connecticut, previously at SCVSCT) in conjunction 
with Tom Fortmann (BBN) and also by Dick Wishner’s 
CA company (Edison Tse, Chong, Mori, etc.)); 

Novel and constructive invocation of additive 
white noise [65] (in a manner similar to what’s 
done in random search for classical optimization) 
within feedback of Hopfield net to guarantee (via 
stochastic Lyapunov function [using martingales] 
a’la Harold Kushner) convergence of this stationary 
system (as a Gibb’s field) to a prescribed statistical 
distribution (1 /Z exp[ -V(x ) /T]  having temperature T 
as a parameter) being a stationary Markov chain. By 
further lowering T (no faster than at a prescribed rate) 
interfaced these results with the simulated annealing 
framework with a Hopfield net so that global optimum 
is obtained instead of the mere local NN optima 
that are usually obtained. Use of randomization here 
invoked Stratonovich and Ito calculus within Hopfield 
network. 

Except for the last item which is complete as it 
stands, it is acknowledged that most of the above are 
still being developed and refined. 

D. Important Open Questions 

circumventing the need to totally specify the 
detailed mathematical model for the physical system 
beforehand but to merely allow the NN to adaptively 
learn on-line what the control actions should be to 
elicit the desired system response. Thus the NN could 
successfully accommodate a changing environment 
or aging components with characteristics that deviate 
from those originally present. 

Another advertised lure of NN use is in 

*ODrawbacks to the approach of [SO] are offered in [Sl]. 
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While the above is a noble goal, a more pressing 
sub-problem within this last category is how to go 
about distinguishing between problems or tasks 
that are tractably possible (using the standard NN 
trial-and-error approach) from those which are 
impossible to solve even with no limits on the time 
expended and number of trial tests performed other 
than it be finite. For example, two multilayered 
Perceptrons (with 26 nodes each) were used by 
Bernie Widrow (Stanford) [74-781 to solve the 
“truck backer-upper problem” and the less publicized 
“inverted pendulum a.k.a. the broom balancing 
problem on a mobile cart (attached by a pin)”21 
without furnishing an explicit model by instead 
allowing sufficient variety of experiments to be 
performed and the necessary processing take place 
to distill this learning (as associated CPU time 
expenditure) [83]. Two brooms, one on top of the 
other in tandem (attached by an additional pin), 
could be successfully handled similarly; however, 
two parallel brooms, with different offsets, both 
attached to the cart by the same original pin could 
never be handled because “controllability” is absent 
for this latter situation. In lieu of not consulting 
existing controllability analyses for this problem 
[66, pp. 10-171, how would an experienced NN 
practitioner unschooled in control theory know 
that the second case was impossible to solve due 
to physical principles, with or without a model 
being supplied to the NN and so shouldn’t even 
be attempted without risking a waste of time and 
money in fruitless computations? Other attempts at 
applying NN for solving other problems could be 
just as hopeless as the last described broom balancing 
problem without any clue being available beforehand 
as a caution that it is impossible to solve and should 
instead be skipped or avoided entirely.22 

Regarding priority in discovering the 
mechanization of NN backpropagation attributed 
to Paul J. Werbos in his 1974 Ph.D. thesis, [43] 
throws some light on earlier mechanizations of the 
gradient techniques used in this way by H. J. Kelley 
[67] and others (also see Raman Mehra’s adaptive 
control and parameter identification techniques of 
the late 1960s and early 1970s [68] and Paul M. 
Frank’s matrix sensitivity analysis [73] for control 
systems of even earlier vintage). After all, it merely 

21 See [79-8 11 for history and other solution approaches to this 
historical 30+ year old (already solved) problem (related to the 
launch of multistage rockets as the practical application that 
motivates it). 
22Prof. John Baillieul (Boston University) has a way of making 
both brooms stand up simultaneously (by vigorously vibrating the 
whole contraption vertically) hut this is a different problem (since 
control is introduced in a different dimension orthogonal to that of 
the original problem) but definitely not practicable for multistage 
rockets. 

consists of the chain rule from Advanced Calculus. 
Variations of an “Adaptive Critic”z3 (e.g., [108]) may 
possibly avoid “a need for an accurate atomic clock 
for distinguishing evaluations of the cost function J ( k )  
and J ( k  - 1) for comparisons between the current k 
and prior time k - 1 in formulating  improvement^"^^ 
when utilization of an inexpensive tapped delay line or 
zero-order hold device will suffice instead. 

A massive study of the efficacy of pursuing NN 
research (funded by DARPA) [86] concluded that 
NN implementations performed twice as well as 
conventional statistical pattern recognition techniques 
for doing the same thing. Later follow-up [87] (also 
funded by DARPA) clarified that the performance is 
about the same as that of conventional algorithms and 
mechanizations. [Both of the above conclusions were 
routinely revealed within a Boston Section IEEE NN 
Course lead by Dr. Beth Wilson (Raytheon).] It’s little 
wonder that the historical perception of NN research 
to an outsider was that it was loaded with hype. Rank 
and file usually echo what’s being broadcast at the 
highest leadership level. Also see [122]. 
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