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Decoupled Kalman Filters for Phased 
Array  Radar Tracking 

FREDERICK E. DAUM AND ROBERT J. FITZGERALD 

Absrruct -Kalman filters have been used in numerous phased array 
radars to track satellites, reentry vehicles, and missiles. This paper consid- 
ers the design of these filters to reduce computational requirements, 
ill-conditioning, and the effects of nonlinearities. Several special coordinate 
sptems used to represent the Kalman filter error covariance matrix are 
described. These covariance coordinates facilitate the approximate decou- 
pling required for practical filter design. A tutorial discussion and analysis 
of ill-conditioning in Kalman filters is used to motitrate these design 
considerations. This analysis also explains several well-known phenomena 
reported in the literature. In addition, a discussion of nonlinearities and 
methods to mitigate their ill effects is included. 

I. INTRODUCTION 

K ALMAN  filters have been applied in many phased 
array  radars  to track satellites, missiles, reentry 

vehicles, and  other objects. Table  I summarizes the major 
characteristics of both  the  radar  and  the  particular  Kalman 
filter  in these applications. All of these radars have rather 
large  antennas  (up  to 60  m),  they  all  use pulse compression 
and monopulse angle measurement techniques, the antenna 
beamwidths  are on the  order of lo, and most of them are 
capable of tracking objects at slant ranges of several thou- 
sand miles,  with range measurement accuracies on the 
order of 1 - 10 m. Further  details  on these particular  radars 
and phased arrays, pulse compression, and monopulse 
techniques in general can be found  in  [I]-[3].  This  paper 
will discuss some aspects of the design of Kalman  tracking 
filters for such radars. Although the discussions are  appli- 
cable to radar  tracking  in general, they reflect the experi- 
ences of the  authors with the several large, long-range 
phased array  radars designed and  built  at  the  Raytheon 
Company, which constitute  the majority of the systems in 
Table  I. These are exemplified by the  radars shown in Fig. 

Our  presentation begins  with a  tutorial on ill-condition- 
ing (Section II), which also includes an analysis that ex- 
plains two rather common types of filter divergence in 
applications of this type. Although this analysis is elemen- 
tary,  it provides considerable insight into these phenomena. 
This is followed in Section I11 by a discussion of the special 
coordinate systems used to represent  the  Kalman  filter 

l(a)-(d). 
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error covariance matrices. These so-called “covariance co- 
ordinates”  include range-velocity Cartesian  coordinates 
(RVCC), radar  principal  Cartesian  coordinates  (RPCC), 
and  track-oriented  Cartesian  coordinates (TOCC). Two of 
these coordinate systems (RPCC  and RVCC)  were initially 
developed by  Brown and  others  at IBM [7], although 
numerous  refinements  and modifications have  been made 
for  the  applications  in  Table I. Section IV considers some 
computational  aspects of these filters,  and we conclude  in 
Sections V and VI with a brief review  of certain  nonlinear 
aspects of Kalman  filtering in applications  such  as those in 
Table I. Although the  uncertain origin of radar observa- 
tions [26]-[28] is an  important problem in systems such as 
those in Table  I,  there is insufficient space  to discuss this 
topic here. 

The basic reason  for  introducing special coordinate sys- 
tems for representing  the  Kalman  filter  error  covariance 
matrix (Section 111) is  to allow a decoupling of this matrix 
without suffering a significant loss of state vector estima- 
tion accuracy. Decoupliig  the  error covariance matrix has 
three benefits: 1) reduction  in  computational  requirements, 
2) reduction of ill-conditioning (Section 11), and 3) mitiga- 
tion of the ill effects of certain  nonlinearities (Sections V 
and VI).  As will be  illustrated  in  subsequent sections, there 
is  often no noticeable loss of accuracy, and  in  certain cases, 
there is a  substantial improvement in accuracy. It should 
be  noted, however, that  for some applications, even partial 
decoupling may result in significantly suboptimal  perfor- 
mance. (Some examples of performance  degradation  due  to 
decoupling  are given  in  [37].) 

The term “decoupling,” as  used in this context, refers to 
the  approximation of certain covariance matrix elements as 
zero. For example, the  “fully  coupled” covariance matrix 

‘12 ‘13 

P = [ b  ;; (1.1) 

where the Pj j  are nonzero submatrices, might be reduced to 
a  “partially  coupled”  matrix by approximating PI, and P2, 
by zero matrices. It may  be further reduced to  a “decou- 
pled”  matrix by also letting PI, be zero. 

The decoupling defined above and  the special coordinate 
systems described in Section I11 all refer to  the  error 
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* M o d i f i c a t i o n   t o  R V C C  u n d e r   c o n s i d e r a t i o n .  

covariance matrix  rather  than  the  state vector  itself. The 
prediction of the  state vector from  one time to the next is 
generally performed in a Cartesian coordinate system  fixed 
with  respect to the  radar.  The differential equations used to 
predict the  state vector include gravity.  Coriolis and 
centrifugal accelerations due  to  earth  rotation. and also (if 
needed  for a particular application or flight  regime) drag. 
lift. and thrust acceleration. There is no “decoupling” of 
the  equations of motion  used to represent or predict the 
state vector. 

11. ILL-CONDITIONING IK KALMAN FILTERS 

Numerical analysts have  been  keenly aware of the phe- 
nomenon known as “ill-conditioning” in connection lvith 
matrix inversion  for  many years (see  [lo]-[12]). Least 
squares problems generally  give  rise to particularly ill-con- 
ditioned matrix inversion problems, owing to the re- 
dundancy of the data being  processed. considering  that a 
Kalman filter is simply a recursive solution to a certain 
weighted  least squares problem, it  is not surprising that 
Kalman filters tend to  be ill-conditioned. An awareness of 
ill-conditioning of Kalman filters was achieved  soon after 
the first nontrivial applications [ 131 and [ 141. A particularly 
fine exposition of this topic is  given in [4] and [ 151: the 
following material is intended  to complement and il- 
luminate  the discussion in these  two  references. Also, it is 
interesting to compare Kalman’s comments in [ j ], concern- 
ing ill-conditioning in optimal control problems. to our 
analysis. 

The first  problem to overcome  is defining the notori- 
ously elusive term “ill-conditioning.’’ We  will do this in the 
context of solving simultaneous linear equations, which 
will be adequate for our purposes. Roughly  speaking. we 
say that the problem of solving the linear equation A x  = b 
for the vector x is “ill-conditioned” if “small“ fractional 
errors in the n x n matrix A or the vector b result in 
“large” fractional errors in x. The fractional errors in x? A :  
and b are ~~Axll/llxll~ IlAAII/IIAll. and l l ~ ~ l l / l l ~ l l .  respec- 
tively, in which Ax, A A ,  and Ab denote the errors in x, A ,  
and b, llxll is the norm of x, and llAll is the corresponding 
matrix norm induced by the vector norm (see [12, pp. 
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Fig. I .  (a) Missile site  radar (MSR) S-band phased arrav radar. design- 
ed for tracking of reentp vehicles and Spartan rnissil& in Safeguard 
ballistic missile defense slstem.  (b)  Cobra  Dane (AN,/FPS-108) L-band 
phased array  radar. dehigned for collection of data (exoatmospheric) on 
flight tests of foreign missile systems (also satellite tracking  and  ICBM 
early warning). 
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The reason that we only  need to consider the ill-condi- 
tioning of the linear equation A x  = b is that  the  Kalman 
filter corrector equation has precisely this form. In particu- 
lar. one  standard form of the state vector corrector equa- 
tion 

f= x+ M H ~ ( H M H ~ +  ~ ) - ‘ ( z  - HT)  (2.1) 

is mathematically equivalent to 

H T R - ~ H ) ~ =  ~ - 1 -  x+  H ~ R - ~ Z  (2.2) 

which  is of the form A x  = b if  we make the following 
identifications: 

A = M-’ + HTR-’H (2.3) 

b = M - ’ x +  HTR-’z. (2.4) 

In the above, f and X denote the corrected and predicted 
state vectors,  respectively; R is the m X m measurement 
error covariance matrix; M is the n X n error covariance 
matrix of X; z is  the measurement vector (z = Hx + Q) 

where x is the true  state vector; and u is the measurement 
noise vector. With this formulation, the vector b itself  is the 
sum of two  terms, each of which  involves matrix inver- 
sions. Consequently, we must consider the conditioning of 
the three matrices A ,  M ,  and R in  order to determine the 
overall conditioning of the Kalman filter corrector equa- 
tion. Our focus here is different from other treatments of 
Kalman filter ill-conditioning which concentrate on 
numerical errors  in the nonlinear covariance  matrix equa- 
tions [9], [13],  [22]. 

Having defined the concept of ill-conditioning, we are 
now at a point to define a precise mathematical bound [ 12, 
p. 8091 

Fig. I .  (Conrinued.) (c) PAVE PAWS (AN/FPS- 1 15) solid-state UHF 
phased array radar.  designed for early  warning of submarine-launched 
ballistic missiles (also satellite  tracking). (d) Cobra Judy (AN/SPQ-lI) 
shipboard  phased array radar.  designed for collection of data on tests of 
foreign missile systems (also satellite  tracking). 

763-7711).  Usually we think of the errors in A and b 
arising from the finite word length in digital computers, 
although these errors can arise from other sources ( e g ?  
modeling the equations of motion and linearization); scal- 
ing and  bias errors in  an analog computer implementation 
would  qualify as well.  Various  vector norms are possible, 
but for  this  discussion, we  will consider only the standard 
Euclidean norm. The corresponding matrix norm is llAl( 
- - {Arna ( A‘A) in  which Amax(.  denotes the  largest  eigen- 
value of (.). At this point, the  term “ill-conditioning” is 
still rather vague.  owing to the  lack of a rule to determine 
when to call I\Axll/llxll “large.” If fact, the threshold of 
“largeness” depends on the  specific application and the 
particular norms involved. 

in which c ( A )  = 1IA1111A-’ll is  called  the “condition num- 
ber.” The bound (2.5) is valid under the assumption that 
I(bAIIIIA-’II < 1, and the norm is  such that ( ( I ( (  = 1 where I 
is the identity matrix. For obvious reasons, in  most inter- 
esting practical applications, ~ ] A A ~ ~ ~ / A - ’ ~ ~  is much less than 
unity, and therefore the condition number is the key 
parameter. If A is a real  symmetric matrix, then the condi- 
tion number is 

for the Euclidean  vector norm considered  here. If c ( A )  is 
large,  then the problem A x  = b may be ill-conditioned, but 
because (2.5)  is only an upper  bound, A x  = b might be 
well-conditioned. In fact, one of the main  goals of this 
paper  (as well as [9]-[ 171) is to show  how to make A x  = b 
well-conditioned despite enormous values of c ( A ) .  The 
failure to recognize  this point is  very common (e.g., [5 ,  pp. 
27-28]). The bound (2.5)  can be extremely  pessimistic, 
depending on the exact form of A .  For example, if A is the 
matrix 
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then c ( A )  = 10‘Oo, but the problem A x  = b is not ill-condi- 
tioned at all. This and other defects in the classical defini- 
tion of condition number have  led to alternative definitions 
(e.g.,  [7],  [15], and [18]), but we  will be  content with  (2.6). 
Also.  with some care, one can define a condition number 
for the solution of nonlinear problems [19];  however. as 
indicated earlier,  we do not need such a generalization to 
analyze the Kalman filter corrector equation. 

Using  (2.5) and (2.6), we can now analyze the (potential) 
ill-conditioning of Kalman filters. In particular. assuming 
that M is positive  definite, and using  the  convexity of 
X,,(.) as a function of ( - )  and the concavity of X,,(-) [8, 
p.  721, it  is  easy to show that 

in  which A is  given  by  (2.3). In some applications, the 
ill-conditioning  is so severe that M eventually  fails to be 
positive definite (e& [6]):  in  which  case  (2.8)  is invalid. 
Moreover, if M is not positive definite, then the  filter  is 
likely to be unstable. and the error in f will be unbounded. 
In any case,  (2.8)  is a valid bound before M loses  positive 
definiteness; it follows from (2.8) that 

c( A )  G 
l/X,,(M)+h,,(HTR-’H) 
l/A,,(M)+A,,(HTR-’H) 

. (2.9) 

For the majority of practical applications. including all of 
those listed  in Table I, the measurement matrix H has rank 
less than n ,  and therefore A,,(HTR-’H) = 0. It follows 
from (2.9) and (2.6) that 

c ( A )  ~ c ( M ) + A , , ( M ) A , , ( H T R - ’ H ) .  (2.10) 

If H has rank n ,  then (2.10) is still  valid. but is more 
pessimistic. Combining (2.10) and (2.5), and assuming that 
IlilAIIIIA-’II is  much  less than unity, yields  the  main  result 
of this (approximate) analysis: 

(2.1 1 )  

in  which A and b are given  by  (2.3) and (2.4), respectively. 
Refemng  to (2.4), the errors in b arise  principally from 
errors in F, M. and H. and to a lesser  extent  from errors in 
z and  R.  Note  that  radar measurement  noise should not be 
considered a source of error in z because z is  defined as 
H x  + 6. in  which c is the noise-induced error. A further 
application of (2.5) to (2.4)  will  result in a bound on 
IlAbll/llbll which  explicitly  displays its dependence on c( R )  
and c ( M ) .  We  shall not pursue this  analysis  here because 
(2.1 1) is  sufficient  for our immediate purposes:  it  is inter- 
esting to note, however, that such an analysis can produce 
a bound that is quadratic in c(A4). It should be em- 
phasized that (2.2)  is  not  the  form of the Kalman filter 
corrector equation used  in  most practical applications be- 

cause its computation generally  requires  many more  opera- 
tions than the form given  in  (2.1).  Nevertheless, the error 
bound derived  here  (2.1  1)  is  obviously  still  valid. The only 
question is:  how  tight a bound is  (2.1  1)  if  (2.1)  is  used 
rather than (2.2)?  Some  insight into this question is  derived 
from the  following  comments. In particular, [21. pp. 
470-4791 and [ 1, p. 3711 indicate that, based on practical 
experience. the  computation of A - ’ via  (2.3)  is  much better 
conditioned than the mathematically equivalent form A - ’  
= M - M H  ’( HMHT + R)-’HM deduced from Schur’s 
matrix inversion formula. T h s  is true in spite of the fact 
that the former method  requires,  in  general, many  more 
operations than Schur’s alternate method. This suggests 
that. in  general,  (2.11)  is a tight bound, except  for the basic 
defects in  (2.6) noted earlier. This discussion also illustrates 
the error in the popular notion that fewer operations imply 
smaller error. (For example,  see [5 ,  p.  401.) Other counter- 
examples to this idea include iterative improvement [12, 
pp. 831-8331 and the so-called Joseph form of the covari- 
ance update equation [9,  pp.  7, 841. Moreover,  these  exam- 
ples  show that ill-conditioning  is not related to the number 
of operations in a simple  way, but rather a much more 
subtle and powerful  mechanism is at work. 

We  will  now  use  (2.1  1) to  interpret a number of results 
reported in the literature and/or experienced  in some of 
the applications in Table I. First. errors in A and b will be 
propagated strongly in the initial phase of track when 
X max( M )  may be large; this is especially so immediately 
after  an exceptionally accurate radar measurement because 
Amax( H T R - ’ H )  would be large  in  this  case. An example of 
this well-known  effect  is reported in [6. p. 321. Second, a 
result often reported in the literature (e.g., [ 131, [16].  [41])  is 
the divergence of the Kalman filter after an extended 
period of tracking. In this case, X,,(M) should be rela- 
tively  small, and therefore the  source of difficulty  evidently 
lies  in  the term invohing c ( M ) .  The condition number of 
:I4 can  become enormous as the  ostensible  accuracy of the 
state vector estimate (as measured  by M )  improves. To 
gain  some  insight into this, consider the  simple Kalman 
filter  defined by H = [1,0], R = constant. with no a priori 
data and  no process  noise  modeled, and the state transition 
matrix 

a=[:, r l  (2.12) 

in  which T. the  time  between  measurements,  is a constant. 
For this  example, it is  well  known  [20] that 

in which k is  the number of measurements and T = 1 is 
assumed without loss of generality.  It  can  be  shown,  using 
(2.13), that c ( M )  = Xmax(M)/Xmin(M) is unbounded for 
increasing k .  Moreover. both X,&,( M )  and X M )  ap- 
proach zero  for this example.  Therefore. contrary to the 
untutored intuition. as the Kalman filter thinks the  esti- 
mate of f becomes  more and more  accurate. the error 
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TABLE I1 
METHODS TO REDUCE ILL-CONDITIONING 

I Method I Comment I 
1.  A p p r o x i m a t e   d e c o u p l i n g   o f  

2 .  D i a g o n a l i z a t i o n   o f   c o v a r i a n c e  

3 .   C o v a r i a n c e   m a t r i x   f a c t o r i z a -  

4 .  Lower  bound  main  diagonal 

c o v a r i a n c e   m a t r i x  

m a t r i x  

t i o n  

e l e m e n t s   o f   c o v a r i a n c e   m a t r i x  

5 .  I n t r o d u c e   o r   i n c r e a s e   p r o c e s s  
n o i s e  

5. T i k h o n o v   r e g u l a r i z a t i o n   ( a l s o  
c a l l e d   r i d g e   a n a l y s i s )  

7 .  E x t r a   p r e c i s i o n   a r i t h m e t i c  
( e . g .   d o u b l e   p r e c i s i o n )  

8.  I t e r a t i v e   i m p r o v e m e n t  

9. J o s e p h ' s   s t a b i l i z e d   f o r m  o f  
c o v a r i a n c e   u p d a t e   e q u a t i o n  

1 0 .   U p d a t i n g   t h e   c o v a r i a n c e  
m a t r i x   w i t h  a s e q u e n c e   o f  
s c a l a r   m e a s u r e m e n t s  

11. P r e f e r r e d   o r d e r   o f   p r o c e s s i n g  
s c a l a r   m e a s u r e m e n t s  

1 2 .   S c a l i n g  or e q u i l i b r a t i o n   o f  

1 3 .   R e a r r a n g e m e n t   o f   f i l t e r   e q u a -  

1 4 .  H m a t r i x   o f   r a n k  n 

c o v a r i a n c e   m a t r i x  

t i o n s   t o   p r e s e r v e   p r e c i s i o n  

I S e e   S e c t i o n   I I I .  

e . g .   G r a m - S c h m i d t   t e c h n i q u e   u s e d  
i n  a d a p t i v e   a r r a y s   ( R e f .   2 3 ) .  
S e e   R e f s .  6, 9 a n d  2 2 .  

c o v a r i a n c e   m a t r i x ,  b u t  d o e s   n o t  
E n c o u r a g e s   p o s i t i v e   d e f i n i t e  

g u a r a n t e e   i t .  
Makes p l a n t   m o d e l   c o n t r o l l a b l e .  

f o r m u l a t i o n ;   s e e   R e f .  11. 
I m p l i c i t  i n  Kalman-Wiener f i l t e r  

F o r  r e a l - t i m e   a p p l i c a t i o n s   s u c h  
a s   t h o s e   i n   T a b l e  1 ,  t h i s   w o u l d  
impose  a s i g n i f i c a n t  memory  and 
t h r o u g h p u t   b u r d e n .  
S e e   R e f s .  10 a n d   1 2 ;   i m p l i c i t  i n  

methods .  
some i t e r a t e d   l e a s t   s q u a r e s  

See  p p .  25 a n d  3 1   o f   R e f .  6 f o r  
c a v e a t s  on t h i s   m e t h o d .  
S e e   R e f s .  1 6  and  1 7 ;  a v o i d s   n o n -  
s c a l a r   m a t r i x   i n v e r s i o n .  

I n  Re f .  24 t h i s  t e c h n i q u e   i s  
shown t o   r e d u c e   e r r o r s   d u e   t o  
n o n l i n e a r i t i e s ,  b u t  i t   s h o u l d  
a l s o   r e d u c e   i l l - c o n d i t i o n i n g   f o r  
c e r t a i n   a p p l i c a t i o n s .  
S e e   R e f s .  10 and 1 2 .  

See  p p .  9 1 - 9 6  o f   R e f .  9 .  

U s u a l l y   c a n n o t   b e   a c h i e v e d  i n  
p r a c t i c a l   a p p l i c a t i o n s .  

propagation given in (2.1  1) becomes arbitrarily large. This 
is precisely the  phenomenon described in [ 131 and [ 161 
among  others.  Finally, it is useful to  note  that M is 
(theoretically) positive definite  for all finite k;  moreover, 
the  pair ( H ,  @) defines an observable system for k 2 2 [20], 
although  the  plant model is obviously uncontrollable.  The 
Kalman  filter  in this example also  happens to be asymptot- 
ically unstable, having both poles on  the  unit circle. (Recall 
that Kalman's theorem relating  controllability  and  ob- 
servability to filter stability [45] allows, but does not imply, 
asymptotic  instability of the  filter  in this case.) 

As a result of this phenomenon, it has become standard 
engineering practice to model some process noise in  the 
Kalman  filter design (to make the  plant model controlla- 
ble) and/or explicitly bound  the main diagonal elements of 
M from below. With these safeguards, X,, ( M )  cannot 
become arbitrarily close to zero, and c ( M )  is bounded 
from above. Nevertheless, it is well known that these ad 
hoc devices are insufficient to prevent ill-conditioning  in 
many applications.  The  situation is particularly severe in 
radars such as  those listed in Table I, in which h max ( M )  is 
approximately  the variance of position estimation  error 
normal  to  the  radar  line of sight, whereas h ~ n (  M )  is 
typically the variance of range-rate  estimation  error.  Under 
these circumstances, c ( M )  increases quadratically in track 
time, and  can easily attain values of lo7 or more [ 151 before 
the process noise or lower bounds  on the main diagonal 

elements of M take effect. In view  of this, further  steps  to 
reduce  ill-conditioning  are usually required.  Table I1 is a 
list of the most common methods  to mitigate ill-condition- 
ing. These techniques can be used  singly or  in  various 
combinations.  For example, in  one of the  applications 
listed in Table  I, we have  used Methods 1: 4, 5,  6: 9, and 13 
in  one  Kalman  filter. Also, it  may be useful to  note  that 
Methods 1 and  3  are  compatible.  The method of decou- 
pling  the covariance matrix (Section 111) has  the  advantage 
over  all the  others of dramatically reducing ill-condition- 
ing,  as well as significantly decreasing the  number of 
operations required in real time. Table I11 quantifies these 
considerations  for  a typical application  in  Table I. Table 
I11 also indicates  the  problems associated with too much 
decoupling. The  results  in  Table I11 are based on well-tuned 
process noise models for each filter with 60-bit  floating- 
point  arithmetic used for all computations. Also, the track 
rates, average signal-to-noise ratio,  radar cross-section 
fluctuation  statistics,  duration of track, missile trajectories, 
radar model, etc.,  were identical for all  three  filters.  Table 
IV gives some further  details of the  comparison between 
the fully coupled and  partially coupled filters  for  three 
different missile trajectories. 

In order  to  understand why approximate  decoupling 
(Method 1) reduces ill-conditioning, one should think of 
this method as  a  step in the  direction of diagonalization of 
the covariance matrix (Method 2 in Table 11). In  fact, 
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TABLE111 
COMPARISON OF THREE SIX-STATE h L m N  FILTERS 

D e g r e e  o f  C o u p l i n g  O e c o u p l   e d  P a r t i a l  F u l  1 

C o o r d i n a t e   s y s t e m   f o r   S t a n d a r d  

N o r m a l i z e d   o n e - s i g m a   i m p a c t  
p r e d i c t i o n   e r r o r s   f o r   v a r i o u s  

1 . 0  t o  2 . 0  

m i s s i l e   t r a j e c t o r i e s  

R V C C  

0 . 6  t o  1 . 0  

R P C C  

0 . 6  t o  4 . 0  

Number o f   o p e r a t i o n s   p e r  
m e a s u r e m e n t  I 3650 I I 840 

TABLE IV 
COMPARISON OF FULLY COUPLED AND PARTIALLY COUPLED 

SIX-STATX KALX~AN FILTERS 

N o r m a l i z e d   O n e - S i g m a   I m p a c t  
P r e d i c t i o n   E r r o r s  L o c a l   F l i g h t  T r a j e c t o r y  A n g l e  Off 

P a t h   A n g l e  

R a d a r  

O r i e n t a t i o n  
R e l a t i v e   t o  B o r e s i g h t  o f   M i s s i l e  

A r r a y  
F u l l y  

C o u p l   e d  
P a r t i a l l y  

Coup l   ed  
F i  1 t e r   F i l t e r  

60' 1.0 1 . 4  C r o s s i n g  4 50 

30' 1 . 0  2 . 0  R a d i a l  60' 

30' 0 . 6  1 . 0  R a d i a l  00 

Method 1 is a  type of approximate block diagonalization. 
It is obvious that  a diagonal  matrix is not ill-conditioned at 
all. Diagonalization is  a very old and well-known  technique 
in least squares problems. The use of orthogonal polynomi- 
als rather  than  the  standard basis (1, x ,  x 2 ,  . . . ) to perform 
least squares  curve fitting is an application of this idea, 
which is associated with  such names as Legendre,  Laguerre, 
Hermite, etc. In the context of dynamical systems, it is 
known that  the eigenvalues of the  transition  matrix (a) of 
a linear system are least sensitive to numerical errors if CP is 
realized in diagonal form [34]. 

Finally, it should be noted that some progress has been 
made towards  formulating the precise connection  between 
decoupling and ill-conditioning in [44, ch. 111. 

As an  illustration of this idea applied to covariance 
matrices, consider the simple  example 

PI= [ l!E l 7 ]  (2.14) 

where 0 E << 1. P I  has positive eigenvalues A ,  = 2 - E and 
X, = E. In a  computer of finite word length (using floating- 
point or well-scaled fixed-point arithmetic), roundoff er- 
rors will  tend to produce fractional errors of a  particular 
size in the variables. It is evident from  (2.14) that  a small 
fractional error in the off-diagonal element  will  be equiva- 
lent to a large fractional error (or even a sign error)  in E. 

and hence in the smaller eigenvalue A,. Thus, the  rounded- 
off matrix  may  have eigenvalues greatly in error,  and may 
even  lose its positive definiteness. In contrast. if principal 

coordinates are utilized so that  the  matrix  has  the  diagonal 
form 

P 2 = [  0 € 1 9  

2--E 0 (2.15) 

then fractional errors of moderate  magnitude will not 
seriously alter  the eigenvalues or the essential properties of 
the matrix. 

The same ideas can be presented graphically by con- 
struction of a  Mohr circle [42] to represent the covariance 
matrix of (2.14) and (2.15). The circle is shown in Fig. 2. In 
general, the circle representing the covariance matrix P of a 
random vector in the xy plane is drawn on a  diameter 
defined  by the two points X ( P , , ,  - Plz) and Y(P,,, + P12). 
Then if the coordinate axes are  rotated  through an angle 6, 
a  rotation of the  diameter  through an angle 28, in the  same 
sense, yields a new diameter whose end  points represent 
the elements of the transformed  covariance matrix.  In  the 
present case, the matrix P I  is represented by  the  points 
X,(ll - 1 + E) and  Y,(l,  1 - E). A rotation  through 45" (90" 
on  the Mohr circle) brings us to the principal-axis repre- 
sentation of (2.15),  represented  by the  points X,(2- c,O) 
and Y,(c,O). It is evident from the figure that small frac- 
tional  errors in the  coordinates of X, and Y,  may produce 
large errors in the smaller eigenvalue (the abscissa of Y,), 
even to  the  extent of destroying positive definiteness (in 
which case the abscissa becomes  negative). No such prob- 
lem exists when the matrix is represented as in (2.15)  (i.e., 
represented directly by the  coordinates of X ,  and Yz). 
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Mohr circle  representation of the  covariance  matrix of (2.14) and 
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Fig. 3. Eigenvalue  sensitivities for a 2 X 2 covariance matrix 

The  above  concepts  can be quantified by computing the 
sensitivities (partial derivatives) of the smallest eigenvalue 

x . =  IN, 2 

with respect to  the  individual  covariance-matrix elements 
dX,,/dPij. In  order  to deal with relative errors, we may 
normalize these derivatives to yield sensitivity functions of 
the form 

s, =-- 
pij ah,, 

' J  x,, dPij (2.17) 

For  2 X 2 covariance matrices with  high flattening  ratio 
02/ol, Fig. 3 shows the extreme sensitivities which can 

275 

result from even small  misorientation angles 8-between  the 
coordinate axes and  the  principal axes. (The  right-hand 
scale, expressed in powers of two, can be interpreted as the 
number of bits of precision lost  in X,, for  a 1-bit error  in 

It is interesting to note  that if P is expressed in the 
factorized form P = SST ( S  triangular), all of the sensitivi- 
ties Ssij remain small, regardless of 8. Such a  statement 
cannot be made, however,  when we employ the  factoriza- 
tion P = UDUT ( D  diagonal, U triangular and unitary). 
Furthermore, scaling of the covariance matrix (so that all 
of its  diagonal elements are  equal) does not change any of 
these conclusions. 

Although the  applications discussed here all involve 
computers of considerable word length,  short  word-length 
implementations  (for example, 16 bits)  are common. The 
result is larger fractional  errors  due  to  roundoff,  and hence 
an increase in  the  importance of ill-conditioning, as dem- 
onstrated by the  above examples. 

Pi,*) 

111. DECOUPLED TRACKING 

In using covariance coordinates for tracking  filter decou- 
pling, the basic objective is to perform  the covariance 
computations  in  coordinates which are, as nearly as possi- 
ble, principal  coordinates of the  error covariances. If the 
covariance matrix can be visualized as  representing  an 
error ellipsoid (which is easily done,  for example, if it 
represents only position  errors  in three-dimensional space), 
then the appropriate  coordinate axes are  the  principal axes 
of this ellipsoid. 

Tracking  problems  are usually more  amenable to this 
technique  than  are  estimation  problems  in general because 
it is  often possible to predict,  quite readily, which coordi- 
nate axes  will produce  the desired result. For example, 
when the  target  dynamics exhibit no sigmficant  directional 
properties,  one might immediately surmise that  the  prin- 
cipal axes of the measurement error ellipsoid would con- 
stitute  an  appropriate axis system in which to  perform  the 
covariance computations. Provided that these axes do not 
change their  orientation at  an  appreciable  rate,  the  result- 
ing  estimation  errors  in each axis will be largely uncoupled 
from those in  the  other axes. If,  for example, the covari- 
ance  matrix  is  a 6 X 6 matrix representing  estimation  errors 
in position and velocity in  three  Cartesian  coordinate 
directions,  it  can be expected that  the only significant 
off-diagonal elements will be  those which represent cross 
correlations between position  and velocity errors in the 
same axis. If the  other (small) elements are neglected, the 
resulting matrix  can be represented as three  distinct  uncou- 
pled  2 X 2 matrices. If  we  use the rough rule of thumb  that 
the  computational cost of covariance propagation is pro- 
portional  to n3 (where n is the number of states), we find 
that  the  computation  has been reduced by a  factor of 
63/(3 X 23) = 9. 

Even  when Kalman  filters (i.e., filters which  use covari- 
ance  propagation  for gain determination)  are  not utilized, 
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TABLE V 
APPROACHES TO DECOUPLED TRACKING 

C o o r d i n a t e  
S y s t e m  

Number 
o f  S t a t e s  

I R P C C  

( R a d a r   P r i n c i p a l  
3 , 3 , 3  

C a r t e s i a n   C o o r d s )  
o r  2 , 2 , 2  
o r  3 , 2 , 2  

( T r a c k - O r i e n t e d  
3 . 3 . 3  

C a r t e s i a n   C o o r d s )  
o r  2 , 2 , 2  
o r  2 , 3 , 3  

I R V C C  
( R a n g e - V e l o c i t y  
C a r t e s i a n   C o o r d s )  

R V C C / C R  
(RVCC w i t h  
C o v a r i a n c e   R o t a t i o n )  

A p p l i c a t i o n s  Exarnpl   es 

M e a s .   e r r o r s  ( M E )  h i g h l y  

r e l a t i v e   t o   f i l t e r  memory 
i n   t h e   a t m o s p h e r e  d i r e c t i o n a l ;  LOS r o t a t i o n   s l o w  
A i r c r a f t  o r  m i s s i l e s  I + d i r e c t i o n a l   ( o r  ME d i r e c t i o n a l  

D y n a m i c   e r r o r s  ( D E )  h i g h l y  Air t r a f f i c   c o n t r o l  

a l o n g   v e l o c i t y ) ;  L O S  r a t e   s l o w  

ME a n d  D E  b o t h   h i g h l y  
d i r e c t i o n a l ;  L O S  r a t e   s l o w  

R e e n t r y   v e h i c l e s  

L O S  r a t e   s i g n i f i c a n t   r e l a t i v e  
t o   f i l t e r  m e m o r y   ( p e r h a p s  

E x o a t m o s p h e r i c  

b e c a u s e   o f  l o n g  memory   due  
m i s s i l e s ,   s a t e l l i t e s ,  

t o   s m a l l  DE) 
s p a c e   v e h i c l e s  

the concept of covariance coordinates facilitates decou- 
pling of the tracking problem, and indeed makes possible 
the successful application of simple  precomputed-gain 
filters, such as those of the so-called ‘‘& ” or “ghk ” type 
[29]. In t h s  sense, the concept, in  its simplest form,  is 
implicit in many of the  approaches commonly  used today 
for decoupled tracking. 

In more  complex situations, such as those involving 
directional target dynamics or  a rapidly rotating line of 
sight, the  concept  must be modified appropriately. This 
leads  to  a family of related decoupling  techniques  wluch 
have repeatedly proven their effectiveness in various appli- 
cations over the  past decade. These concepts were origi- 
nally developed for  the Safeguard  system  where  they  were 
utilized for tracking Sprint missiles and reentry vehicles [7], 
[30]; they  have since been applied  to  a variety of other 
systems, and the results of some of these applications  are 
discussed here. 

Four classes of decoupled tracking schemes are de- 
scribed briefly below. Table V provides a summary of the 
four approaches, and outlines the  conditions  under which 
each  may be  appropriate. 

RPCC Filters 

Radar  principal  Cartesian  coordinates (RPCC’s) are  de- 
fined as the directions of the principal axes of the error 
ellipsoid of the radar position measurements.  Such an 
ellipsoid is depicted in Fig. 4. In the  case of a phased array 
radar, it is  customary to define a set of face ( F )  Cartesian 
coordinates with the z F  axis normal  to  the  array face and 
the x p  and yF axes in the face. Then the target position 
vector in face coordinates is  given  by 

where r is the  range and u, v ,  and w are  the  direction 
cosines of the  range vector or line of sight (LOS), related 
by u2 + v2 + w 2  = 1  or w =d-. 

zFc (FACE NORMAL) 
BORESIGHT AXIS 

Fig. 4. Measurement  error  ellipsoid and RPCC coordinates for a 
phased  array  radar. 

The  quantities normally  measured  by the radar  are r ,  u,  
and t’, and their measurement errors  are characterized by a 
diagonal  covariance  matrix R .M = diag ( u:? a:. a:). When 
a, = uu (as is generally the case for a circular or square 
array), it can be  shown that  the RPCC (or “P”)  axes are 
oriented  as shown. The P ,  axis lies  along the range vector, 
Pz is parallel to the  radar face plane, and P3 lies in  the 
plane of P ,  and  the face normal. In this coordinate system, 
the measurement error covariance  matrix is 

where [ P F ]  is the  transformation matrix  from F to P 
coordinates. 

with a = 4- = d m .  and [ F M ]  is the linearized 
transformation matrix  from  measurement ( rut’ or M )  coor- 
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dinates  to F, whxh may be found by differentiation  of 
(3.1): 

r 0 
[ F M ] =  0 r 1. (3.4) [ 1 -:/w - r u / w  

It is readily verified that (3.2) results in a  diagonal 
measurement-error covariance matrix in the  Cartesian P 
frame, given  by 

R ,  = diag(u:, r202, r 2 u i / w 2 ) .  (3.5) 

If rotations of the  line of sight (LOS) can  be neglected, 
and if the  dynamic  error effects due to unpredictable  target 
motions  can be assumed to be approximately  the  same  in 
all directions (spherically isotropic),  then  the  principal 
directions  for  the  estimation  errors can be assumed to 
remain along the  RPCC axes, and hence covariance com- 
putations  can be decoupled in these axes. 

Such an  approach  can  often  be  applied successfully to 
the  tracking of airborne  targets such as aircraft  and m i s -  
siles, and of sea targets such as ships and  submarines. In 
propagating  the  three  independent  covariance  matrices, 
rotation of the  line of sight is ignored completely. Signifi- 
cant LOS rates will result in  the  true  error  principal 
directions lagging behind  the  RPCC system; resulting is a 
degree of cross coupling and  a  degradation of performance 
of the decoupled filter. Furthermore, LOS rotation  pro- 
duces  a  triangulation effect which can significantly reduce 
the  estimation  errors  in  the cross-range direction;  this 
effect is not usually taken into  consideration  in  the decou- 
pled propagation of the covariance matrices, resulting in  an 
additional loss of performance relative to  that of a fully 
optimum  approach. 

For these reasons, the fully decoupled RPCC  tracker 
yields near-optimum  performance only when the LOS rate 
is small. In this context,  the significance of the LOS rate 
must be judged in relation to the memory lengths of the 
filters (i.e., the significant parameter is the LOS rotation 
per memory length);  the governing filter in this regard is 
the one with the largest measurement errors, and hence the 
narrowest bandwidth (longest memory),  which is usually 
the filter operating  in  the cross-range direction  rather  than 
the range direction.  Furthermore, since filter memory is 
longer when dynamic  errors  are small, even small LOS 
rates can cause performance  degradation  in cases  where the 
filter’s dynamic  equations accurately model the target be- 
havior; as is often the case in exoatmospheric tracking. 

The  above implies that  considerable LOS rates  can  be 
tolerated as long as  the tracking filters have  wide band- 
widths (i.e., large gains). This  has been  shown to be the 
case in the Safeguard application [30] where RPCC  filters 
have been  used  successfully to track fast-moving Sprint 
missiles at short ranges. 

In many applications  (including those described here), 
the  radar measurement error ellipsoid is flattened  to  an 
extreme degree, especially at long range. Flattening  ratios 
(ratios of maximum to minimum rms error) of  1000 or 
more are  not uncommon. (By way  of comparison. the 

corresponding  ratio of diameter  to thickness of an ordinary 
LP phonograph  record  is generally in the vicinity of 200.) 
With such extreme  flattening, small changes in LOS angle, 
if properly  accounted  for  in  a fully coupled  Kalman  filter, 
can yield drastic  reductions in the  estimation  errors in the 
cross-range directions,  Thus,  extreme  flattening  and signifi- 
cant LOS rotation  rates  conspire  together,  in  a decoupled 
filter, to degrade  performance  from  the  theoretical  opti- 
mum. 

In  contrast  to these high flattening  ratios,  the differences 
in cross-range rms errors  (the two largest axes of the  error 
ellipsoid) are  often  not very significant. For  a  circular 
phased  array like those discussed here, their  ratio (Fig. 4) is 
equal to M’ = z F / r ,  the  cosine of the off-boresight angle of 
the beam, and generally lies  between unity  and  approxi- 
mately 1/2. This difference  can  often  be  ignored,  and  an 
average value can be used in  both  cross-range axes so that 
the  same covariance matrix and  filter gains can be used in 
both axes. Since much of the  computational  burden  is 
normally in the  covariance-matrix  propagation, this can 
lead to significant further savings. By the same token,  such 
an assumed circularization of the  error ellipsoid means that 
often any other  Cartesian  coordinate system, rotated  from 
the RPCC set around  the range vector, can  be utilized just 
as well as  the original RPCC  coordinates.  The  important 
thing is that the range  direction itself, with its much 
smaller measurement errors, be retained as one of the 
coordinate axes. 

For  application  to dish antennas  rather  than  phased 
arrays,  identical  considerations  apply  for  filter decoupling. 
In this case, the z F  axis in Fig. 4 can be interpreted  as  the 
antenna’s  azimuth axis, and  the rms measurement errors 
may be defined somewhat differently.  (In  particular,  a 
fan-beam  radar may have quite  different accuracies in  the 
P2 and P3 directions.) 

Of course, it is apparent  that similar principles would 
apply if the range errors were  much larger than the cross- 
range  errors  (as they often  are  in CW radars), in  which case 
the  error ellipsoid would be  shaped like a cigar rather  than 
a  pancake. 

TOCC Filters 

When the  directionality  properties of the  dynamic  errors 
are much more important  than those of the measurement 
errors, so that  the  latter may be  approximated  as  isotropic, 
it may be  appropriate to align the filtering  coordinate axes 
with the  principal  dynamic-error  directions. In air  traffic 
control  applications where target  accelerations  are  almost 
entirely  normal to the  direction of flight, t h s  has led to  the 
use of the  TOCC  (track-oriented  Cartesian  coordinates) 
system for tracking  filter decoupling [31]. A similar ap- 
proach could be appropriate  for  tracking  a  reentry vehicle 
(RV);  in  this case, variations  in  the  ballistic coefficient (or 
our lack of knowledge of its  magnitude)  and  atmospheric 
uncertainties and inhomogeneities result in error  propaga- 
tion predominantly in the  direction of the velocity  vector. 
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The appropriateness of the TOCC approach may also 
result from measurement-error directionality in cases  where 
target-induced measurement errors such as radar glint  pre- 
dominate. Such may be the  case, for example,  when a 
homing missile or torpedo  nears. an elongated target such 
as an airplane fuselage, a waking  RV, or a submarine. 

In the TOCC case, of course, it is the target’s turn rate, 
rather  than LOS rotation, which  is  likely to degrade the 
performance of the decoupled  filter. 

R VCC Filters 

In cases  where both the measurement errors  and dy- 
namic errors are directional in character, in  general no 
single coordinate system will result in complete decoupling. 
The most common such  case  is  when  the measurement 
accuracy  is predominantly in the range direction r, while 
the target velocity direction v is the unique one for dy- 
namic error propagation; this  is  usually  the  case,  for  exam- 
ple,  in reentry vehicle  tracking [32]. In this case,  the plane 
defined by the r and v vectors is the only one which 
constitutes a common plane of symmetry for  the  measure- 
ment and dynamic errors. It now  .becomes appropriate to 
partiafiy decouple the covariance computations in the 
RVCC (range-velocity Cartesian coordinates) system. This 
“ V ” coordinate system  is  usually defined with V I  along the 
range vector r, V, normal to VI in the r-u plane, and V, 
normal to  that plane. The unit vectors along the RVCC 
axes are thus given by 

uv1= 4.) 
uv2 = uv3 x U V l  

uv3 = u ( r  X c )  (3.6) 

and these three vectors constitute the rows of the transfor- 
mation matrix [VF] ,  from face to RVCC. 

The covariance computations for the V, axis can now be 
performed independently, whle a second coupled covari- 
ance matrix is utilized  in  the r-v (or VI - V2)  plane. Thus, 
for example, a nine-state filter can be decoupled into a 
three-state and a six-state  filter. For RV tracking in the 
atmosphere, a two-state (position and velocity)  filter  is 
often used in the V3 direction, and a five-state  filter (with 
some function of ballistic  coefficient as the fifth state) in 
the r-v plane 171. 

The availability of a Doppler (range rate) measurement 
also makes such a partial filter coupling desirable. Con- 
sider, for example, a six-state  (position and velocity) track- 
ing filter  for  which the state corrections are to be computed 
in the RPCC frame of Fig. 4. Then the appropriate 
Kalman filter H matrix (the  partial derivative  matrix of the 
measurement with  respect to the states) contains deriva- 
tives of i. with  respect to elements of the state vector 

x =  [rl r2 r3 u I  1;, t i 3 ]  . (3.7) 
T 

Since 

r =  - . r - v  
6% (3.8) 

we have, by differentiation, 

1 
r -  

~ = y [ ( m ~ - ~ r ~ )  ( r v 2 - f r 2 )   ( r u 3 - ? r 3 )  rrl rr2 rr3].  

(3.9) 

Now in RPCC, r ,  = r ,  r, = r, = 0, and t’, = i.. Hence. 

H = O - - 1 0 0 .  
v2 uj 

[ r r  1 (3.10) 

Thus, the i. measurement exhibits sensitivities to cross-range 
position errors in the P2 and P3 directions, as well as to 
velocity errors in the P ,  direction. In general. therefore, all 
three axes are coupled together, and a fully coupled filter  is 
called for. If  we utilize RVCC coordinates, however, then 
o3 = 0 by definition, and the third axis remains uncoupled 
from the other two. 

Even  when a Doppler measurement is  not  used, a similar 
situation occurs  when a linear-FM (chirp) pulse  is  utilized 
because of the range-Doppler coupling effect  [33]. The 
“range”  quantity measured  is 

m = r -+ Tci (3.11) 

where 

T,=T,- fo 
f 2  - fl , 

(3.12) 

T, is the range-Doppler coupling constant. Tp is  the pulse 
length, fo is  the center frequency of the  pulse, and the 
frequency  sweep  within the pulse is from f l  to f2. Thus, 
( f2 - f l )  is the swept bandwidth, and may  be  positive 
(upsweep) or negative  (downsweep). For conventional 
radars, the coupling constant T, is  usually on the order of a 
few  milliseconds or less. but for  sensitive long-range phased 
arrays such as those discussed  here:  extreme  pulse lengths 
may  result  in  much  larger  values  for <. (up to 36 s for 
PAVE PAWS). 

R VCC/CR Filters (Hlith Covariance Rotation) 

In the RPCC  and RVCC filters  described  above. it was 
tacitly  assumed that LOS rotation is ignored  in propagat- 
ing the Kalman filter covariance matrices. The covariance 
coordinate frame is nonrotating between  measurements, 
but is redefined (with a slightly different orientation) at 
each measurement  time. The filter  ignores the effects of 
these reorientations on the covariance  matrices, and simply 
assumes that the  matrices  predicted  in  the old frame are 
valid  in  the  new. As discussed  above.  this leads to a loss of 
performance due to covariance-matrix misorientation and 
disregard of triangulation effects  when  the LOS rate is 
significant. 

Since both of these degradation effects are connected 
with  covariance rotations  in  the  plane of LOS rotation, 
they  can be virtually eliminated by utilizing an RVCC  filter 
to preserve  covariance coupling in that plane. and perform- 
ing a small rotational transformation on the in-plane co- 
variance matrix to account  for intermeasurement LOS 
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rotation.  The  transformation  takes the form 

PI = L P L ~  (3.13) 

where P is the  in-plane covariance matrix  and  (for  the case 
of a  4 X 4 P matrix  for two positions  and two velocities, for 
example) 

C O S €  Sin€ I 0 0 
0 -sin€ COSE I o I :  L= - - - - - - - L - - - - - - -  

0 I COS€  S in€  
0 I -sin€ COSL 

The LOS rotation angle E is computed as 

At  
r E =  - (uv2*0)  

. (3.14) 

(3.15) 

where uv2 is a  unit vector in  the  direction of the second 
(in-plane cross-range) axis of the RVCC frame. 

In  practice,  computation  can  be saved by combining  the 
rotation  operation with covariance prediction  in  the  form 
( Q L )  P( @L)T where @ is the  transition  matrix. Small-angle 
approximations may also be employed. 

With the  added  operation of covariance rotation,  the 
RVCC filter becomes capable of tracking,  in  near-optimum 
fashion,  in  the presence of rapid LOS rotation  and extreme 
directionality in measurements and/or dynamics. The 
principal  remaining  obstacle  to  complete  optimality is the 
possibility of rapid  rotation of the r - u plane  around  the 
line of sight, such as might occur in  the case of a violently 
maneuvering target.  In such cases,  it  may be necessary to 
maintain  full coupling of the covariance matrix; however, 
covariance coordinates may still  be employed to advantage 
to reduce ill-conditioning effects. Such an  implementation 
might include  the  propagation of a fully coupled covari- 
ance matrix in WCC, with covariance rotation  around 
both cross-range axes; the resulting algorithm is more costly 
computationally  than  a  standard fully coupled filter,  but 
the alleviation of ill-conditioning may  make this a  desirable 
approach. 

Performance Comparison 

A typical performance  comparison is presented in Fig. 5 
in  the  form of rms position  errors  from  a 25-run Monte 
Carlo  simulation of a  reentry vehicle tracking  problem.  The 
RV is tracked from 41 km altitude on a flight path inclined 
at 35", and passes within 15 km of the  radar  at  an  altitude 
of 6.7 km. Measurements  are taken every 0.1 s, with typical 
accuracies in  range  and  angle;  the  ballistic coefficient ,f3 has 
a  correlated  random  component  added  to  its  nominal 
value. 

The  standard of comparison is provided by a seven-state 
fully coupled  filter  operating  in  earth-fixed  Cartesian co- 
ordinates. A decoupled filter in mv coordinates  (with  the ,f3 
state  in the range filter)  operates well at small aspect angles 
(high altitude),  but shows considerable  degradation when 
the crossing geometry becomes  severe. The  difficulty is 
largely eliminated by the RVCC filter, even without covari- 
ance  rotation. (With covariance rotation,  the  degradation 

2 7  

1 -  

RUV IDECOUPLED) 

RVCC (PARTIALLY COUPLED) 

XYZ (FULLY COUPLED1 

0 ;  I I I 

0 10 20 30 40 ' I  
ALTITUDE Ikml 

Fig. 5 .  Performance comparison for  three RV tracking filters. 

due to decoupling could probably be expected to be ne&- 
gible.) 

IV. IMPLEMENTATION ALTERNATIVES 

The  implementation of these decoupled filters  is exem- 
plified by the  flowchart in Fig. 6, which represents an 
RVCC filter with covariance rotation. In this particular 
configuration,  the measurement residuals are  computed  in 
mv( M )  coordinates  and  transformed  to RVCC  where  they 
are multiplied by the gain matrix 

to yield state  corrections  in RVCC, which are then trans- 
formed to F before being applied  to  the  state  estimates. 

The  state  estimates  are  propagated  in  radar face coordi- 
nates. Although it is possible to utilize ruv coordinates  for 
this  portion of the  algorithm,  Cartesian  coordinates  are 
usually preferable because of the less complex differential 
equations involved and the ease  with  which these equations 
can be integrated using simple algorithms [25]. 

The  configuration shown here, in which the gains trans- 
form residuals to  state  corrections in the same decoupled 
coordinate  frame, results in H matrices of a  particularly 
simple form.  For  a  six-state  filter  (three  positions,  three 
velocities) we have, assuming simple position measure- 
ments, 

In  addition, especially for RPCC filters, this type of config- 
uration sometimes makes possible the use of simple filters 
with constant  or  precomputed gains, or highly simplified 
gain  algorithms without covariance propagation. 

A variety of other  configurations is possible. For exam- 
ple, the residuals may be  left  in M coordinates  and  the 
corrections still generated in V, in which case  the gain 
matrix is  given  by 

(4.3) 

In general. the R matrix in the gain equation must be in the 
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Fig. 6. RVCC decoupled tracker (with covariance rotation). 
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Fig. 7. Alternative interpretations of the state-correction operation. 

same  coordinates  as the residuals to which the gains are to 
be  applied,  and  the P matrix is in the  coordinates in which 
the  state  corrections  are  to  be generated. In the example of 
(4.3), the transformation between V and M is now ab- 
sorbed  into  the H matrix, which is related to H,, by 

H M Y  = [M~IH, , .  (4.4) 

The relationship between the two approaches is depicted in 
Fig.  7, in which Am represents the residual vector and Ax 
the state-correction vector. (In Figs. 6 and 7, the matrix 
[VFIT, which transforms the state corrections from V to F, 
must be regarded as  an expanded version of the 3 X 3 
matrix generated  by (3.6) enlarged to the dimension of the 
state vector.) 

Another possible modification  is to transform the mea- 
surements directly to F coordinates  and perform the  state 
differencing (form the residuals) in F. This  procedure alters 
the effects of measurement nonlinearities. although not 
necessarily in a beneficial way.  An approach which  does 
appear to be beneficial in dealing with nonlinearities is that 
of [24]: sequential (rather  than simultaneous)  measurement 
processing is used, with the range  measurement  being 
processed last. (The  state estimates after angle  measure- 
ment processing are used  to redefine the filtering coordi- 
nates, and  in computing the range residual.) 

V. NONLINEARITIES 

All of the  Kalman filters listed in  Table I are based on 
linearizing the differential equations of motion and  the 
measurement equations  to  compute the and H matrices. 
Errors in this linearization process lead to degraded track- 
ing performance to some extent. Moreover, the basic Kal- 
man filter theory  assumes Gaussian  state  estimation  error 
distributions, an  assumption that is  only approximate  for 
the  applications of interest here. Even if the measurement 
noise and  the process noise were both  Gaussian,  the result- 
ing errors  in 2 would be  non-Gaussian, owing to  the 
nonlinearities noted  above.  These nonlinearities can  lead  to 
biases, instability, and/or filter divergence. Many  methods 
have  been  developed to mitigate these effects, a  number of 
which are summarized in  Table VI. Several of these tech- 
niques  were  used in early tracking filter simulations for 
some of the  applications  in  Table I with  very poor results. 
In particular, Methods 1 and 2 in  Table VI produced 
tracking errors  in position and velocity that were larger 
than without these techniques. The poor performance of 
the second-order filter may be related to  the theoretical 
errors noted in [38]. and some insight into  the failure of 
single-stage iteration (i.e., relinearization using an im- 
proved state vector estimate) is given in [43]. Although 
Method 3 in Table VI has  worked  well in one  radar 
application  not listed in Table I, this batch technique is 
reported to be inferior (as measured by the  radius of 
convergence) to a  standard  Kalman filter in certain  other 
applications [40]. Concerning Method 4 of Table VI, [32] 
and [37] indicate possible advantages of rut' coordinates 
over  Cartesian coordinates because of the linearity of the 
measurements in mu. However, [15] and [25] indicate  that 
such  is not necessarily the case. In [25], a minor  modifica- 
tion to  the initialization procedure for the  Cartesian filter 
eliminated large bias-like errors,  and resulted in perfor- 
mance virtually identical to that of an mz: filter. We  have 
not applied Methods 5, 6, and 7 to  radar tracking prob- 
lems, but they appear  to be  promising. 
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TABLE VI 
METHODS TO MITIGATE NONLINEANTIES 

I M e t h o d  

1. S e c o n d   O r d e r   F i l t e r  

2. S i n g l e - S t a g e   I t e r a t i o n  

3. S a t c h   L e a s t   S q u a r e s  

4. C o v a r i a n c e   m a t r i x   i n   r u v  
c o o r d i n a t e s  

5. A d d   g r a d i e n t   o f   K a l m a n  

t o   u n k n o w n   p a r a m e t e r   t o  
f i l t e r   g a i n   w i t h   r e s p e c t  

a1  gori  thm 

6. P r e f e r r e d   o r d e r  o f  s c a l a r  
m e a s u r e m e n t   p r o c e s s i n g  

7 .   V i r t u a l   d e c o u p l i n g   o f  
c o v a r i a n c e   m a t r i x  

5. O u a s i - d e c o u p l i n g  o f  
c o v a r i a n c e  

I 

VI. FALSE OBSERVABILITY 

A phenomenon  that  has  not been widely noted in the 
literature,  but which  is common to most of the  applications 
in  Table  I, is called “false cross-range observability.” 
Briefly, this effect is due  to  an overoptimism on the  part of 
the (linearized) Kalman  filter with respect to  its  ability  to 
derive cross-range estimates  from  accurate  measurements 
in  the  range  direction.  The effect is particularly  bothersome 
early in  track, when the  inevitable noisiness of the cross- 
range  position  estimates gives the illusion of a changing 
measurement direction  and an associated triangulation ef- 
fect. In  a fully coupled filter, this false observability is 
present in both cross-range directions. If the covariance 
matrix is completely decoupled, as  in an RPCC filter, this 
effect is removed; however, the  filter is no longer capable 
of taking  advantage of the  true cross-range observability 
(in  the range-velocity plane) provided by the  line of sight 
rotation.  The  partially decoupled RVCC/CR filter  benefits 
from  the  true observability, while eliminating  the false 
observability in the  out-of-plane  direction;  the  benefits  are 
obtained, however, only if the velocity direction is well 
known so that  the RVCC system can be  properly  oriented, 
and this is generally not true early in track. 

The  identification of t h s  problem is due  to K. Brown of 
IBM. The effect is particularly  acute  in  radars such as in 
Table  I, owing to  the large ratio of angle to  range measure- 
ment  error  (both expressed in rectilinear  coordinates).  Thus, 
the basic cause of this phenomenon is the  same  as ill-condi- 
tioning,  but it is  demonstrably  a  distinct  nonlinear effect. It 
turns  out, however, that  a special type of decoupling miti- 
gates this effect also. The  details of decoupling the covari- 
ance matrix to avoid false cross-range observability  without 
suffering a significant loss in the  benefit of covariance 
coupling were developed by Daum  and Brown. A key 
ingredient  in this algorithm is the so-called Joseph  form of 

C o m m e n t s  

See  R e f .   3 7   a n d   3 8 ;   m a y   p r o d u c e  

o r d e r   f i l t e r .  
r e s u l t s   w o r s e   t h a n   t h e   f i r s t  

See R e f s .   3 7   a n d   4 3 ;   m a y   p r o d u c e  
r e s u l t s   w o r s e   t h a n   n o   i t e r a t i o n .  

w o r s e   t h a n   t h e   s t a n d a r d   K a l m a n  
See  R e f s .   3 9   a n d  4 0 ;  m a y  be 

f i l t e r .  

S e e   R e f s .   3 7   a n d   3 2 ;   a l s o   S e t .  V 
and  Refs. 1 5  and  25. 

See  Ref. 35. 

See  Ref. 24 a n d   S e c .  I V  

S e e   R e f .   3 6  

S e e   S e c .  V I  

loo0 1 

TIME ISECONDS) 

Fig. 8. Use of quasi-decoupling to overcome effects of false  observ- 
ability. 

the  error covariance update  equations, for reasons that 
have nothing to do with ill-conditioning.  In  particular,  the 
Kalman  filter  gain  matrix is computed using a  totally 
decoupled covariance matrix early in  track; however, the 
error covariance matrix itself is propagated using the  par- 
tially coupled form with Joseph’s form of the  update 
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equation. This is the etymology of the term “quasi-decou- 
pled”; in one sense, the filter  is totally decoupled, but  in 
another sense, it is  not. The Joseph form of the update 
equation is used  here  because it correctly propagates the 
error covariance matrix (except  for nonlinear effects) for 
any Kalman filter  gain  matrix,  whether or not the gain  is 
optimal. In the present case, the decoupled filter in early 
track ignores the degradation of range estimation whch 
results from the poor angle rate estimates via the centri- 
fugal ( r e 2 )  component of P. It is  this degradation whch is 
kept track of  by the Joseph algorithm in order to avoid 
overoptimism  in  range. It is  essential that the algorithm be 
told that the early  gains are suboptimal due to the decou- 
pling. and that the Joseph form be used to maintain a 
realistic covariance matrix; otherwise, performance can 
deteriorate markedly. 

Quasi-decoupling improves performance by  deferring the 
time at which  covariance coupling affects the Kalman filter 
gain. At this time,  the  cross-range rate estimates deduced 
from radar angular measurements alone are sufficiently 
accurate to suppress false  observability.  Intuitively,  quasi- 
decoupling makes  the Kalman filter  less  greedy. In some 
sense,  this method is an ad hoc approximation to Ljung’s 
algorithm (Method 5). Fig. 8 presents results  from a Monte 
Carlo comparison (25 runs) of three six-state RVCC track- 
ing filters. and shows  the improvement in  speed estimation 
when  quasi-decoupling  is  employed.  Also presented is the 
performance achieved  when the filter  is  simply  changed 
from RPCC to RVCC/CR (at 35 s), without utilizing  the 
Joseph form  for  covariance propagation. 

VII. SUMMARY 

The use of covariance coordinates of various kinds for 
decoupling of Kalman trackers yields the threefold ad- 
vantage of reduced computational cost, alleviation of ill- 
conditioning, and mitigation of nonlinear effects. In com- 
parison to  covariance-matrix factorization techniques (item 
3 of Table II), these  decoupling approaches are attractive 
because of their computational efficiency.  They are particu- 
larly appropriate for  tracking problems because  their 
success depends on statistical symmetries, and these are 
generally  readily predictable in such problems. The relative 
appropriateness of the  various decoupling approaches in 
any particular application depends on the directionality 
properties of the  measurement errors and dynamic errors. 
Significant  line-of-sight rotation rates may require modifi- 
cations to the algorithms.  including partial coupling and 
covariance-matrix rotation operations. 
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Utilization of Modified Polar Coordinates 
for Bearings-Only Tracking 

Abstract -Previous  studies have  shown that  the  Cartesian  coordinate 
extended Kalman filter exhibits  unstable behavior characteristics rphen 
utilized  for  bearings-only  target motion analysis (TMA). In contrast, 
formulating  the Th24 estimation problem  in  modified polar (MP) coordi- 
nates  leads  to  an  extended Kalman filter which is both stable and asymptot- 
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i c d y  unbiased. Exact state equations for the M P  filter are derived  without 
imposing any restrictions on  own-ship  motion; thus,  prediction  accuracy 
inherent in the  traditional  Cartesian  formulation is completely preserved. 
In addition,  these  equations reveal that MP coordinates  are well-suited for 
bearings-only TRlA because  they  automatically  decouple  observable and 
unobservable  components of the  estimated  state vector. Such decoupling is 
shown to  prevent  covariance  matrix ill-conditioning. wbich is the primaq 
cause of filter instabilie.  Further  investigation also confirms  that  the MP 
state  estimates  are  asymptotically unbiased. Realistic  simulation  data are 
presented to support  these  findings and to compare  algorithm  performance 
with respect to  the Cramer-Rao lower  bound (ideal) as well as  the 
Cartesian  and  pseudolinear filters. 
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