PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Extending decentralized Kalman
filtering results for novel real-time
multisensor image fusion and/or
restoration

Thomas Kerr

Thomas Henderson Kerr lll, "Extending decentralized Kalman filtering results
for novel real-time multisensor image fusion and/or restoration," Proc. SPIE
2755, Signal Processing, Sensor Fusion, and Target Recognition V, (14 June
1996); doi: 10.1117/12.243196

SPIE Event: Aerospace/Defense Sensing and Controls, 1996, Orlando, FL, United
° States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 02 Oct 2022 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Extending Decentralized Kalman Filtering Results for Novel
Real-Time Multisensor Image Fusion and/or Restoration

Thomas H. Kerr, IEEE Senior Member

TeK Associates, P.O. Box 459, Lexington, MA 02173-0003
Tel./fax (617) 862-8680. e-mail: tkerr @ tiac.net

Abstract

We pursue the idea that recent “decentralized” Kalman filter (KF) technology, by outfitting each participating
imaging sensor with its own dedicated 2-D Kalman filter can be used as the basis of a sensor fusion methodology
that allows a final collating filter to assemble the data from diverse imaging sensors of various resolutions into
a single resulting image that combines all the available information (in analogy to what is already routinely
done in multisensor NAVIGATION applications). The novelty is in working out the theoretical details for 2-D
filtering situations while assuming that the image registration problem has already been independently handled
beforehand. We synchronize frame size and location of pixels of interest to be comparably located with same
“raster scan” speed and size used for each to match up for different sensors. Rule for linear Kalman filters with
only Gaussian noises is that the combining of underlying measurements or sensor information can only help and
never hurt. We interpret this approach as using several common views of the same scene, as instantaneously
obtained from different sensors, all being stacked up vertically one on top of the other, each with its own local 2-D
Kalman-like image restoration filter proceeding to raster scan (in multi-layer sync). Then apply the multi-filter
combining rules from Decentralized filtering to the bunch to obtain a single best estimate image as the resulting
output as a convenient methodology to achieve sensor fusion.

Keywords: Decentralized Kalman Filters, Kalman Filters for 2-D random Fields, Data Fusion Combining/Collating
Rules, Extended Kalman filter for parameter identification, ARMA-to-AR Conversion, Adaptive processing.

1 INTRODUCTION

In the past [27], we have reviewed the down-looking GaAs laser line-scanner capabilities of the near-infrared/visible
wavelength (NIRV) active/passive subsystem, a component of the entire multispectral active/passive line scanner
(MAPLS), which were perceived to be likely candidates to be used for image orientation purposes for data collection.
Both the forward-looking CO> laser and the GaAs laser line-scanner currently have real-time displays [1]. The GaAs
laser line-scanner has a resolution of 1 millirad x 1 millirad at a nominal aircraft surveillance altitude of from 500 to
750 ft (corresponding explicitly to 15 cm and 21 cm resolutions, respectively) for the special mission of this particular
Grumman Gulfstream aircraft. We also compared this data collection situation in [27] with that of more standard
surveillance aircraft usually operating at much higher altitudes.

From a well-known prior precedent by Les Novak [2], a 35 MHz microwave Synthetic Aperture Radar (SAR),
used for post-process imaging with 1 ft x 1 ft resolutions, uses arrays of dihedral (double bounce) and trihedral
(triple bounce) corner cubes (of 3 different sizes for 3 orders of magnitude dB;,, polarimetric calibrations) that
civil engineers had to survey, cross-align, and orient accurately en masse (in maintaining the original polarizations
within the reflections) to simultaneously exhibit their “sweet spot” registration flashes in order to stick up above the
considerable ground clutter floor to enable successful removal of anomalous speckle. Less clutter/speckle is expected
to be present in the above laser radar bands [3].

Typically, Forward Looking InfraRed (FLIR) sensors generate averaged outputs of an array of infrared detectors
as they are mechanically scanned through a limited field-of-view (FOV). The most fundamental output at an instant
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of time corresponds to an averaged intensity, as measured over one picture element (pixel). The horizontal and
vertical scanning of the detectors through the FLIR FOV results in an array of pixels called a frame of data (at
typical frame-completion rates of about 30 Hz). Because of this rapid frame rate in providing IR measurements,
attention can frequently be confined for tactical target-tracker applications to a sub-array of pixels (encompassing
the target) considerably smaller than the total frame. By utilizing this restricted FOV, the data processing burden
can be maintained within the practical real-time throughput and memory constraints of available computational
resources, while at the same time focusing only on that subset of the IR information that is actually relevant to the
tracking of the particular target. (An 8 x 8 array consisting of 64 pixels is a typical size for target tracking windows.)

Standard correlation-type algorithms first store a complete set of intensity data, as measured by an IR sensor
array at a particular time instant. This set is then cross-correlated with frames generated subsequently. However,
otherwise rigorously substantiated and theoretically justified noise averaging (for SNR enhancement of the target
signature) is hindered somewhat in a few airborne applications of pure correlation-type-algorithms because the motion
of the sensor platform is not sufficiently compensated for by an on-board Inertial Navigation System (INS) or other
navaid. The result is a smeared background that is no longer stationary with corrupting noise that is probably also
nonstationary. Thus, there is considerable impetus to dispense with conventional frequency-domain correlation-type
algorithms, valid only for statistically stationary situations, and to now embrace time-domain algorithms !, as offered
here, in order to reasonably handle these challenging situations without resorting to the inordinate computational
burden of bispectrum and trispectrum (i.e., higher-order spectra corresponding in the transform domain to higher-
order moments or cumulant) techniques, which can handle nonstationarity but which also demand that the corrupting
noises be non-Gaussian (or else they won’t work).

Image restoration, as addressed here (in contradistinction to image enhancement which just uses signal processing
rules to clean up images), utilizes a mathematical model of the mechanisms that introduce the distortion/degradation
and seeks to apply an inverse procedure to recapture/reconstruct the original scene. The two main approaches that
can be used to solve this problem are either autoregressive moving average ARMA-based or Kalman-like filter-based
(with preference given here to the latter but with further discussion also provided in Sec. 2.3 to dispel a common
pervasive historical misconception that has crept into the standard use of ARMA-to-AR conversions, namely, that
a finite order ARMA only converts to an infinite order AR [we provide an explicit counterexample to the previous
claim]). In particular, the main goal is to compensate for those distortions due to blur and noise.

Blur arises due to:
e Uncompensated relative motion between object and imaging sensor;

e Sensor not being in the focal plane of the lens (i.e., image is out of focus);
e Possible presence of atmospheric turbulence causing distortion in aerial images;

e Presence of imaging system aberrations (imperfections in mating components of lens, sensor, digitizer).

Noise arises from several sources such as: (i) Electronic [thermal motion of electrons in components: sensors,
receivers, amplifiers, .. .]; (i1) Photoelectric [quantum statistical nature of light and the underlying conversion process
in the sensor/transducer]; (iii) Quantization noise [incurred during the digitization process); (iv) [Possible] film grain
noise [randomness in placement location of silver halide grains that record the image]. Other difficulties to be
overcome: Sensors and scanners have known nonlinear characteristics that can be represented as point nonlinearities
of known form to be compensated for. Qur limited goals here in using Kalman filter-based technology is merely (1) to
correct for residual uncompensated relative motion between target and sensor focal plane [4] 2 and (2) to compensate
for any imaging sensor mis-focusing present (that can be modeled) and (3) to give the best results possible in the
acknowledged presence of the above enumerated noises.

Usually assumptions must be made on the nature or cause of any blur observed, the nature of dominant underlying
noises significantly affecting the image (qualitative information), and the presumed statistics (quantitative informa-
tion) of the ideal image (without these corrupting effects present) and some pre-determined error criterion (usually
Mean Square Error) to be minimized as the goal (which may not agree with a human’s perception of an improved

1Kalman filters are also known for their ability to properly handle nonstationary white Gaussian noise (WGN) as long as the second-
order statistics are either known a priori or are estimated on-line over a sliding data window (yielding only coarse approximations to
actual time-varying statistics).

2 Alternate approaches and other applications exist, such as that discussed in [33].
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Figure 1: High-Level View of the Internal Structure of a Kalman Filter

representation of the image). A problem is that parameters of blur and image models are usually NOT KNOWN a
priori, so it is important to try to identify these parameters (using on-line identification algorithms) directly from the
observed image (as a first stage of a two stage [perhaps iterative/recursive process] that can eventually be described
in toto as an adaptive filtering procedure, where the second stage that follows is the more familiar Kalman filter-like
portion [39]-[49], but now to be generalized and implemented for 2-D). The 2-D version of Kalman filtering typically
uses a “raster scan” or “strip” updating rule (sometimes computationally simplified so that only elements within
some relatively small neighborhood of the current pixel of interest are updated under the assumption that pixels
outside the update region are insignificantly correlated with it). The good news is, according to [17, p.18, col. 1
following Eq. 8], that simplifications accrue in the case of uniform motion blur and out-of-focus blur and the effect
of both of these degradations can be represented by only one parameter, namely: the ezient of the motion blur and
the radius of the disc that represents the sensor point spread function (PSF), respectively. Other more academically
esoteric aspects of distributed sensor integration are treated in [5].

2 STATUS OF EVOLVING KALMAN FILTER TECHNOLOGY
(the main working tool to obtain NEW image fusion results)

Several events of note regarding the above stated topic have occurred within the last eight years. These events
will be ordered here to provide a simplified overview as a timely assessment of the status of events. These events are
perceived to be potentially significant in image restoration, as discussed herein, and further can serve as a basis for
multisensor fusion (just as the centralized Kalman filter has already successfully served in this role for three decades
as the basis for real-time Navigation information fusion from diverse navaid sensors of differing accuracies and sample
rates [35]-[37, p. 274] and has already been recast to reap the considerable benefits of a decentralized Kalman filter
architecture [6]-[12]). See Figs. 1, 2, 3 and 4 for a self-explanatory visual perspective and motivation for why this
topic is so important.

The gist of other related topics is explained here that interface with above sensor fusion area, where significant
events have also occurred to offer new results that will likely be exploited in this pursuit. Except for the lead
discussion in Sec. 2.1 appearing next, most of the gory mathematical derivation from first principles has been
dispensed with here in favor of instead conveying only the underlying ideas and physical motivations (otherwise it
wouldn’t fit within reasonable page constraints).

The topic of the next section derives its importance from the direct impact it has on image restoration and its
potential in sensor fusion applications via the novel approach offered in Sec. 4 below, which depends explicitly on
the status of Decentralized Filtering as a necessary precursor.
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Table 1: Extended Kalman Filter (EKF) Implementation/Mechanization Equations, where gradients of nonlinear
ODE are “linearized” on-line about the estimate
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Figure 2: A Standard 1-D Discrete-Time Kalman Filter Mechanization
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Figure 3: Decentralized Semi-autonomous Multisensor Navigation (SMN) filter to enhance failure detection/isolation
and to ease reconfiguration

19 STATE
X. 12 STATE 15 STATE Vs FILTER
=™ FILTER g (—] FILTER > "2 =1 (ITT MFBARS) >
(~ADM)
+2% CPU MEMORY REQUIRED
+
-26
OPERATIONS REQUIRED
22 STATE
12 STATE 18 STATE
— X Fiter T X FLLTER V5. > TILTER RSy
AHIT) .

-3%
CPU MEMORY REQUIRER

-29% NUMBER OF
OPERATIONS

REQUIRED

TIME FOR 12-STATE FILTER TO
COMPLLETE 6 MEASUREMENT
PROCESSING CYCLES

TIME FOR 22-STATE FILTER TO
COMPLETE 1 MEASUREMENT
PROCESSING CYCLE

B

Figure 4: Benefits of two filters over one federated filter (for GPS/JTIDS/INS example)
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2.1 A common thread occurring within three supposedly different 1-D decentralized
Kalman filter mechanizations

Three independent teams of investigators use the same alternate form 3 of the “centralized” KF implementation
equations that they select as a jumping off point for generalization * to the following diverse applications:

e Multi-sensor camera data fusion for robotics and/or telerobots [54];

e Target tracking using data from non-geographically co-located sensors with coupling via noisy communication
lines [55] °(cf., [53]);

e Multi-sensor integrated navigation [57] ©.

All of the above three investigations now use the alternate KF form (depicted here in Table 2) for computing the
Kalman gain K (in [54, Eq. 7], [55, Eq. 7b], [57, Eq. 45]) involving use of the covariance update Py; instead of
using the usual predicted covariance Pyj;_;. While these references do display their final mechanization equations,
they don’t show its derivation, which can be elusive and nonobvious so we offer our derivation below to expose
important details.

The alternate form for centralized KF mechanization (serving as the fundamental stepping stone or jumping off
point in [54]-[57] for eventual generalization to the decentralized filtering case) has a theoretical twist that is utilized
within this structure, as reviewed next. The measurement records collected by the multiple 1-D decentralized sensors
(:=1,...,N) can be summarized in aggregate block form as measurements:

(k) = [T(k), ., K] (1)
and as an effective observation matrix:
H(k) = [HT(k),..., H5 (&) )
and as an effective additive measurement noise:
o(k) = [oF (k) ..., KB, 3)

with the further assumption that the zero mean white Gaussian measurement noises across partitions (i.e., between
sensors as a consequence between different planar views for the 2-D generalizations to come) are uncorrelated (from
sensor to sensor) so that the associated covariance intensity matrices are of the form

E [v(k)vT (k)] = blockdiagonal{R;,...,Rn} . (4)

Similarly, let each sensor’s local system model consist of the same n x 1 state vector in common throughout, of the
form
zi(k+ 1) = ®;(k + 1, k)xi (k) + wi(k), (5)

with a suitably tailored (specialized) m; x 1 vector measurement model for sensor i of the form
zi(k) = Hi(k)z; (k) + vi(k) , (6)

so each local filter, using the alternate KF formulation, is expressible as in Table 2.

3The distinction being in how the Kalman gain is calculated (cf., Tables 1 and 2).

4 All reminiscent of the earlier structural result of [71].

51t is unlikely that an analyst will be able to block partition both of two independent quantities (i.e., states, z, and measurements, z), as
is necessary within the framework of the methodology espoused in [55], and expect to get the same number of blocks, each corresponding
sub-block being of the same size. Parallel filtering applications seldom have state partitions that are not redundant, a structure that is
apparently required in the architecture and methodology of [55] and therefore could be perceived to be a severe limitation.

8 While delays incurred in packet switching or other types of network communication delays are not explicitly recognized by the
methodology offered in [57], it may still be implicitly handled since mis-synchronization and delay are frequently modeled as just noisy
versions of the otherwise ideal quantities, as a standard buy-off used to acknowledge and compensate for the presence of data senescence.
Here perturbational uncertainty in the registration time is instead replaced by perturbational uncertainty in the values of the quantities
under scrutiny at a presumed exact time step.
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[ K PROPAGATE STEP T UPDATE STEP i

COVARIANCE Pi(klk = 1) = &;(k, k = )P;(k = 1]k = 1)oT (k, k = 1) + Q;(K) P (kjk) = [P7 1 (k]k = 1) + HT (1 R™ ! (k) H; (k)]
FILTER GAIN K;(k) = P (x|k)HT (k)R !
FILTER 2 (Kl = 1) = ®(k, k = 1)%; (k= 1]k = 1) 35 (k) = &;(klk = 1) + K; (k) (z; (k) = H;(k)%; (k|k = 1))

Table 2: “Alternate” Kalman Filter Implementation/Mechanization Equations (as separate local filters not yet
collated /coordinated/combined)

The vehicle or contrivance for linking up these results for eventual decentralized filtering is the formation of the
centralized HT(k)R™1(k)H(k) as

N
HT (k)R (k)H(k) = Y HF (k)R;* (k) H;(k) . (7
ij=1
Now from Table 2, the covariance update formula for the i!* sensor may be rewritten as
Pi‘l(klk) - Pi—‘(k[k -1) =

HT (k)R7 ! (k) H; (k) ®)

LHS info broadcast from each local sensor 7 is equivalent to this covariance correction info,

and similarly for the aggregate global centralized covariance update as

N
P~'(klk) — P~ (klk— 1) = HJ (k)R} (k)H; (k) , 9)
j=1

which may now be reexpressed (by substituting Eq. 8 in Eq. 9) as
N
Pl (klk) = P~ (klk— 1) =Y [P (klk) - P (klk—1)] (10)
i=1

as an equation for the global covariance update in terms of the summation of local entities (consisting of n(n +
1)/2+ n = n(n+ 3)/2 floating point variables) originally calculated at the j** sensor (j=1 to N) and broadcast via a
communication network to a processor node that is tasked with collating all the local information into a global best
answer.

Another benefit of block decomposition of the aggregate centralized form is in exposing the following equivalence

that exists:
N

HT(k)R™}(k)z(k) = > H] (k)R;*(k)z;(k) . (11)
j=1

Another simplifying contrivance is the observation from the covariance update, known as Joseph’s form, which is
known to be mathematically equivalent to

P(k|k) =[I — K(k)H(k)] P(klk — 1) (12)
(cf., [54, Eq. 20), [55, Eq. 9], [57, Eq. B11]). Then post-multiplying throughout Eq. 12 above by P~*(k|k — 1) yields
(I — K(k)H (k)] = P(k|k)P~(klk - 1) . (13)

Now by taking the estimate update equation as

#(klk) = (k|k — 1) + K (k)(2(k) — H(k)z(k[k — 1)) , (14)
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we further have that
x(klk) = &(klk~ 1)+ K(k)(z(k) — H(k)Z(klk - 1))
[ — K(k)H (k)] &(k|k — 1) + P(k|k)HT (£)R™(k)2(k) (15)
and substituting for [I — K (k)H (k)] from Eq. 13 and pre-multiplying throughout by P~!(k|k) yields
P l(klk)x(kk) = P U(k|k)P(klk)P Y (klk — 1)z (klk — 1) + P~ (k|k)K (k)z(k)

= P Y(klk — 1)z(klk — 1) + P (k|k)P(k|k)HT (k)R™!(k)2(k)
= P Y(klk—1)2(k|k— 1)+ HT (k)R (k)2(k)

N
= P7l(klk - Da(klk— 1)+ > HI (b)R; ' (k)2 (k) , (16)
j=1

and, by now pre-multiplying Eq. 16 throughout by P(k|k), yields the fundamental estimation update expression:

N
x(klk) = P(klk) P'l(lclk—l)i(klk—1)+ZHJ~T(I<:)R]-‘1(k)zj(k) . (17)
ji=1

as an equation for the global state update in terms of the summation of local entities originally calculated at the **
sensor (i=1 to N) and broadcast via a communication network to a processor node that is tasked with collating all
the local information into a global best answer.

By a derivation route and arguments identical to that presented for Eqs. 11 to 17, we obtain a local state
estimation equation of a form similar to that of Eq. 17 for each local sensor as

xi(klk) = Pi(klk) [P (kIk = 1D:(k|k = 1) + HT (R)R7 (k)z:(R)] (18)
or, rearranged to be

P (klk) % (k1K) = P77 (kIk = D& (kIk = 1) =

H (k)R7 (k)z:(k) (19)

~~
LHS info broadcast from each local sensor ¢ is equivalent to this state estimate correction info.

In conclusion, the final architecture for centralized globally optimal estimates obtainable from the indicated info
broadcast on the network from each local sensor i is derivable from Eq. 19 substituted into Eq. 17 as

N
x(k|k) = P(k|k) I:P'l(klk — Dx(klk - 1)+ Z{Pj‘l(klk)fcj(k|k) - P Hklk — Dj(kk — 1)} | , (20)
j=1
(cf., [54, Eq. 26], [55, Eq. 16b], [57, Eq. 51]) to be used along with the covariance update of Eq. 10, rearranged as
~11-1
N
P(klk) = [P~ (klk = 1)+ [Z (P (klk) — P (klk — 1)} =[a"'+BY ' = A4+ B]7'B, (21)
j=1

(cf., [64, Eq. between Eqgs. 17 and 18], [55, Eq. 17b], [57, Eq. 52]) 7 which is recognized to be of the form of a triple
n X n matrix inversion, where operations counts for each of these inversions is merely n® (or more exactingly O(n2?- ™)

"Notice that there are slight discrepancies between what is summarized here and what was offered at comparable steps in [57] so,
strictly speaking, the approach of [57] is not identical to that of [54] and [55] even if most of the particulars are the same. Similarly, [55]
looks further into an information filter formulation and a square root filter formulation after it has passed through these same primary
results that are revealed here to be in common with the other two approaches. However, these further formulations are rather routine
KF variations.
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according to Ronald Rivest at MIT and others). Reiterating, reference [54] recommends that each local sensor node
i broadcast two pieces of critical information at each designated synchronous time step k being (1) the n x n matrix
difference {P;"*(k|k)— P} (k|k—1)} and (2) the n x 1 vector difference { P, (k|k)&;(k|k) — P71 (k|k — 1)2;(klk—1)},
which have now already been demonstrated above to be equivalent to transmitting the normally expected natural
info on H;(k), R7*(k), and z;(k) (respectively, of dimension m; x n, m; x m;, and m; x 1). However, since the above
matrix difference arising in Eq. 21 is symmetric, one only needs to actually transmit n(n+ 1)/2 entries of the matrix
rather than n? at each time step & as a considerable savings. The obvious perceived benefit of the above formulation
is structural consistency (independence of particular local m;) in the collating update architecture of Eqs. 20 and
21. Although, unstated in [54]-[57], an even greater perceived benefit of the architecture being offered is that for
sensors that fail to report by the designated collation time for time-step k (due to possible failures, battle damage,
overly delayed message packets, pruned outlier readings, etc.) the summation can still take place (using info from
those sensors that do report) to yield the best there is with the collection of local information available at the time!

Please notice that the more recent investigations [23], [51], [58], [59], and [68, p. 298] all favorably reference the
present author’s earlier work of [10]. Besides currently pursuing in-house numerical evaluation of the utility of more
recently refined decentralized filter design originally put forth as a less refined version in {10, Sec. IV.C, Fig. 8], it
is helpful to be aware that other researchers are independently evaluating this design and critically comparing it to
alternate implementation approaches in also comparing it to [52] and [57] that [58] and [50] evidently missed [perhaps
because it was so recent then]). A multitude of independent assessments hopefully makes for a healthier (eventually)
unbiased final tally 3.

This author had previously cautioned (or reminded) the estimation community in [67, p. 944, Eq. 47] not to
make the mistake of using the simpler version of the discrete-time Kalman Covariance Update Equation:

Pur = [I - KeHi]Pyg-a (22)
when the following (so-designated Joseph’s form) should be used instead °:
Pye = [I—KxHp)Pypoall — KeHe]" + KeRKT . (23)

However, Ren Da did include this unfortunate oversight in the preliminary review version of [23]. Da was also pursuing
the reduced-order filtering problem in [23] but, unfortunately, so many of the existing so-called reduced-order filtering
methodologies currently being employed are flawed, with enumerations detailed in [26, pp. 79-82]. The author Da
had some interesting new ideas on use of optimal and simpler sub-optimal “combining rules” (for combining the
local estimation results from separate local filters to obtain the globally optimal estimate as an outcome) that are
of interest in what is discussed later. The present author has also obtained sub-optimal more expedient combining
rules in [8, Sec. 1.5].

2.2 Status of 2-D Kalman filtering

Generalizations of standard 1-D random process evolving in time or indexed on a single time variable (isomorphic
to the real line so that it is totally ordered for simply distinguishing past from present from future [i.e., for any t;
and t,, either ¢; < to, or t; = ¢, or t; > t»] and having a standard unique definition of causality) have already been
extended to 2-D [60] for Input/Output realizations. Early approaches to 2-D modeling usually invoked non-symmetric
half-plane (NSHP) type causality merely for simplicity and convenience [30], [65].

The following representative milestones are recounted in briefly summarizing the generalization of Kalman filter
formulations from 1-D to 2-D:

e Although Eugene Wong [13] alerts the reader in the mid 1970’s and raises their level of consciousness to
appreciate the difficulty of this problem (since the 2-D planar index of a random field can’t be totally ordered
for a clear unambiguous delineation of what’s past, present, and future as can be done for the real line [as occurs
for the time index of a random process]; however, the 2-D plane can be partially ordered but partial orderings
are not unique and are also not wholly satisfying since there are several viable candidates that are reasonable

8 A critique of Carlson’s decentralized filtering approach [50] appeared in the November 1991 issue of IEEE Trans. on Aerospace and
Electronic Systems as [12].

9The former expression doesn'’t yield the correct covariance associated with using a reduced-order suboptimal Kalman gain K while
the later expression does.
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to use but all have ambiguous “past”, “present” (being a set rather than being a mere point, as occurs with a
random process), and-“future” defined, depending on which partial ordering convention is invoked). While [13]
originally doesn’t extend much hope for immediate resolution, a few years later he reports substantial progress
in this area [14], [15] 1°.

e In the 1980’s, Howard Kaufman along with his students and colleagues blazed an impressive development trail
in further generalizations of 2-D Kalman filters specifically for image restoration applications [16]-[20]. In
particular:

— Quoting [16]: “it is established that for typical autoregressive signal models with nonsymmetric half-plane
support, the dimension of the state size to be used within the Kalman filter is approximately equal to the
product of the image model order and the pixel width of the image.”

— Quoting [19]: “ a parallel identification and restoration procedure is described for images with symmetric
noncausal blurs. It is shown that the identification problem can be recast as a parallel set of one di-
mensional ARMA identification problems. By expressing the ARMA models as equivalent infinite-order
AR models (sic) [the present TeK Associates’ author takes issue with this limiting claim and
clarifies why in the first bullet in Sec. 2.3], an entirely linear estimation procedure can be followed.”

— Quoting [20]: “it is established that an EKF for on-line parameter Identification was found to be unsuitable
for blur parameter identification (sic) [the present TeK Associates’ author takes issue with this
limiting claim and clarifies why in the second bullet in Sec. 2.3] because of the presence of
significant process noise terms that caused large deviations between the predicted pixel estimates and the
true pixel intensities.”

— Quoting [18]: “model-based segmentation and restoration of images is performed. It was assumed that
space-variant blur can be adequately represented by a collection of L distinct point-spread functions,
where L is a predefined integer. (The ‘Multiple Model of Magill’ (MMM)) bank of parallel Kalman filters
was applied to this problem.” See Sec. 3 for more about MMM.

— Quoting [20]: “it is revealed that image restoration based upon unrealistic homogeneous image and blur
models can result in highly inaccurate estimates with excessive ringing. Thus it is important at each
pixel location to restore the image using the particular image and blur parameters characteristic of the
immediate local neighborhood.”

2.3 Correcting a few analytical misconceptions occurring within the historical prin-
cipal paths summarized above

The following two items are offered as corrections to aspects raised in Sec. 2.2 regarding use of 2-D Kalman filters
for image restoration and consequently should improve performance in the application activity reported above:

e From [40, Egs. 23, 24], the following 2-input/2-output continuous-time process:
:'12‘1+31:‘1+2$1 =—1:ll—-\/7/2 ul—(1/2) us, (24)

Gy +3d2+272=—U — VT7/2u1 +(3/2) u2, (25)
after rearranging, is recognized to indeed be of the ARMA form Z;\;o Apz®)(t) = E;‘{_-o B,ul9(¢):

10 3], [3 0][ #: +[20 | _[-10 w |, V72 -1/2 uy
0 1]} 2 0 3 || %2 0 2] z2) | -1 0]t —V7/2  3/2 up |
(26)

and the following 2-input/4-intermediate output/2-output continuous-time process from [40, Egs. 34, 35]:

& [0 -1 0 074 -1 0

h 1 30 0 y | | (6=-VT)/2 -1/2 u

it [Tlo o0 —1||z |7 -1 0 w | (27)
&, 0 02 3fl=] |6=-vD/2 32

10Incidently, he also went from department head at U.C. Berkeley to Science Advisor in the Bush Administration.
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can be recognized to be the AR form Z;I;V=o ApzP)(t) = Byu(t) (via a common matrix pre-multiplaction
throughout) from:
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yet both have the same identical transfer function matrix (demonstrated in [41]), namely:

s s
+s5)(1+s +s)(1+s
wT(s) = : (30)

-1/2 3/2
C+s)A+s) (@Fs)a+s)

and so are equivalent systems since both representations represent observable and controllable portions (with
a straightforward change in notation of the variable names occurring in [40] to what is used here to make the
ARMA and AR forms more apparent). Notice that the ARMA process representation has a finite number of
terms and so does the equivalent AR process representation (unlike what was asserted in [19]).

e Use of Extended Kalman Filters for parameter estimation in [20] used only the standard form of EKF. Ljung has
shown {70] that in order to obtain consistent parameter estimation results from an EKF (that are comparable
in performance to other more specialized parameter identification techniques such as recursive least squares
estimators (RLE) or Instrumental Variables), an additional term must be included in the EKF that usually
doesn’t appear there in other more standard nonlinear estimation applications of this tool (such as in “target
tracking”) where linearization simplifications are invoked without contaminating the objectives. Additionally,
use of re-linearization usually improves the performance of an EKF (by improving the efficacy of linearization)
for just a modest increase in algorithm complexity [39].

3 ADAPTIVE CONTROL-LIKE IMAGE PROCESSING

For random field processing to run autonomously without human intervention or man-in-the-loop to reset or
adjust parameters when underlying conditions change, there is a need for adaptive schemes to assess the prevailing
conditions and correct for them in the processing. The techniques of the last decade and a half for performing similar
tasks within the corresponding two stages of adaptive control !!, that similarly must first have unknown or varying
parameters identified by some scheme, appear to be a hodge-podge of different approaches, but [62] has recently
appeared on the scene to unify and demonstrate how these alternate approaches can still lead to the same result
and how a proper understanding of it all can be used to generate new results, as needed in certain areas of adaptive
processing such as we face now.

As a somewhat less desirable alternate backup route to exclusive reliance on just multi-filter combining rules,
consider combining sensors using a multiple model bank-of-Kalman-filters (as originally developed by D. T. Magill
in 1965, clarified and explained by Demitri Laniotis in 1967, and simplified in its specialized implementation by R.
Grover Brown (Iowa State-Ames) in 1981, and further utilized in this simplified form by AFIT’s Peter Maybeck
in another context for IR tracking in modifications evolving from 1983 to present). Each filter in the bank could
have a different hypothesized noise intensity level to provide a degree of adaptivity to underlying noise conditions

i1]e., it is well known that “estimation” and “control” are mathematical duals in that the same descriptive equations apply, while
physical motivations and/or justifications differ.
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Figure 5: Multiple Model of Magill (MMM): N alternative Kalman filters, each with its distinctly different system
models vying to match the true system as it progresses through its likely operating regimes, with associated on-line
computation of probabilities of each being correct so that a tally is available to decide which one (choice of a “winner”
varying with time) offers the best match.

or quantized blur parameter variations (e.g., [63] 12, [64]). [TeK Associates found that limited success along these
lines has in fact already been achieved [18].]

This so-called Multiple Model of Magill (MMM) consists of a parallel bank-of-Kalman-filters, with associated
on-line calculation of probabilities 13 of the best match to the actual system under test, as depicted in Fig. 5.
However, until the last decade, MMM represented too large a computational burden to be embraced for most
practical applications. However, that situation has now changed with the advent of parallel processing, cheaper RISC
implementations, and ASIC/VLSI/VHSIC, DEC’s Alpha, and Intel Pentium chips, using Microsoft’s Windows™7T,
IBM’s OS/2, and Microsoft’s Windows 95.

Another lucrative approach (endorsed in [17, p. 19, col. 2] as a valid alternative for simultaneous Image and blur
identification) is spelled out here. According to [17], another approach to image restoration that can be pursued
would be to use aggregate ARMA modeling to capture the salient modeling aspects (without any need for the detailed
physical basis of the interconnections being spelled out, as is otherwise normally done in a Kalman filter-based state
space model). If we were to further pursue taking just a phenomenological ARMA approach without regard for
underlying state identities, then the simplifications availed from [40] in now recognizing some connections or exact
correspondence between strict ARMA modeling (a harder nonlinear problem) and strict AR modeling (an easier
linear problem [but of a slightly higher but still finite dimension in order to correspond exactly to what an ARMA
model would capture, as long as the AR portion is of higher order than the MA portion]). Recent simplifications
are now available (i.e., [66]) for implementing realizations of a linear system representation by using the numerically
stable and now popular Singular Value Decomposition (SVD) for computations. Use of Expectation-Maximization
or E-M algorithms [61] are also hailed as reasonable alternative paths to use in further pursuing specification of a
few unknown critical parameters that are needed to really get going in using the ARMA approach (“since the E-M
algorithm essentially solves two linear sub-problems on each iteration”).

12Yaakov Bar-Shalom and Hank Blom also use a generalization of MMM (denoted as IMM) and have a nice description of the
accompanying probability calculations of IMM which, in turn, determines which running filter model most closely corresponds to the
actual measurements received.

13 Initially, each candidate filter is equally likely. Engineering tuning can also be done on these probability calculations (such as putting
upper and lower limit stops so that answers are never reached with total certainty) therefore the MMM stays open minded for changes
in system operational regime and correspondingly to the best filter hypothesis that matches it.
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4 TeK Associates’ EXTENSIONS FOR SENSOR FUSION

We have pursued the idea that recent “decentralized” Kalman filter (KF) technology [6]-[12], by outfitting each
participating imaging sensor with its own dedicated 2-D Kalman filter # can be used as the basis of a sensor
fusion methodology that allows a final collating filter to assemble the data from diverse imaging sensors of various
resolutions into a single resulting image that combines all the available information [10], [23] (in analogy to what is
already routinely done in multisensor NAVIGATION [10], [24]-[27]). The novelty is in working out the theoretical
details for 2-D filtering situations (using [28]-[31] as a guide) while assuming that the image registration problem
(reduction to a common scale and coordinated alignment registration) has already been independently handled [32],
perhaps by hardware proximity multiplexing through a shared common aperture [perhaps using rotating mirrors]
where scale of sensor scene image could have been calibrated and adjusted in a static environment beforehand). We
must synchronize frame size and location of pixels of interest to be comparably located with same “raster scan” speed
and size used for each to match up for different sensors. Rule for Kalman filters is that the combining of underlying
measurements or sensor information can only help and never hurt. We interpret this approach as involving several
common views of the same scene, as instantaneously obtained from different sensors, all stacked up vertically one
planar view on top of another planar view, each with its own local 2-D Kalman-like image restoration filter proceeding
to raster scan (in multi-layer sync). Then apply the multi-filter combining rules from Decentralized filtering to the
bunch to obtain a single best estimate image as the resulting output as a convenient and useful methodology to
achieve sensor fusion.

While we have sketched out details of the constituents of TeK Associates’ approach to image restoration and
sensor fusion and its rationale, we are reluctant to just magnanimously divulge the fruits of our IRD labors, namely,
our particular 2-D mechanization equations at this time since we view these as being TeK proprietary (at least until
we issue this as a product upgrade to TK — MIPTM ). We obtained encouraging results from preliminary simulations
performed with the MatLab Image Processing Toolbox, but don’t bother to show how it enhanced “Lena’s” portrait
here 15.

Image fusion applications exist in machine vision and in medicine (ultrasound, x-ray, NMR/NMI) as well as in
military Surveillance/Reconnaissance (Lidar, millimeter wave radar imagery, IR, UV, TV). However, our immedi-
ate interest is to introduce this as a future capability into TeK Associates’ current software product for PC’s:
TK — MIP™™ jn extending it to WindowsNT or any other comparable Operating System that supports preemp-
tive multi-processing on parallel add-in processor boards (one for each sensor filter and one dedicated exclusively for
the final combining rule for the end result).
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