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. False Alarm and Correct Detection
; Probabilities over a Time Interval
for Restricted Classes of Failure
v Detection Algorithms

THOMAS H. KERR, MEMBER, IEEE

Abstract—The statistical analysis of failure detection decisions in terms
of the instantaneous probabilities of false alarm and correct detection for a
specified failure magnitude at each check-time have previously been per-
formed for several different failure detection techniques that utilize a
Kalman filter. By performing a discrete-time specialization of a result of
Gallager and Helstrom on a tightened upper bound for continuous-time
level-crossing probabilities, upper bounds on the probabilities of false-alarm
and correct detection over a fime interval have been obtained for the
specific technique of CR2 failure detection (to allow an accounting for the
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effect of time correlations of the filter estimates). When these upper
bounds are optimized to be as tight as possible to the desired probabilities,
the resulting optimization problem for discrete-time is a collection of
quadratic programming (QP) problems, which may easily be solved exactly
without recourse to approximate solutions as were resorted to in the
continuous-time formulation. This technique for evaluating tightened upper
bounds on the false alarm and correct detection probabilities may be of
general interest, since it can be applied to any failure detection technique
or signal detection technique that can relate an exceeding of the determin-
istic decision threshold by the test statistic directly to a deterministic level
being exceeded by a scalar Gaussian random process.

I. INTRODUCTION

HE STATISTICAL analysis of a specific failure detec-
tion technique, the two confidence regions (CR2)
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decision test [1] and [2], in terms of the trade-off of
instantaneous probability of false alarm versus probability
of correct detection as used in selecting the appropriate
decision threshold to catch failures having a specified
signal-to-noise ratio response, was completed in [3]. The
long-term effect of CR2 failure detection on imperfect
switching decisions, which affect availability /reliability, is
analyzed for a precision inertial navigation system (INS)
complex in [4] using the discrete-state Markov probability
models of [5].!

Since the CR2 test statistic has a weighted chi-square
distribution [3] and may be easily related to an underlying
Gaussian distribution, the instanianeous probability that
the test statistic falls above or below a specified threshold
level at any check-time may be conveniently calculated
under both failure and nominal conditions. However, the
effect of time correlations of the Kalman estimate (that are
also inherited by the test statistics by being a function of
this estimate) may be evaluated by calculating the proba-
bilities of false alarm and correct detection over a time
interval. These are useful to quantify false alarm rares and
to reflect expected delays to detect.

By using level-crossing theory, the probabilities of false
alarm and correct detection, respectively, are related to the
tendency of the CR2 test statistic to cross above the
time-varying CR2 decision threshold over a time interval
under hypotheses H, and H,. The calculation of the exact
probabilities associated with level-crossing problems are ,
intractable in general [6, p. 264], [40], however, it is some-
times possible to prescribe tractable upper bounds on these
elusive probabilities. In [7] a continuous-time bound and
the associated optimization problem for making the bound
as tight as possible are presented. The bound, which can be
easily derived using only the rudiments of probability
theory, is stated as [7, eq. 2]. The purpose of this paper is:
to translate all of the important continuous-time ideas of
[7] into their discrete-time analogs to more closely repre-
sent the intended computer implementation; to offer a’
solution procedure for the easier discrete-time optimization:
problem (demonstrated to be equivalent to a collection of
standard quadratic programming problems) that arises nat-
urally in making the bound tight; and to cast the results in
the framework of a failure detection algorithm to match
theory to application as tight upper bounds on the proba-
bility of false alarm and correct detection over a time
interval are derived.

A summary of the CR2 implementation equations is
presented in Section II to: provide a quick survey of the
current status® of the CR2 algorithm; summarize how CR2

'While other researchers first indicated that the standard reliability
framework and techniques were not general enough [49]-[51] to accom-
modate analyses of the effect of failure detection on the systems manage-
ment (ol a control problem) more general than considered here, recent
1980 results [47] use exactly the same discrete-state Markov reliability
techniques [5] as used in [4] in 1976 for the same Lype of problem.

?A discussion is provided on [46, p. 51] of the successful performance of
a failure detection algorithm that evolved from the scalar CR2 approath
and was implemented for Trident Submarine ESGM navigation [56] by
Sperry Systems Management, Great Neck, NY.
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1s used in failure detection; and demonstrate how the
problem of interpreting the CR2 test statistic’s crossing
above the CR2 decision threshold over a time interval may
be related to the level-crossing problem in making
failure /no-failure decisions. A level-crossing technique for
obtaining a tightened upper bound on the probabilities of
false alarm and correct detection over a time interval is
presented in Section III. Section IV highlights the inner
problem structure which can be exploited to a computa-
tional advantage in performing calculations of probability
of false alarm and correct detection over a time interval. A
simple numerical example is given in Section IV to demon-
strate the procedure of this paper and to show that there is
no barrier to applying it to more complex situations of
higher dimensions as has been done in contractor reports
[43]. The conclusions are summarized in Section V. Ap-
parent extentions of this approach to two other failure
detection techniques that claim to possess the requisite
Gaussian statistics are indicated in Section V, and applica-
bility of the technique of this paper to two other more
general signal detection techniques are discussed at the end
of Section III.

II. SumMMARY OF CR2 IMPLEMENTATION EQUATIONS

The two confidence region approach to failure detection
may be applied to systems that have either truth models or
error models (as characteristic of nagivation systems [8])
that may be represented in the following linear state-vari-
able form

x(k+1)=0(k+1,k)x(k) +wk)+vs, , (1)
2(k) = H(k)x(k) + v(k), (?)

where w(k) and v(k) are independent zero-mean Gauss-
ian white noises having covariances of intensity Q(k) and
R(k), respectively, and x(0) is a Gaussian random vector
initial condition, independent of the noises, of mean x, and
variance P,. The failure models that can be monitored
using this CR2 approach must be modeled as states of the
system of (1) (e.g., it is common practice to model soft or
subtle failure candidates such as unwanted deleterious
ramp and bias gyro drift rates and accelerometer biases as
states in the linear error model of an INS [8]). then a
failure may be represented’® as a vector v (magnitude and
direction) that occurs at the unknown time 6 as reflected in
using the Kronecker delta §, , which is one for k = 6 and
zero otherwise.

A Kalman filter, modeled on the unfailed system of (1)
with the term »8, , absent, is implemented to track the
system that is to be monitored for failures. The Kalman
filter uses the measurements z(k) as inputs and the esti-
mate #(k) evolves from a recursive equation which has the

3As discussed in [3), the two confidence region approach can also be
used to detect more general time-varying failures, while [44] considers
only detectability conditions for time invariant systems.
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following form* [9]:
2(k+1)=0(k+ 1, k)2(k)
+K(k+ D[z(k+ 1) — HO(k + 1, k)#(k)]
#(0) = xg (3)

with the covariance of error in estimation being provided
from

Pk +1)=0(k+1,k)[I— K(k)H(K)]
P (K)®T(k+ 1,k) + Q(k + 1)
P,(0) = P,, 4)
and with the Kalman gain
K(k)'= PR HT(RO[H(K) P (k) H (k) + R(K)] "
(5)
In order to use CR2 for failure detection, the expected
value of the unfailed system and the associated variance
available, without using the measurements, are needed and
are provided, respectively, as solutions of the following two
equations:
¥(k+1) = E[x(k + 1)|Hy] = ®(k + 1, k)x(k)
x(0) = xo (6)
and
Pk +1) =0k + 1, k)Py(k)®T(k + 1,k) + Q(k + 1)
Py(0) = Py (73
The underlying alternative hypotheses for the failure mode
state x, are
(no-failure) Hy: %,(k, @) ~ N(0, [Pee(k)] ;)
(zero mean) (8)

and
(failure) H,: £,(k,w) ~ N(d(k),[Pez(k)]si)
(nonzero mean), (9)
where d(k) is defined as

d(k) =ith component of the deterministic response
of the filter to an assumed specific failure
mode 7 that is to be detected®

» (10)
and
P; ¢ (k) is the (i, i)th component [Pe:(K)), of

(1)
Peo(k) = Py(k) — P(k)>0  fork>0.

Equation (11) can be obtained for the above scalar case by
squaring the identity x;, = (x, — £;) + %,, taking uncondi-

4 The propagate and update equations of the discrete Kalman filter have
been combined for brevity and conciseness. i

5The (ime history of the parameter d( k) may be evaluated through a
simulation using the truth model with the system and measurement noise 5
sample [unctions zeroed out and only the ¥ failure mode activated.
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tional expectations throughout, and noting that the cross

term is zero as a consequence of the projection theorem.
The scalar or one-dimensional CR2 decision rule based

on the overlap or nonoverlap of confidence intervals, as

derived in [3], is

NO OVERLAP (DECLARE FAILURE) WHEN

1&,(k)| > n(k) - (V20T + V[P ). (123)
OVERLAP (NO-FAILURE) WHEN

2,(0)| = n(k) - (V[P + [P, ), (120)

where n(k) is a time-varying scaling factor for the standard
deviations in (12).

An alternate test for the overlap of the two confidence
intervals results from the artifice obtained by considering
the associated parabolas of [3]. The CR2 decision threshold
at time = k is

K\(k) & [n(K))". (13)
From [3, eq. 23, the one-dimensional CR2 test statistic at
time = k is

k) 2 (5,007 (JTROT, + [PR]) (14

and the equivalent alternative CR2 decision rule is
NO OVERLAP (DECLARE FAILURE) WHEN

(k) > K,(k) (15a)
OVERLAP (NO-FAILURE) WHEN
(k) < K,(k). (15b)

While the obvious decision rule of (12) is easy to obtain
as a test for the overlap /nonoverlap of confidence inter-
vals, it is the alternate formulation of the decision rule of (15)
that generalizes to two or more dimensions as discussed in [2]
and [3]. For simplicity, the derivation of the probability of
false alarm and correct detection over a time interval will
be confined to the one-dimensional CR2 in this paper,
without any severe loss of generality as indicated in Section
V.

An equivalent representation for the one-dimensional
CR2 decision threshold of (13) is given as [3, eq. (39b)] to
be

K\(k) = b? '[(»sz(k) - \/Pl(k) )/ (\/}2(]‘) + \/P\(k) )]7
(16)

where

A s e e ope 6

b £ the deterministic, pre-specified, constant® scale
factor in the time-varying decision threshold of
the CR2 algorithm.

(17)

®The policy of keeping the scale factor b constant is required to
maintain a constant instantaneous probability of false alarm at each
check-time = k, a policy that is routinely maintained in CFAR detectors
{41] where the interference characteristics are either unknown a priori or
vary with time, and conveniently facilitates later scaling in Section 1V-B.
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The effect of time-correlated estimates under H, is incor-
porated in

um 2 E[2,(k)2,(m)]
[@%=mp, (m)],,, fork >m !
=1 [Pez(m)]s fork=m. (18)
[Pes(k)@T*=m] . fork <m,

where @ is the transition matrix over one check-time step
of the associated filter, and the numbers c,,, are elements

of the following (N, — N, + 1) X (N, — N, + 1) matrix
k=N, m=N\,
{ckm}k N m= Nl - (19)

The expression of (18) for the serial time correlations of
the estimates under H; is obtained by postmultiplying the
iteration of (3) by £7(k), taking expectations throughout,
and utilizing the well-known property that the innovations
term of zero mean within the bracket is uncorrelated with
the estimate of the prior time-step k. The following time-
varying threshold is defined for later convenience in the
derivation of Section III:

S(k) %bk[P“(k)]u’ (20)

and the positive numbers s(k) are elements of the follow-
ing vector

s 2 [s(N), s(Ny + 1), ,s(N — 1), s(M)]7, (21)

while the numbers d(k) of (10) are elements of the follow-
ing vector of time histories of the mean filter response to a
specific failure

=[d(Nl)’ d(N, + 1),---,d(N, — 1), d(Nz)]T- (22)

ITI. A LEVEL-CROSSING TECHNIQUE FOR A
TIGHTENED UPPER BOUND ON P;, AND P,
OVER A TIME INTERVAL

The probabilities of false alarm and correct detection
over a time interval will now be upper-bounded using a
bounding technique from level-crossing theory. These up-
per bounds will be subsequently tightened through an
optimization procedure.

The idea of approaching failure detection using
level-crossing theory also appears in [10] where a geometric
moving average algorithm is investigated. However, only
the calculation of the expected level-crossing times, using
many approximations, is attempted in [10] and-a rough
calculation of P, is attempted in the refinement of [11]
which did not explore level-crossing bounds. Level-crossing
theory is also used here in the derivation of expressions for
the probabilities of false alarm and correct detection over a
time interval for the CR2 failure detection algorithm.

The principal event that relates the scalar instantaneous
decision rule of (12) to the crossing of the threshold level

s(k), defined in (20), over the time interval from time’
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corresponding to N, to time corresponding to N, is’
A(w) = {w such that for at least one j, | £,(j, ) |
zs(j), M =j=N,}. (23)

The probability of false alarm and probability of correct
detection over the time interval from time corresponding to
N, to time corresponding to N,, respectively, are

Pfa[NI’N2] éPr[A(w)IHO] (24)
and

PNy, V] é'PT[A(“’)IHl]- (25)
However, all attention here will be focused on obtaining a
tightened upper bound on P/H[N,, N,] since a lower bound
on P,[N,, N,] is more appropriate as the respecuve worst
case design consideration. -

As suggested by Professor Alan S. Willsky of M.L.T,, the
principal event A(w) may be decomposed into mutually
exclusive and exhaustive constituent events (in a manner
similar to what is done in the proof of Kolmogorov’s
inequality [12, p. 29]) as

A<w>=AN,(w>u{ U A,(w)}, (26)

J=N+1
where

AN,(“’) £ {

£, (N, “’)|>~Y(N1)} (27)
and

'P
A(w) = {o such that |£,(m, @)| < s(m) for Ny = m

<j—land|%(j,w)|> s(j)}, (28)

(i.e., the set where j is the first time that £,(-, w) exceeds
the threshold in the time interval from N, to N,) and

A () NA(w)=2, (29)

the null or empty set for j# k. It is useful to further

decompose the event A (w) more finely into positive and
negative first crossings as

Aj(w) =4} (@) U 4] (w), (30)
‘where
AJ+ (w) 2 {w such that |£,(m, w)| < s(m) for N, <m
<j—land £,(j,w) >s(j)} (31)
and

47 () = {w such that |2,(m, w)|< s(m) for N, =m

<j—land £,(Jj, ) < —s(j)} (32)
and, additionally,

Af (@) N4, (w)= 2, foralljandk. (33)

7Commog notation, as in [7], is to suppress the w, which represents a
simple event in the underlying probability space, as it appears in %(k, w)
and denote it as just £(k); but the w will not be suppressed here because
it is of fundamental importance in the supporting rigor.
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Bounds on the Subevents—Bounds on each constituent
subevent may be obtained by using the following two set
inclusions

AF (@)
- {w such that :éN g(m)[%,(m, @) = s(m)] = 0}
(34)

A4; (w)
c {w such that "éng(m)[x,.(m, w) + s(m)] 50},
(35)

where g(m) will be defined® in (50). By the monotone

property of positive probability measures [13], the follow-
ing upper bounds hold:

Pr [AJ+ (w)] HO] < Pr {w such that

é g(m)[%,(m, ©) —s(m)] =0

m=N,

Ha] 09
and

Pr[A4; (w)|Hy) =Pr {w such that

g(m)[%,(m, @) +s(m)] <0

Ho} . (37)

Paralleling the steps in discrete time that were followed
in continuous time in [7] results in
J

2 g(m)fi(ma w),

m=N,

(38)

being a Gaussian random variable as the deterministically
weighted sum of samples of a Gaussian process with the
mean being

y(w) =

S g(m)E[#(m, )]

Ely] =
m=N, .
{0, under H '(39
| dTg, under H, )
and the variance under both H; and H, being
0?(g) = var[y]
JoJ _

= 3 3 g(mE[#(m)2,(n)]g(n) =g"Ce,
m=N, n=N,

g (40)

#Notation for the ith component of the deterministic vectors s and g
are s(i) and g(7), respectively.

"
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where C is defined in (18). Now let the parameter to be
indirectly optimized through the specification of g be de-
fined as

n,(g) =s%8/0(g) (41)
then
Pr[ é g(m)[%,(m) — s(m)] ZO|H0]
m=~N,
=Pr[)g-—o(g)-n,20lHo] (42)
Z%erfc[nj/ﬁ]
and
Pr[ i g(m)[%,(m) = s(m)] 20|H1]
m=N,
(43)

= Pr[y —o(g) - m,=0|H)
= Yeric|(n,/2) ~ d%g/(20(2)].

Upper-Bounding the Principal Event—A bound on the
principal event, A(w), in terms of upper bounds on all of
the constituent pieces or subevents of which the principal
event is comprised is obtained using the properties of
probability measures on disjoint subsets and on nested sets
as

PNy, N,]
= Pr [A(‘*’) lHo]
N,
=Pr {ANl(w) U{ U Aj(w)} H, (44a)
J=N+1
Ny
:Pr[ANl(w)]HO] +Pr| U AJ,(w)HG] (44b)
= Pr [Ah;l("’”Ho]
N, N,
+Pr U 4 (w)|ul U 47 (w)) H,
J=N+1 j=N+1
(44c)
N,
= Pr[ANI(w)lHO] + ._g lPr[Aj* (@) | Ho)
Ny |
+ __gﬂpr[A; (@) | H) (44d)
1 . 1 |
Serfc[b/ﬁ] + Y Eerfc[nj/\/i]
j=N+]
N, 1
+ 3 Eerfc[nj/ﬁ ] (44e)
J=EN+IL
Ny
=ericb/ 2]+ 3 erte[n/2]. (44f)
J=NM+1
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(J %))
Tightening the Upper Bound— Given C and

X 1

G s of (18)-(21), respectively, the upper bound of (44)
may be made tight by optimizing the deterministic vector
quantity g for each j-dimensional subproblem to specify
the deterministic parameter n; through (41). The optimiza-
tion problem, which solves for each of the n; that minimize
the right side of (44), may be equivalently reformulated
analagous to the continuous-time reformation of [7] as
several individual optimization problems of the following
form (see Appendix III for venification): find the determin-
istic vector f such that

f;=0,  for all components of f (45)
and
fis"=h (46)
(for arbitrary specified positive scalar #)° that minimizes
o} (f)=f7C'{, (47)

where C’ is related to the original time-correlation effect of
the Kalman estimates as summarized in the C of (18) by

forN=m=j—-1, NN=n=j—1

Conj> forN=m=j—1,n=j
Cmn = = G form=j, Ny=n=<j—1
Cijs form=j, n=j

(48)

and s’ is related to the original effect of decision threshold

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-28, NO. 4, JULY 1982

of (45), is recognized to be of the type known as quadratic
programming (QP) problems.'® There are several algo-
rithms that may be used to solve this QP problem [15]-[17],
[19], but only a well-documented M.L.T. program [18] has
been extensively used by the author because of the con-
venience of its accessibility.!' This M.L.T. program is essen-
tially a revision of an earlier RAND Corporation imple-
mentation of the Dantzig algorithm [19].

From the convexity of each of the two constraints of (45)
and (46) separately, it may be inferred that the intersection
(satisfying both constraints simultaneously) is convex [20,
p. 333]. Consequently, it may be concluded that the /oca/
QP solution exists and is a global solution since the convex
cost function of (47) is being minimized over a convex
region [20, p. 119].

The solution to each j-dimensional QP problem f* may
be converted to the corresponding g* via (50) and finally
used to calculate n7(g*) via (41). When these values of
n7(g*) are used in the upper bound of (44), the result is the
tightest upper bound of this form and in the CR2 failure
detection application, has been very useful. However the
techniques of deriving and evaluating these tightened up-
per bounds on the probability of false alarm over a time
interval may be conveniently applied to any other failure
detection or signal detection technique that can relate the’
exceeding of the decision threshold by the test statistic
directly to a deterministic level being exceeded by a scalar
Gaussian random process (viz., [53], [54]). Apparently,
none of the other failure detection approaches of [10], [11],
[21]-[36], {48}, [53] have yet addressed or solved the prob-

“lem of specifying or approximating probability of false

level and instantaneous covariance as summarized in s of 7~ alarm over a time interval.

(20), 21) by

— S5 forl=m=<j—1 F
s, = . (49) -
S5y form = j.
The original g is related to f by
- {—f(m), forNy=m=j—1 :
glm) = : :
7)), form =,

where f is arbitrary but nonnegative. Under the assumption
that %,(-, w) does nor have an improper Gaussian distribu-
tion [14, p. 15], then

C>0. (51)

Consequently, C’ as defined in (48), which is just C with
the signs reversed in the last row and column excepting the
diagonal element, may easily be shown (as done in Ap-
pendix I) to also satisfy

Cc'>0. (52)
The problem of minimizing the strictly (via (52))

quadratic cost function of (47), subject to a single linear
equality constraint of (46) and the nonnegativity constraint

9That an arbitrary 4 yields the same unique solution to the optimization
problem is asserted in {7) and explicitly demonstrated graphically here for
two dimensions in Appendix IL

IV. PERFORMING INTERVAL PROBABILITY
CALCULATIONS

The expression for evaluating an upper bound on the
probability of false alarm over a time interval was derived

~ = in Section III as (44).'"* The true probabilities over a time
(50).~-- interval may be bracketed above and below!? as

max P, (k)=<P [N, N.
lekéNz fa( ) /a[ 1 M)

N,

Serfc[b/\/f]wL > erfc[nj/ﬁ]

J=N+1
(53)

'01n [7], the equivalent continuous-time problem involves integral equa-
tion inequalities and only alternative approximate procedures could be
suggested as an approach to a solution.

"'This software package was recommended by Dr. N. R. Sandell of
Alphatech, Inc. Personal validation of [18] proceeded by utilizing several
QP test problems with known solutions as provided in [15].

'2The upper bound on probability of correct detection over a time
interval, given in (54) is obtained in a manner completely analagous to the
derivation of Py,{N,, N,] except that the argument of the error function
includes térins due to the nonzero mean failure response of (39) under H,.
The result§’of the QP optimizations apply simultaneously to both (53) and
(54).

13The inequality of the lower bound is an equality for N, = N).
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and
max P, (k)

N=k=N,

SPJ[NI’NZ]

< Serte] (b + d(Ny) N B(W) ) /2]
+ Serte] (b d(,) /fPa(N) ) /2]
+% | }5 ]erfc[(nj/y‘,f) —dTg/V[fo(g)]
JENF
+% A:‘: 1erfc[(vjj/\/f) + dTg/\,Eo(g)],

(54)
where P, [N,, N,] and P,[N,, N,] are symbolic representa-
tions for the probability of false alarm and correct detec-
tion, respectively, over the time interval from time corre-
sponding to "N, to time corresponding to N,. How the
upper bound calculation was implemented for off-line
evaluation is discussed in Section IV-A. The upper bounds,
which only requlre use of the error function complement
(erfc), are then optimized as discussed in detail in Section
111, with implementation details presented in Section IV-A,
to make the upper bound as tight as possible for a close
approximation to the desired probabilities over a time
interval. In Section V-B, it is shown that the probabilities
over a time interval for any other choice of decision
threshold and /or different failure magnitudes of the same
failure mode may be obtained by just scaling the results of
one stacked case optimization run. Finally, sample calcula-
tions of the form encountered in the specific inertial navi-
gation system application of [3] and [4] are provided in
Section IV-C.

A. Algorithmic Implementation of Optimization Solution

An algorithm to compute the solution of the QP prob-
lem, associated with the minimization of (47) while satisfy-
ing (45), (46). may be easily incorporated within a com-
puter algorithm for calculating tight upper bounds as ap-
proximations to P,[N,, N,] and P,[N,, N,] from the
evaluation of the right sides of (53) and (54), respectively.
Notice that the interval probabilities are calculated as
functions of: C, the matrix of time correlations of the
estimates: s. a function of the threshold for the mechanized
algorithm and covariances of the estimate; and 4, the mean
of the signal response of the Kalman filter to a failure.
Additionally, the underlying theoretical structure can be
exploited to avoid unnecessary duplication of common
computations by using the scaling properties that are dis-
cussed in Section IV-B.

B. Exploiting Parameterization to Avoid Unnecessary
Additional Optimizations

1) Use of Scaling in Calculating P/a[N,, N,]: it will now
be shown that the results of the optimization of Section 111

are naturally scaled by the decision threshold b. This
allows the results of optimizing for any b to be obtained
from the results of optimizing for a single fixed value of b,
chosen to be b = 1 for convenience. The significance of the
structural observations of Section IV-B1) are minor from a
strictly theoretical point of view but are of tremendous
practical value in demonstrating the otherwise nonobvious
conclusion that the number of computer runs (i.e., expense)
required to set b for a specified P,,[N,, N,] can be limited
to just one.

By the definition of s in (20), (21), it is seen that s
incorporates the quantity b, consequently, any arbitrary s
may be represented as

s=b-s", (55)
where
s is what is obtained with b = 1. (56)
Consequently, the unique solution for n; obtained from the
optimization algorithm, as in (41), may be represented for
arbitrary b as

n,=g’s'/o(g)=0b g's"/o(g)=b-n), (57)
where

7, is uniquely determined by the

(58)
Using the representation of (57), the bound of (44) may be
rewritten as

optimization algorithm for b = 1.

Ny _
PN, N <erfe[b/f2] + 2 erte[b-m/2].
J=N+1
N (59)
Whien the parameters n, are optimized via the quadratlc

pro grammmg algorithm, the following conservative'* close
app rox1mat10n is obtained

PN, N, =~ ertc[b/2] + \2 erfe[b - m//\2 ).
J=N+1

(60)

2) Use of Scaling in Calculating P,[N,, N,]: in a manner
similar to the way 7; 1s reexpressed in (57), the optimal f
that solves the system of (45), (46), and (47) may be
represented as

f=o-f, (61)
where f’ is the unique solution of the optimization problem

for b = 1. By the definition of g in (50), the relationship
that is inherited by g from f is

g=b-g, (62)

"Any undesirable propensity 1o false alarm will never be evaluated as
being less than what is actually present by using this tighlened upper
bound because the true probability of false alarm over the time interval
can be no greater than whal is given in (60). In providing Py, and Py, (i.c..
I — P, expressions for the Schweppe likelihood ratio [42, part 3). opti-
mized Chernolf upper bounds are taken to be equalities in a manner
analagous to the approach of (60).
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where g’ is the solution of the optimization problem for
b=1

Since the error model of (1), (2) and the filter of (3)-(5)
are linear systems, the vector of filter responses to arbitrary
failure magnitudes may be represented by

d = scale - d’, (63)

where d’ is the filter response to a particular failure mode
for a 100X Budget'® failure. Now the argument of the erfc
in the jth term in the first summation of the upper bound
of (54) is

(nj/\fi) —dTg/\EU(g)
— (b -/ ) — (scale - d) (b : g')/\‘E(b ’ 71;)

= (b-m/12) — scale(d’) g’ /{2, (64)

Using the representation of (64), the upper bound of (54)
may be rewritten as

Pd[N,,Nz]S%erfc[ b+ d(N,)/yPesl 1))/\5]

(
(6~

:%erfc( _s.e(Nl))/v’E]
A
+ % 2 e [(6-7;/42)
=N

—scale - (d')T(g')/\E"(g,)]
+_;.j_§ﬂerfc[(b : U}/‘.E)

+scale - (d)(g)/120(g)]. (69

Unlike the situation for Py, [N;, N,] in (60), the propen-
sity for correct detection is nor undesirable and the con-
servative bound to use for P,[{N,, N,] is not the upper
bound but the lower bound of (54). Use of the lower bound
as a conservative approximation yields

PN, N,]~ max P,(k). (66)

M EAEN,

However, both upper and lower bounds can be effectively
used to bracket the actual probability of correct detection.
A numerical example for which the optimized upper bound
expressions are evaluated is presented in Section IV-C.
This example was selected to provide convenient numbers
in order to avoid obscuring the evaluation technique that is
being illustrated.

C. A Numerical Example

Determination of the constituent elements for an evalua-
tion of the probability of false alarm over a time interval
consisting of three equispaced'® check-times will be demon-

SAny convenient magnitude failure can be used for this purpose of
calibration as long as the associated signal-to-noise ratio (SNR) is nonde-
generale such as being greater than one.

' The procedure is unaltered when applied for check-times that are not
equispaced.
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strated. The CR2 decision threshold scale factor b will be
set to achieve d specified false alarm of 0.05 over the time
interval. Given C and s” as in (19) and (56), respectively,
to be

(Gx3) [2 1 1 ]
C =|1 3 2| (normalized units)" (67a)
1 2 4

s"=[1 3 4] (67b)

In evaluating (59) using the data of (67), two QP problems
of dimension three and two, respectively, must be solved to
obtain the proper 7, and 75 of (59). Using the transforma-
tion rules of (48) and (49), the three-dimensional quadratic
program that must be solved minimizes (47) while satisfy-
ing (45), (46) with

(normalized units).

2 1 -1
Cr=| 1 3 =21>0 (68a)
-1 =2 4
and
s'=[-1 -3. 417, (68b)

while the two-dimensional quadratic program that must be
solved again minimizes (47) while satisfying (45), (46) with
2 -1

C:[—l 3

] >0 (692)

and
s'=[-1 3]". (69b)
For convenience, take
h=10>0 (70)

in (46) even though the evaluation of 7, is independent of
the specific positive A value in (46) (as demonstrated in
Appendix II for the two-dimenstional case).

The solution vector of the three-dimensional QP prob-
lem corresponding to the f’ of (61), for the matrices and
vector of (68), is

=10 o 1}7 (71)
while the solution vector for the matrix and vector of the
two-dimensional data of (69) is!’

f=l 11 (72)

Utilizing (50) and (41) yields
m =2 (713)
=3 (74)

Using the results of (73), (74), the optimally tightened

' The QP solution vectors f* encountered in the actual INS application
of [3). [43]. while ranging from dimensions 16 to 2, also had the degener-
ate structure of a single nonzero entry as encountered in the above
example, Rather than hcmg faced with an arbitrary general QP problem
to solvexthe fact that the application described herein involves only QP
problems ‘with special internal structural dependencies (i.c.. both C and s
are functions of P;:(k) in the definitions of (18) and (20)) may perhaps
explain the simplified form of the answer. However, the corresponding
solution values for 1, are not degenerate simplifications.

-
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upper bound o_f (59) for the data of (67) is
PN, Ny] <eric[b/\2 ] + exte[b - 2//2]

+erfe[b- 3 /2], (79)

which may be conservatively taken as a close approxima-
tion to P, [Ny, N,] via (60). The objective of setting the
CR2 decision threshold scale factor b to make

P,[N,, N,] =005 (76)

may be conservatively met (so that PN, N,] is no more
than 0.05) by evaluating the right side of (75) over a range
of different selections of b, then interpolating to determine
the specific b to achieve equality,of the right side of (75) to
0.05. The value of the CR2 decisioh threshold scale factor b
that makes the right side of:(75) equal to 0.05 may be
verified, usmg 1ables of erfc, to be

b=1 98 (17)

and for thls v&lue of b the upper and lower bounds of (53)
form the following- tl,,h{ bracket as-

0. 047&< PN, Nz] < 0.05.

(78)

The above pumerlcal example demonstrated how to
calculate the probabmty of false alarm over a time interval
consisting of three check-times and involved solving (3 —

)=2 QP problems of dimension three and two. The
application of the same technique that is demonstrated in
Section IV-C to the general problem of calculating the
probability of false alarm over a time interval (as (60))
consisting of N check-times involves solving N —1 QP
problems of dimensions N, N —1, N-—2,---,2 corre-
sponding to the proper submatrices of the full N X N
matrix'8 of time correlations of the estimate in (19). The
current QPS computer program [18] can easily accommod-
ate these computations in one stacked-case run.

V. SUMMARY AND CONCLUSION

The motivation for calculating bounds on the probabili-
ties of false alarm and correct detection over a time inter-
val for a decision test for failure detection was presented in
Section I. The implementation equations for the CR2

failure detection decision test were summarized in Sectiony
11 to facilitate a demonstration of how the upper bound -
calculations may be implemented for a specific failure;

detection method. The method may also possibly be appli-
cable to the generalized likelihood ratio (GLR) faila:
detection approach of [36] or any other failure detection
signal detection technique [54] that can relate the test
statistic exceeding the decision threshold to a Gaussian
random variable exceeding a deterministically specified
level as in [29] and as asserted in [48, p. 608] and demon-
strated [52, pp. 31-33] for simplified GLR. Major resuls

of specifying the underlying theoretical framework andg

partitioning of events that enable use of a discrete-time

BFor consistency, N = N, — N, + 1.

[P

formulation of the level-crossing upper bounds of [7] to
this problem were discussed in Section 1II. How a particu-
lar QP algorithm has been implemented to evaluate the
tightened upper bounds was discussed in Section IV where
a representative numerical example is also presented.

So far, the presentation has dealt exclusively with
upper-bounding the requisite probabilities over a time in-
terval for the scalar or one-dimensional CR2 algorithm.
The general multidimensional CR2 algorithm is specified
in [1], [2), and [3] and can be easily handled by applying
the techniques presented in this paper for the scalar case to
each component. The final constant value of the threshold
scaling parameter b that should ultimately be used in the
multidimensional CR2 is

(79)

where i ranges over all of the components and b; is the
maximum scale that makes the probability of false alarm
meet a prespecified design objective.

Occasionally, the so-called sampling approximation [37]
is used as an approach to obtain a close approximation to
the probability of false alarm over a time interval consist-
ing of N consecutive check instants as (e.g., [38, p. D-9]):

BN, N =1-(1-F,)", (80)

where P, £ instantaneous probability of false alarm.
However it is demonstrated in [37] using an analytically
tractable level-crossing formulation for a simplified repre-
sentation of a square-law detection device [39], that the
approximation of (80) provides an indicated false alarm
rate that is better (i.e, smaller) than is actually present
([37, p. 24]). A recent simulation approach for evaluating
Py, is reported in [55].

-While at first glance, it may appear desirable to proceed
to generalize the approach of event partitioning utilized in
Section I1I to a continuous-time formulation for some
other possible applications, the following technical prob-
lems will impede such a generalization. Since j in 4;(w) of
(28) refers to the first instant of time where £(1) exceeds
the threshold, the corresponding continuous-time formula-
tion of 4, (w) would be indexed by the continuum [y, /]
in the generahzatlon encountered in (44b) of

U A,i(w) (81)
i 1,€[tg. 1]
as an uncountable (rather than countable) union of mea-
surable sets, and consequently not guaranteed to be con-
tained in the underlying sigma-algebra without further
investigation. Additionally, the sigma-additive property of
a positive finite probability measure (that is utilized in
(44d) without fanfare) could not be invoked. Finally, the
corresponding continuous-time optimization problem can-
not be conveniently solved exactly as reported in [7], unlike
the discrete-time case reported here.

An analytic model for an existing somewhat heuristic
operational procedure used to randomize the external
naviad fixes for updating the MK3 Modé6 ships inertial
navigation system (SINS) of Poseidon submarines is re-

b= minb;,
t
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ported by this author in [57]. This navigation example is f)
another neat application and slight extension of a fun?:fa-
mental level-crossing result previously derived by C. W,
Helstrom in 1956 ([37], [39]). Recent conflrmmg hh
line comprising locus of
level-crossing results surprisingly similar to those of h points on the intersection

Helstrom (differing only in whether or not to employ
square roots throughout) are reported in [58). The deriva-
tions of (58] are refreshingly explicit.

0<h4<h3<h2<h
APPENDIX [

STRICT CONVEXITY IN QUADRATIC PROGRAM PRESERVED

In Section III the problem of upper-bounding the probabilities " 4
of false alarm and correct detection are transformed into prob- Fig. . Eocus of points oniihe ‘élliptical. family subject ‘ihe equality
lems of the same basic form for which upper bounds were co}:siraiﬁl. Ag
constructed in [7]. The resulting problem should be a strictly ¢
convex quadratic program to be easily solved. That the resulting
problems achieve this desirable property is demonstrated here for
completeness via a straightforward three-line proof.

as defined, respecnvely, in {18) ﬁnd (49). The inner !
(47) as encountered m Ifle oplmnzalmn defmes a%,:l‘hpucal

Lemma 1. For family of the form: { .,,_ ! I.
f#0 (82) Fo=K . predt” (89)

the condition that or | % |
c>0 (83) ' enft+2cufifs +enfd =Koy (89D)

is equivalent to the conditions that Differentiating throughout (89b) with respett 1o f, y :

A df.
g#0 (84)‘_ ) Cnfl+C|2f2+[czzf2+clzf|] 2— (%0)
and
>0 (85) - Rearrang,mg the above, the equation of tangents to the elliptical
’ famlly is
Proof: 1f (82) holds, then (84) holds by the definition of gin df. —enf = enf
(50). Since C is positive definite in (50), (83) holds and may be * 3—2 = % (o1
expanded to establish (85) using the definition of g in terms of f ‘ i cnfitenf,
as Now consider the equality constraint (46) which is in force as
Y Y Ts’=h, (where h is an unspecified positive constant
0<g’Cg= 3 3 g(m)c,mg(n) i 7 ( Fesieg )
m=N, n=n, % (92a)
J=1 =1 ~.'or equivalently,
2 2 (=f(m))cun(=f(n)) e S +sify=h (92b)
m=N, n=N
le | P
23 T+ AN g ek A b, (93)
n=»xN, L
VL | where
2 2 f(m)cnmf( )+2 E f(./)( n)f(n) . A _si
=N, n=N, r slope =m = —~ (94)
2
: N — T 6
(e, i) =1'Ct, (86) Tangency of the family of equality constraints of the same slope
where C' is defined as in (48). B to ellipses of the common family occurs when
: dfy _ —enfi—cnfr _
APPENDIX 11 d, enfitenf, (%3)
INVARIANCE OF SOLUTION WITH RESPECT TO POSITIVE
NUMERATOR VALUE / (FOR DIMENSION = 2) or
—epnhi —cnfa=mlenf +cnh). (96)

Case 1 —Ignoring only the nonnegative constraint of (45) in

performing the optimization. Rearranging (96) it may be seen that the equation of the Jocus of

Given tangents to the ellipses having constant slope is
' - + mc), ]
(2x2) _ (e 12 97
C =C">0 (87) e B = [e12 + mey] i &7
(2% 1) Each pbi;i"i'é?'of the locus represents a solution to the optimization

= 0 (nonnegative components) (88)  problem for a different value of h as indicated in Fig, 1.

o @
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Te
A
The next step is to further investigate to see whether different

values of / yield different values of n. The objective is to
maximize n achieved by keeping numerator constant and mini-
mizing the square of the denominator occurring in

f -
17ct

S gy

Tsl

n=

(98)

Alfter removing the radical from the denominator of (98) evaluat-
ing along iHe locus of tangents to the ellipse having constant
slope, we have from (97) that:

o]
/i 4 ' i N L
_ n LRI v | 4+
=l ( Cyy + maeya )!_ il ";i _ ( ¢y + mcpa f
\eya+ mep )7 o b Vet mey ]

(99a)

(T

L _-'.“. |' i 2"
=f| ey, (‘1{14_4‘\2 + EZ.ME (99b)
7 eis + mesyy) (¢12 + mey)

-flJ " -.';.I
_(——)—{'Cll(tlz+c22m) 2epp( e + eipm)
('|: T RiCan N :

ey, Flaym) + ey + Clzm)z} (99c)

,

— fi 2 B 2

= 3{Cn“22 €Ciz T 2mey€1aca
(ciat+ cyym)

A 5 g B
+)N—C| IC»'.TZ = '2 mC|33 - nlzcl-ZCZZ} (99d)

/i

(¢ + cam)

2 {("11“22 -

c,"l)(c“ + 2mey, + mzcn)}.
(99¢)
Now the first term within the braces of (99¢) is positive as
1c22

=L eSO (100)

. by the positive definite requirement of (51). The nonneganVenes

of the second term of (100) is now established by considering th
following question: Is z > 0?, where
z 224 2 il

22

+
€2

Further investigation reveals that the roots of the quadrauc

equation of (101) are e
—2cjy =y#(ch — cien)

-«
2¢y

ny o, =

(102)

There are no real roots (i.e., the parabola does not dip below the
horizontal m-axis) when the discriminant is

¢ — €116 < 0 or equivalently

(i, C>0), (193),

ch <Gjici ;
:"f..:' I

so z is always positive for all m by the naturally arising prar:llca]~

ity condition of (100).

‘-"'?_J‘N-oticc again, as with (104d), (105b) is independent of the particu-

( 01)
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Using the above results, 7 can be evaluated from (98) as
A
¢

1= (104a)

+ .
it s (C|2+sz'")

(e + Clzm)]f

N

m {(C“CZZ e C,zz)((.‘” + 2mcy, + mzczz)}l/2

oy

(104b)
entcpm
€y + cppm

_ fi =) 2 1/2
(ciy + cam) {(enexn = ch)(en + 2meyy + mPey, )}
(104c)
= —sy(eam® + 2cam + cn) (104d)

{(Cnczz - Clzz‘)(cn + 2mey; + "‘2‘—"22)}1/2

Notice that the numerator of (104d) depends only on the C
(characterizing the elliptical family) and the slope m. Notice also
that (104d) is independent of h as had been asserted and was the
g?aal that has now been analytically demonstrated.

Case 2—Investigate invariance of optimization solution (wri
k) while observmg the constraint on nonneganvny

i TS
i n= = (105a)
. ile] 0
0 Cn ] h
[ Clz €2 9—2
; _ h .Yzh 5y (105b)

bt hem  Jem
(s3)

Aar value of h as had been asserted here and in [7].

APPENDIX III
CONVERSION OF INDICATED OPTIMIZATION TO A
TRACTABLE QP PROBLEM

To make the upper bound terms of (44f) (corresponding to the
shaded area under the Gaussian curve of Fig. 2 smaller (i.e,
lachieving a tight upper bound) choose g to satisfy the following:

maxn,(g) subject to constraints of (45) on g via its
£
definition of (50) in terms of f,
(106)

where 1,(g) is defined in (41) and is a ratio. As similarly
encountered in one particularly lucid alternative derivation of the
matched filtering formulation of communications theory [45, p.
140], the ratio of (41) may be maximized by constraining the
numerator to be a constant, say A, while minimizing the de-

nominator as
mjirw(f) =yficf

subject to the constraints of both (45) and (46).

(107)
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‘serfc[nj(g)//z]

\nj(g)

Fig. 2. Maximizing n;(g) tightens upper bound of (44).

Rather than deal with the radical appearing in (107), an
equivalent optimization is

m}'rwz(f) =f7cf

subject to the same constraints of (45) and (46).

While equivalence of the continuous-time analogs of the above
three optimization formulations was recognized in [7), the con-
tinuous-time formulation of (108) involves the minimization of an
iterated integral, subject to both an inequality and integral equal-
ity constraints. As noted in [7), such infinite-dimensional optimi-’
zations are not tractably solvable exactly, while the discrete-time
formulation presented in this paper replaces integrals of [7] with
summations, then goes further to use vector-matrix notation to
recognize the inner product of (108) and the linear equality’
constraint of (46) that constitute a QP problem, with an easily

(108)

accessible exact solution. Just as the majority of Kalman filtering, .

[12)
[13]
(14]
[15]
(6]

17
(18]

(19]
{20]
(21]

(22)

[23]
[24]

(25]

applications are digitally implemented, it is only the tractable’
discrete-time formulation of the level-crossing problem that is of
interest here as has been digitally implemented for the CR2
application, with extensive simulation and real data results in::
[43], [56). ¥

«
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