
P1: GLQ/FFV P2: GSS Final Pages Qu: 00, 00, 00, 00

Encyclopedia of Physical Science and Technology EN008I-357 June 29, 2001 14:35

Kalman Filters and
Nonlinear Filters

Vytas B. Gylys
Texas Instruments Inc.

I. Introduction
II. Linear Estimation Problem and Kalman Filters

III. Modifications of Kalman Filters and Nonlinear
Filtering

IV. Filter Implementation
V. Applications

GLOSSARY

Brownian motion process Process {xt }, t ≥ 0, is a
(scalar) constant-diffusion Brownian motion process if
(a) {xt } is a process with independent increments and
(b) for any nonnegative t1 and t2, the increments (xt1 −
xt2 ) are Gaussian random variables with E[(xt1 −
xt2 )] = 0 and E[(xt1 − xt2 )2] = q|t1 − t2|, where q > 0.

Covariance function of a stochastic process If {xt } is a
second-order, scalar- or vector-valued process (that is,
if E[xt xT

t ] < ∞ for every t in the parameter space T0),
its covariance function is defined as

R(t, s) = E[xt − Ext )(xs − Exs)T]

for all t , s in the parameter set T0. This function is also
known as the autocovariance function of the process.

Estimation Process of observing the values taken on by
random measurements and using these measurements
to compute (with the assistance of an estimator) the
values of some unknown parameters expressible as

functions of measurements. In this article, the term es-
timation is used synonymously with filtering. See also
Estimator.

Estimator An estimator θ̂ of some θ from a parame-
ter space � is a function of random measurements
Mk ≡ {m0, m1, . . . , mk} (and hence itself is a random
variable) constructed for inferring the unknown value
of θ . The value taken on by the estimator of θ after
the observation of a particular set of measurements
is called an estimate of θ . To be consistent with the
notational conventions set up for this article, we do not
distinguish notationally between an estimator (a ran-
dom variable) and a resulting estimate (a value taken
on by this random variable as a function of actually
observed measurements). The term estimator in this
article also refers to a computational procedure (algo-
rithm) for computing estimates. In general, it is used
synonymously with the term filter.

Extended Kalman filter (EKF) Nonlinear filter (for a
system with nonlinearities in the dynamics equation
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or in the measurement equation of its model) that
relinearizes at each measurement update time tk the
nonlinear parts of the system model, while using a
vector-valued Taylor expansion around some reference
trajectory {s0k ; k = 0, 1, . . .}, and then applies Kalman
filter equations. The reference trajectory used is ob-
tained at each tk from ŝk−1|k−1 (for the computation of
ŝk|k−1 and Pk|k−1) and then from ŝk|k−1 (for the compu-
tation of ŝk|k and Pk|k). Here, ŝk| j and Pk| j , with k ≥ j ,
denote the minimum-mean-square-error estimates of
the state and the state error covariance matrix based
on measurements {m0, m1, . . . , m j }. The discrete-time
EKF algorithm is defined in terms of Eqs. (36)–(44) in
the text. A slightly different version of the linearized
extension of the Kalman filter is obtained by linearizing
the model around some known trajectory. This version
is often called a linearized Kalman filter (LKF).

Gaussian process A scalar- or vector-valued stochastic
process {xt } is said to be Gaussian if for every fi-
nite subset (t1, t2, . . . , tn) of points from the parameter
set T0, random variables (xt1 , xt2 , . . . , xtn ) are jointly
Gaussian; that is, jointly they are distributed as a
Gaussian random variable. It follows from the proper-
ties of Gaussian distribution that all finite-dimensional
distributions of a Gaussian process {xt } are completely
specified by its means x̄t ≡ E[xt ] and its covariance
functions R(t, s) = E[(xt − x̄t )(xs − x̄s)T].

Linear system model Model in which both the stochastic
differential (or difference) equations of system dynam-
ics and the measurement equations relating the system
state to the noisy measurements of the system are linear
equations with respect to the state, measurement, and
noise vector. The discrete-time linear system model,
considered in this article for the Kalman filter and other
related estimation schemes, is defined in the text in
terms of Eqs. (2) and (3) and Assumptions 1D and 4D.

Markov process A process {xt } is a kth-order Markov
process if for all t1 < t2 < · · · < tn in the parameter set
T0 and some fixed integer k (1 ≤ k < n), the conditional
probability p[xtn < bn | xt1 = b1, . . . , xtn−1 = bn−1] =
p[xtn < bn | xtn−k = bn−k, . . . , xtn−1 = bn−1] holds for
all n-tuples of real numbers (b1, b2, . . . , bn). The
forgetting-of-the-remote-past property of process {xt },
defined by the above probability statement, is called
the Markov property.

Minimum-mean-square-error (MMSE) estimator An
estimator θ̂ of some parameter θ (fixed or random)
from a parameter space is said to be a minimum-
mean-square-error estimator of θ based (conditioned)
on measurements Mk ≡ {m0, m1, . . . , mk}, if

E
[
(θ̂ −θ )(θ̂ −θ )T

∣∣ Mk
] ≤ E

[
(θ̂0 −θ )(θ̂0 −θ )T

∣∣ Mk
]
,

where θ̂0 is any other estimator of θ . If θ and Mk

are two jointly distributed random variables, it can be
shown that the MMSE estimator θ̂ must be of the form
E[θ | Mk]; that is, θ̂ is a conditional mean estimator.

Noise process Zero-mean stochastic process.
Positive definite and positive semidefinite matrices

Matrix B is positive definite if and only if xTBx > 0 for
all nonzero vectors x of compatiable length; B is posi-
tive semidefinite if and only if xTBx ≥ 0 for all nonzero
vectors x of compatible size.

Process with independent increments Process {xt } such
that, for every ordered set

t0 < t1 < t2 < · · · < tn

of parameter values from the parameter set T0, the ran-
dom variables (xtk − xtk−1 ) are mutually independent for
k = 1, 2, . . . , n.

Recursive estimation of system state Estimation sch-
eme that does not require that all past measurements of
the system and the past system state data be saved for
estimation of the current state. To estimate the current
system state. To estimate the current system state, a
typical recursive estimator uses only the current mea-
surements and the most recent estimate of the system
state. In a more general case, a recursive estimator may
use a finite, fixed-size set of most recent measurements
and system state estimates. This property greatly facil-
itates the implementation of a recursive estimator for
real-time operation on a digital computer. Nearly all
filters considered in this article, including the Kalman
filter, are recursive estimators.

Second-order process Scalar- or vector-valued stochas-
tic process {xt } such that E[xt xT

t ] < ∞ for every t in
the parameter set T0.

Square root filtering Collection of related computational
algorithms for (measurement) updating, in a numeri-
cally stable manner, of estimates P of the state error
covariance matrix in a Kalman filter and for computing
the filter gain matrix. These algorithms utilize a result
from matrix theory, according to which any nonnega-
tive definite symmetric P can be factored as P = SST,
where S is usually a square matrix that is not necessar-
ily nonnegative definite symmetric.

Stationary process A process {xt } is said to be sta-
tionary if for any set of values t1, t2, . . . , tn from the
parameter set T0 and for any t0 such that t j + t0 is
in T0 for all j = 1, . . . , n, the joint distribution of
(xt j , j = 1, 2, . . . , n) is identical to that of (xt j +t0 , j =
1, 2, . . . , n).

System measurement m A vector that contains the val-
ues of system measurements, which are assumed to be
noisy and associated with some instant of time. In this
article, the letter m is reserved for the measurement vec-
tor. In particular, mt or m(t) refers to the measurement
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vector m at time t ; mk refers to m at a discrete sampling
epoch tk . The measurement vector has two interpre-
tations: Either it represents a scalar- or vector-valued
random variable (RV) or it represents actually observed
values taken on by this RV. Notationally we do not dis-
tinguish between these two meanings of m.

System measurements Sets of noisy measurements of
the system. Each measurement set is associated with
some instant or interval of time and contains the mea-
sured values, corrupted by random noise, of all (or of a
selected subset of) observable system outputs. For ex-
ample, if the sensor tracking an aircraft is a radar, the
set of measurements obtained at the sampling epoch tk
may consist of the range and range-rate measurements
at tk .

System model (in recursive filtering) Mathematical
specification of those characteristics of a system that
pertain to the construction of a recursive filtering
scheme for the system. Suppose that at any instant
of time the state of a system is specified by a vector-
valued quantity, known as the state vector. Then the
model of such a system typically consists of (a) vector-
valued stochastic differential (or difference) equations
that specify the dynamics (evolution) of system state
with respect to time, (b) vector-valued measurement
equations that relate the system state to the noisy mea-
surements of the system, and (c) probabilistic assump-
tions that specify the distributions of three stochastic
components in the system model (the process noise
term in system dynamics equations, the measurement
noise term in measurement equations, and the initial
distribution of state) and the probabilistic interdepen-
dence among these components. Often the process
noise and the measurement noise terms additively enter
the system dynamics and the measurement equations,
respectively.

System state Complete, quantitative, typically time-
dependent description of the system at some instant of
time. What constitutes a complete description depends
on the purpose for which the information about the sys-
tem state is to be used. For example, if one is interested
in predicting into the near-future the position and the
velocity of a particle moving in a known gravitational
field, it may suffice only to specify for the particle the
current values of its position coordinates and its veloc-
ity and acceleration vectors relative to some suitable
coordinate frame.

(System) state vector s Data array, usually structured as
a vector, that contains the quantitative description of
the system state at some time point. In this article, the
letter s denotes the system state vector. In particular, st

or s(t) refers to the state vectors at time t ; sk refers to s at
a discrete sampling epoch tk . Note that the state vector

has two interpretations: Either it represents a random
vector [then it is a vector-valued random variable (RV)]
or it represents a vector of specific values taken on by
this RV. Notationally we do not distinguish between
these two meanings of s.

Unbiased estimator An estimator θ̂ of some θ from a
parameter space is said to be unbiased if E[θ̂ ] = θ .

White noise process White process {xt } such that
E[xt ] = 0 for all t .

White process Scalar- or vector-valued, wide-sense sta-
tionary stochastic process {xt } with E[xt ] = x̄ for all t
and the covariance function defined by

E
[
(xt − x̄)(xs − x̄)T

] = Cδ(t − s),

where constant C is a positive scalar or a positive def-
inite matrix and δ(·) denotes the Dirac delta function
defined by the property

δ(t) = 0 for t �= 0 and

∫ ∞

−∞
δ(t) f (t) dt = f (0)

for all functions f continuous at 0. Thus, the above
definition requires {xt } to be an uncorrelated process
with respect to t , while each xt may be a vector-valued
random variable with a nonzero covariance matrix
E[(xt − x̄)(xt − x̄)T] = C . This definition of white pro-
cess is not unique. For example, some authors replace
the wide-sense stationarity assumption with the less
restrictive “second-order process” property. In such a
case, the time-invariant fixed (scalar or matrix) C , ap-
pearing above in the definition of covariance structure,
is replaced by Ct , that is, with a fixed (i.e., nonrandom)
scalar or matrix that may vary with time. In this article,
we define (for operational convenience) a discrete-time
white process {xt } by requiring only that xt and xs be
independent random variables for any t �= s.

Wide-sense stationary process Scalar- or vector-valued,
second-order stochastic process {xt } such that (a) its
mean x̄ ≡ E[xt ] is independent of t and (b) its covari-
ance function

R(t, s) ≡ E
[
(xt − x̄)(xs − x̄)T

]
is a function of only the difference t − s, that is,
R(t, s) ≡ R0(t − s).

FILTERING of a stochastic dynamic system (i.e., a sys-
tem the dynamics of which can be adequately described
by means of a mathematical model containing stochastic
components and possessing certain well-defined proper-
ties) is a process of estimating the current state of the
system while utilizing the recent estimates as well as
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the past and current measurements (observations) of the
system. The system model used in the filtering process
describes the system dynamics by means of stochastic
differential or stochastic difference equations and con-
tains a transformation relating the system state to the
measurements. These measurements are assumed to be
noisy. The system dynamics part of the model may also be
noisy.

A Kalman filter is a recursive, unbiased, minimum-
mean-square-error (MMSE) estimator that uses linear
models for system dynamics and state-to-measurement
transformation. Both the dynamics part of the model and
the state-to-measurement transformation incorporate the
noise through additive stochastic components (terms). Re-
cursive here means that new estimates are produced iter-
atively throughout the period of observation and that only
the current and recent knowledge about the system is used
to estimate its current state.

Nonlinear filters considered in this article are estimators
of systems that can be adequately described only by means
of nonlinear models. Such filters are often constructed by
linearizing locally the system model and then applying a
Kalman filter to this model.

I. INTRODUCTION

A. Filtering

Originally the term filtering was adopted in electrical engi-
neering to refer to that aspect of signal processing which
is concerned with the removal from signal of unwanted
components such as noise. Until the advent of digital
technology, especially of digital computers, filtering was
performed exclusively by means of electrical circuits or
devices called filters. A filter was tagged as linear or non-
linear depending on the type of circuits or devices (linear
or nonlinear) from which it was built.

Presently the term filtering also refers to one of the three
basic modes of information processing: filtering or esti-
mation, smoothing, and prediction. Consider, for example,
the description of the state of a time-varying system ex-
pressed in terms of a scalar or a vector quantity s. We call
s the system state. Suppose that this system is observed
(measured) by means of noisy measurements m, which,
like s, may also be scalar- or vector-valued. (The letter
t in this article always represents the time viewed as a
variable. Specific values of t are indicated by means of a
superscript or a subscript appended to t ; in particular, t0
always denotes the initial time.) We assume that s and m
are related for all t ≥ t0 through the expression

m(t) = h[s(t)] + v(t),

where h is a function mapping s(t) into [m(t) − v(t)] and
v represents the unobservable measurement noise (zero
mean random error). For example, consider a particle mov-
ing in the xy plane. Assume that the state of the particle
at time t is adequately described by means of its position
coordinates (x, y) and the corresponding velocity compo-
nents (ẋ, ẏ). Then the state vector s ≡ s(t) can be written
as sT = (x, y, ẋ, ẏ). Suppose that the system is observed
at discrete time epochs t0, t1, t2, . . . and that at each t j one
measures the polar coordinates (r, θ ) of the particle. Thus,
the measurement equation can be written

r = (x2 + y2)1/2 +v1 and θ = arctan(y/x)+v2,

where v1 and v2 represent the noise associated with the
measurements of r and θ , respectively.

We use the terms filtering and estimation synonymously
to describe inference about the value s(t ′) of s at epoch
t ′, which utilizes all information contained in measure-
ments m(t) accumulated over the period t0 ≤ t ≤ t ′. The
term smoothing refers to recovery of the value s(t ′) of s at
time t ′(<te) from measurements m(t) accumulated over
the period t0 ≤ t ≤ te. Finally, the term prediction refers to
inference about the value s(t ′) of s at time t ′(>te) made
on the basis of measurements m(t) accumulated over the
period t0 ≤ t ≤ te. This terminology is not completely uni-
versal; some authors use the term estimation to refer col-
lectively to all three above-defined activities—filtering,
smoothing, and prediction.

In general we write ŝ t ′|te to denote the value of s(t ′) in-
ferred from the measurements m(t) accumulated over the
time period t0 ≤ t ≤ te. Thus, ŝ t ′|te represents an estimate
(or a filtered value) of s(t ′) if te = t ′, a smoothened value
of s(t ′) if te > t ′, and a predicted value of s(t ′) if te < t ′.
In the case of measurements sampled at discrete epochs
tk (k = 0, 1, 2, . . .), if t ′ = t j and te = th , we simplify this
notation by writing ŝ j |h .

B. Historical Connections

The origins of the Kalman filter can be traced back to
the ideas on least squares estimation formulated by K. F.
Gauss. (Gauss first applied the estimation method around
1795, but his first published account of it appeared only
around 1810.) He considered the problem of estimating
essentially constant parameters of planetary orbits from
noisy observations and derived a recursive estimation pro-
cedure for updating past estimates, without having to dis-
card them, on the basis of newly available measurements.
However, his recursive least-squares estimation method
did not apply to a situation in which the estimated pa-
rameters would dynamically evolve over time. The exten-
sion of recursive estimation to dynamic system models is
relatively recent.
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Between the 1930s and the 1960s three major devel-
opments made a strong impact on the state of signal
processing: (a) the advent of digital technology (digital
circuits, devices, and stored-program computers); (b) ad-
vances in mathematics and in its application to the the-
ory of linear systems, in particular, to communication
and control systems; and (c) the infusion of statistical
and probabilistic ideas into the theory of these systems.
These advances were further stimulated by the demands
of World War II and the geopolitical situation after the
war. The Wiener filter is a well-known example from that
era.

With the emergence of digital technology after World
War II, it became possible for the first time and economi-
cally attractive to process complex signals digitally in real
time. These advances in hardware had a revolutionary ef-
fect on both the theory and the implementation of filters.
Software started to replace hardware as the medium of
implementation; research shifted toward construction of
algorithms for digital computing. The fast Fourier trans-
form and the Kalman filter are examples of algorithms
that were specifically designed for or naturally lend them-
selves to implementation on a digital computer. (To be
precise, one should conceptually distinguish between an
algorithm, the function it computes or approximates, and
the applications for which it is used. Viewed as a math-
ematical function, the filters considered in this article
are stochastic estimators of the system state. However,
we often refer to them as algorithms and use expres-
sions such as “the Kalman filter algorithm,” especially
when the function itself clearly indicates a computational
procedure.)

The period between the turn of the century and the be-
ginning of World War II witnessed important advances in
the evolution of mathematics, especially in the general-
ization and abstraction of mathematical concepts, which
later had an impact on the development of estimation the-
ory and digital technology. Algebra, topology, functional
analysis, and mathematical logic are a few examples of
these developments. Two noteworthy developments from
that era that were later used in filtering theory were (a) the
formulation by A. N. Kolmogorov of the axiomatic theory
of probability, based on the new theories of measure and
(Lebesque) integration, and (b) the emergence of a gener-
alized theory of linear spaces and operators. Mathematical
measure and integration theories unified the conceptual
setup of discrete and continuous probability spaces; they
also furnished powerful tools, in the form of convergence
theorems, for dealing with sequences of random variables.
Axiomatic probability theory very soon led to a flurry of
results in the theory of stochastic processes and in the
application of this theory to practical areas such as time-
series analysis.

C. Wiener Filter

The injection of probabilistic and statistical ideas into the
filtering and control theories not only changed the view
of how a system driven by randomly perturbed signals
and observed by means of noisy measurements should be
modeled, but also provided the tools for estimating the
behavior of such systems. Wiener filtering stands as a ma-
jor milestone in this process of adoption of the statistical
approach to filtering and control. The basic problem con-
sidered in the 1940s by N. Wiener was as follows. Suppose
that {xt } and {yt }, where −∞ < t < ∞, represent two zero-
mean, jointly wide-sense stationary stochastic processes
with known joint autocovariances and cross-covariances.
More precisely stated,

yt = xt + vt , −∞ < t < t f ,

where

E
[
vtv

T
s

] = Ipδ(t − s),

E
[
xtv

T
s

] = arbitrary, t ≥ s,

= 0, t < s,

and δ(·) represents the Dirac delta function defined by the
property

δ(t) = 0 for t �= 0 and∫ ∞

−∞
δ(t) f (t) dt = f (0) (1)

for all functions f continuous at 0.
Here yt , xt , and vt represent p-valued vectors (Wiener

originally considered only the scalar-valued case with
p = 1) and Ip is a p × p identity matrix. Given sample
observations {yt (ω), t0 < t < t f } of process {yt }, the prob-
lem is to find the MMSE estimate x̂(t f + �t | t f ) of x at
time t f + �t for some fixed �t (≥0). It turns out that the
task is to find a function h(t) so that, for t0 < t f < ∞,

x̂(t f + �t) =
∫ t f

t0

h(t f − t ′)y(t ′) dt ′,

and the expectation E[(x̂(t f + �t) − x(t f + �t))2] is
minimized.

Wiener explicitly solved the above-stated estimation
problem under the assumptions of a scalar observation
process (p = 1) and a semiinfinite observation time inter-
val (t0 = −∞). He handled this problem in the frequency
domain by showing how to find a closed-form solution to
a causal transfer function, say H , of h.

Actually, the optimal filtering theory, now known as
the Wiener filter (WF), was independently and, at about
the same time, developed by both N. Wiener and A. N.
Kolmogorov. Whereas the continuous-time theory is
mainly Wiener’s work, Kolmogorov is credited with the
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development of its discrete-time version. He introduced
the notion of innovation sequence (a discrete-time white
stochastic process associated with the measurement pro-
cess, which we elaborate in our discussion of the Kalman
filter) as a technique for orthogonalizing the data and then
exploited the idea of orthogonal projections to simplify
the estimation problem. These ideas were utilized years
later to attain another view and deepen the understanding
of the Kalman filter.

The publication of Wiener’s work after World War II
triggered a flurry of research in the 1950s and early 1960s.
Attempts were made with some success to weaken (gener-
alize) the underlying mathematical assumptions and to de-
rive filtering schemes that would satisfy the requirements
of the practical applications of that time period. Conse-
quently, results were obtained extending the WF to non-
stationary processes, to vector-valued processes, and to
finite time intervals of observation. Despite these theoret-
ical successes, certain difficulties with the WF remained.
More precisely, (a) the results were mathematically com-
plicated and thus were difficult to implement while using
the signal-processing hardware of that period; (b) the WF
did not lend itself easily to recursive estimation in which
the estimates would be updated (improved) with each new
batch of data—for example, with each pass of an earth
satellite over the view of a tracking station; (c) implemen-
tational difficulties with the estimation of vector-valued
processes persisted. Furthermore, for some applications,
certain the oretical assumptions made in the formulation
of the WF (such as the wide-sense stationarity of stochas-
tic processes, the existence of spectral densities, and the
knowledge of second-order moments) fail to hold. For
example, the stochastic components of dynamic systems
typically are nonstationary. Most important, the WF, be-
ing a product of the era of analog hardware, did not lend
itself easily to the newly emerging mode of processing
on a stored-program digital computer with finite memory
and limited throughput capacity. The aerospace signal-
processing problems in the 1950s started to point to the
need for a robust algorithm for recursive estimation of
vector-valued processes in dynamic systems, with the ob-
servations made and estimates updated at discrete time
epochs. Furthermore, such an algorithm was to be imple-
mented for real-time processing on a still primitive digital
computer. The Kalman filter (KF) turned out to be an an-
swer to these needs.

D. Transition to State Variable-Based Filtering

Although the use of state variables rather than impulse re-
sponse is now largely credited to R. Kalman, P. Swerling
actually was the first person (in a 1959 journal article) to
describe an estimation scheme that essentially was identi-

cal to that presented the next year by Kalman. One reason
for crediting Kalman with what today is known as the
Kalman filter was that subsequently Kalman extended his
results considerably beyond those obtained by Swerling.

In addition to practical applications of linear filtering
theory developed in the 1960s, foundations for nonlin-
ear estimation were laid during the same period. At the
time when Kalman’s (and also R. C. Bucy’s) work was
becoming known in the West, R. L. Stratonovich in the
Soviet Union published results on his pioneering work in
nonlinear estimation, that is, recursive estimation of the
states of a nonlinear system driven by white noise. He
also looked into the linearized system model and, while
doing this, obtained the KF equations in 1960. Though
Stratonovich’s work in nonlinear estimation remained un-
known for a while in the West, some of his results were
independently replicated in early 1960s by H. J. Kushner
and W. M. Wonham.

II. LINEAR ESTIMATION PROBLEM
AND KALMAN FILTERS

The KF is a recursive, unbiased, MMSE estimator of the
state s of a dynamic system observed (i.e., measured) by
means of noisy measurements m. In general, both s and
m are vector-valued. This system is assumed to be linear
in the sense that (a) the dynamics of state s is described
in terms of linear differential or difference equations that
may be additively perturbed by a random process, called
process noise; and (b) noisy measurements m are related
to the state s by means of a linear transformation.

A. Discrete-Time Linear System Model

The system model used by Kalman is roughly of
the following form. For tk+1 = tk + �tk (�tk > 0 and
k = 0, 1, 2, . . .),

sk = 
k−1sk−1 + Bk−1uk−1 + Gk−1wk − 1,

k = 1, 2, 3, . . . , (2)

and

mk = Hksk + vk, k = 0, 1, 2, . . . . (3)

Equation (2) is called the system dynamics equation, and
Eq. (3) the measurement equation. Subscript k refers to the
kth sampling epoch tk . Then sk denotes the value of state
at time tk . {wk, k = 0, 1, 2, . . .}, or simply written {wk},
is a random sequence (a discrete-time stochastic process)
that represents the process noise, also known as the input,
driving, or plant noise of process {sk}. The {mk} repre-
sents the measurements, also known as the ouput process,
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which at time tk are perturbed by random noise vk . Ma-
trix (operator) 
k−1, which propagates the state from time
tk−1 to tk , is called the system state transition matrix. The
optional term Bk−1uk−1 represents deterministic control
inputs with {uk} being a known sequence. Matrix Hk de-
fines the state-to-measurement transformation at tk . The
subscripts attached to 
, B, G, and H indicate that these
matrices may vary over time. It is assumed that these ma-
trices are a priori known; that is, they do not depend on
estimates of s or on measurements m.

As already noted the random processes {wk}, {vk}, {sk},
and {mk} usually are vector-valued. We use ns to denote
the length of vector sk and nm to denote the lengths of vk

and mk . As a special case we may have ns = 1 or nm = 1.
Notationally, we do not distinguish between scalar-

valued and vector-valued quantities. Uppercase letters,
English or Greek, are reserved mainly for matrices (op-
erators). We also notationally do not distinguish between
the random variables (RVs), or random functions, and the
specific values taken on by these RVs. For example, de-
pending on the context, wk denotes either the RV repre-
senting the process noise at tk or a specific value taken by
this RV.

The system model given by Eqs. (2) and (3) is incom-
plete unless we specify the underlying probabilistic as-
sumptions, which are as follows.

ASSUMPTION 1D. The process noise {wk} is a zero-
mean, Gaussian (normal), white process with the covari-
ance matrix

E
[
wkw

T
j

] = Qk δk j , (4)

where Qk is a known ns × ns nonnegative definite ma-
trix and δk j denotes the Kronecker delta, that is, δk j = 1
if k = j ; otherwise, δk j = 0. (If {wk} is absent from the
system model for some or all k, then for each such k, Qk

may be thought of as being a zero matrix.)

ASSUMPTION 2D. The measurement noise {vk} is a
zero-mean, Gaussian, white process with the covariance
matrix

E
[
vkv

T
j

] = Rk δk j , (5)

where Rk denotes a known nm × nm positive definite ma-
trix, and δk j is the Kronecker delta.

ASSUMPTION 3D. For all k and j , vk and w j are
statistically independent RVs.

ASSUMPTION 4D. The value s0 of system state s at
the starting time t0 is a Gaussian RV whose mean s̄0 and
convariance matrix �0, that is,

s̄0 ≡ E[s0] and �0 ≡ E
[
(s0 − s̄0)(s0 − s̄0)T

]
(6)

are known. Furthermore, the RV s0 is statistically inde-
pendent of the the RVs wk and vk for all k ≥ 0.

In Assumptions 1D–4D, the letter “D” indicates dis-
crete time. In this article, a discrete-time white process
is defined to be a discrete-time stochastic process, say
{xi }, for which xk and x j are statistically independent RVs
whenever k �= j . Collectively, all a priori distributional as-
sumptions concerning the random components (s0, {wk},
and {vk}) of the model are referred to as the a priori proba-
bility assumptions or, simply, as the a priori probabilities.
All above-stated assumptions of Gaussian distribution,
taken together, are referred to as the Gaussianity assump-
tion. As a relaxation of the original assumptions in Wiener
filtering, Assumptions 1D–4D do not require {wk} or {vk}
to be a stationary process in the sense that matrices Qk

and Rk may be time dependent.

B. Properties

The system model defined in terms of Eqs. (2) and (3),
restricted by the distributional assumptions (1D–4D), has
the following easily verifiable properties.

a. System state sk (for k = 1, 2, . . .) can be expressed
as

sk = 
k,0s0 +
k−1∑
i=0


k,i+1(Bi ui + Giwi ),

where the multistep state transition matrix 
k, j , defined
in terms of the single-step state transition matrix 
i as

i+1,i ≡ 
i , possesses the following properties:

(i) 
k,k ≡ Is(= ns × ns identity matrix),

(ii) 
k, j = 
k−1
k−2 · · · 
 j for k > j ≥ 0, and

(iii) 
k,i = 
k, j
 j,i for all k ≥ j ≥ i ≥ 0.

b. Each sk is a multivariate Gaussian RV of length ns ;
actually, we can say more: The process {sk} is a Gaussian
random process.

c. {sk} is a Markov process, which implies that for
any 0 ≤ k1 < k2 < · · · < kn < k, the conditional probabil-
ity (density) function of sk given sk1 , sk2 , . . . , skn has the
Markov property

p
(
sk

∣∣ sk1 , sk2 , . . . , skn

) = p
(
sk

∣∣ skn

)
.

d. The measurement process {mk} is a Gaussian pro-
cess, but it is not a Markov process.

e. Processes {sk} and {mk} jointly form a Gaussian pro-
cess {(sT

k , mT
k )T}.

The preceding properties of the system model are used
in the derivation of the KF algorithm and in proving its
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optimality properties. Recursiveness of the KF algorithm
essentially is a consequence of (Markov) property c.

The first two moments of {sk} and {mk} follow directly
from properties a–e. First, consider the process {sk} and,
for k ≥ j ≥ 0, define

s̄k ≡ E[sk],

�k, j ≡ E
[
(sk − s̄k)(s j − s̄ j )

T
]
,

�k ≡ �k,k .

It follows from properties a and b that

s̄k = E[sk] = 
k,0s̄0 +
k−1∑
i = 1


k,i+1 Bi ui for k ≥ 0,

s̄k+1 = 
k s̄k + Bkuk for k ≥ 0,

�k = 
k,0�0(
k,0)T +
k−1∑
i=0

(
k,i+1Gi )Qi (
k,i+1Gi )
T,

�k+1 = 
k�k

T
k + Gk Qk GT

k ,

�k,i = 
k,i�i if k ≥ i.

The first two moments of measurement process {mk} turn
out to be

m̄k ≡ E[mk] = Hks̄k

and

E
[
(mk − m̄k)(mi − m̄i )

T
] = Hk
k,i�i H T

i + Rk δk j

for k ≥ i ≥ 0,

where δk j is the Kronecker delta defined following Eq. (4).
The above-listed expressions for the first two moments
of sk and mk remain valid even if the initial state s0 or
at least one of the noise processes, {wk} or {vk}, is non-
Gaussian.

C. Discrete-Time Filtering Problem

In this subsection as well as in the next, it is impor-
tant to view the measurements mk , the state sk , and the
state estimator as RVs but not as the values taken on by
these RVs. Let the RV Mk ≡ {m0, m1, . . . , mk} represent
the set of all measurements obtained over the time pe-
riod t0 ≤ t ≤ tk . Use ŝk| j to denote an estimator of sk that
is a function of (is conditioned on) M j . As noted ear-
lier, we have an estimation problem if k = j , a prediction
problem if k > j (in such a case, ŝk| j is more appropri-
ately called the predictor of sk), and a smoothing prob-
lem if k < j . The KF is concerned only with the first two
problems.

The optimality criterion used in the derivation of the
KF algorithm is minimization of mean square error. Thus,

the KF is an estimator ŝk| j conditioned on M j , which
minimizes

E
[
(sk − ŝk| j )

T(sk − ŝk| j )
∣∣ M j

]
for k = 0, 1, 2, . . . .

(7)
It can be shown that such ŝk| j is of the form

ŝk| j = E[sk | M j ]. (8)

In the literature, the MMSE estimator is also alternatively
known as the minimum variance (MV) or the least-squares
(LS) estimator. The latter name is technically imprecise.
Furthermore, these names are somewhat misleading be-
cause they fail to indicate that the resulting estimates de-
pend on a priori probability assumptions and that these es-
timates are conditional in nature. Also note that the MMSE
criterion can be applied to a more general system model
than one defined by Eqs. (2) and (3) and Assumptions
1D–4D. Even then the minimization of Eq. (7) implies
the conditional mean estimator of Eq. (8). However, the
resulting estimator may not be mathematically or imple-
mentationally tractable.

Given the starting conditions s̄0, �0, and the initial mea-
surements M0 (={m0}), the KF provides a procedure for
computing recursively at each tk the values of

ŝk|k − 1 = E[sk | Mk−1] and ŝk|k = E[sk | MK ] (9)

and the associated error covariance matrices

Pk|k−1 ≡ E
[
(sk − ŝk|k−1)(sk − ŝk|k−1)T

∣∣ Mk−1
]

(10a)

and

Pk|k ≡ E
[
(sk − ŝk|k)(sk − ŝk|k)T

∣∣ Mk
]
. (10b)

One noteworthy property of the resulting KF estimator is
that it is unbiased. This follows from Eq. (8):

E[sk − ŝk| j ] = E[sk] − E[E[sk | M j ]]

= E[sk] − E[sk] = 0.

The MMSE and unbiasedness properties of the KF imply
that it also is an MV estimator. Another important property
of the KF estimator is that it is linear in the sense that the
estimators ŝk|k−1 and ŝk|k are of the form

ŝk|k−1 = 
k−1ŝk−1|k−1 + Bk−1uk−1

and

ŝk|k = Kk(mk − Hkŝk|k − 1) + ŝk|k − 1,

where Kk is the so-called Kalman gain matrix.
What happens if the Gaussianity assumptions for {wk},

{vk}, or s0 are dropped? Then the KF algorithm still pro-
vides the best and unbiased estimator among all linear
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estimators of the state. It is best in the sense that it pro-
duces the smallest mean square error among all linear
estimators of the state. However, in such a situation there
may exist a nonlinear filter which, in the MMSE sense, is
better than the KF.

D. Alternative Approaches to Discrete-Time
Linear Filtering

The MMSE optimality criterion [Eq. (7)] is not the only
one used in recursive estimation. The LS principle of resid-
ual minimization, the maximum-likelihood (ML) princi-
ple, and various optimality principles used in conjunction
with the Bayes method are examples of other possibili-
ties. In the case of a linear estimation problem [i.e., for
a system model of the form of Eqs. (2) and (3)], if the
initial conditions and the noise processes have Gaussian
distributions, as is implied by Assumptions 1D–4D, the
methods of LS (with appropriate weights), ML, and Bayes
(with a quadratic performance criterion) yield estimators
of the same (KF) type.

The weighted LS method, which can be expressed in
recursive form for sampled measurements [Eq. (3)], is
the simplest of the three above-mentioned methods be-
cause it does not require making any explicit assump-
tions, with one exception, about the distribution of RVs
involved in the estimation process. The exception con-
cerns the assumption of a priori knowledge of the process
and measurement noise covariance matrices, the inverses
of which are used as weights in the LS estimation proce-
dure. The optimality criterion at time tk is the minimiza-
tion of the sum of squares of the weighted residuals (i.e.,
the weighted differences between the measurements and
their values predicted by the model) accumulated over the
epochs t0, t1, . . . , tk . As already noted, this approach un-
der the Gaussianity assumptions for noise processes leads
to an estimator of KF type.

The LS method (recursively or nonrecursively formu-
lated, weighted or unweighted) has been widely used since
Gauss to estimate the parameters of static systems. A static
system may be thought of as a special case of the system
model [Eqs. (2) and (3)] in which 
k is an ns × ns iden-
tity matrix, and Bk and Gk are zero matrices, that is, the
system is time invariant and so Eq. (2) is not needed to de-
scribe the system dynamics. The weighted or unweighted
LS method, usually expressed in nonrecursive form, con-
stitutes the backbone of regression analysis and currently
is one of the principal methods in statistical inference.

The ML method has also been used for years in statis-
tical inference as a point estimation technique. It is based
on viewing the probability (density) function ps(Mk)
of measurements Mk = {m0, m1, . . . , mk} as a function
λs ≡ ps(Mk) of the unknown parameters s (in our case, s

represents the unknown system state) on which the form of
this function depends. Then, given measurements Mk , the
ML estimate of s is that value, say s∗, of s that maximizes
λs . This principle has been extended to the construction
of recursive estimators for linear dynamic systems of the
type defined by Eqs. (2) and (3). As already noted, under
Assumptions 1D–4D, the resulting recursive estimator is
identical to the KF.

In engineering literature, an estimator derived from the
Bayes conditional probability inversion formula

p(x | y) = p(x, y)/p(y)

= p(y | x)p(x)/
∫

p(y | x)p(x) dx (11)

by applying some optimality criterion is often, although
somewhat imprecisely, called the Bayes estimator of x .
More precisely, the resulting estimator is a Bayes estimator
only if, in addition, the p(x) appearing on the right-hand
side of Eq. (11) is a Bayes prior (also known as Bayes a
priori) probability of x . The term prior here means that
p(x) is postulated prior to observing the value of y. In
estimation, y and x would represent the measurements and
the unknown parameters (state), respectively. Hence, in
the problems considered here, y and x would be replaced
by variously subscripted M (or m) and s, respectively.
The left-hand side of the Bayes inversion formula would
then give the posterior (also known as Bayes a posteriori)
probability of unknown parameters (state) s conditioned
on measurements M (or m).

Using Eq. (11) and the RV independence conditions
implied by Assumptions 1D–4D, and also noting that

Mk ≡ {m0, m1, . . . , mk−1, mk} = {Mk−1, mk},
one can derive the so-called Bayes probability recursion
formulas,

p(sk | Mk) = p(sk | Mk−1)p(mk | sk)/p(mk | Mk−1)
(12a)

and

p(sk | Mk−1) =
∫

p(sk | sk−1)p(sk−1 | Mk−1) dsk−1,

(12b)
with the denominator in Eq. (12a) expressible as

p(mk | Mk−1) =
∫

p(mk | sk)p(sk | Mk−1) dsk . (12c)

Equations (12a) and (12b) recursively define the mea-
surement updating and the time propagation (also called
time updating) of probability densities for k = 0, 1, . . . .

To get the recursive process started at t0, one must inter-
pret correctly the meaning of p(s0 | M−1). Since M−1 con-
stitutes an empty set (i.e., no measurements), p(s0 | M−1)
represents the Bayes prior p(s0). As an example, this prior
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for a KF is specified in terms of the first two moments, s̄0

and �0, of the Gaussian distribution of state s at the ini-
tial time t0. It is worth noting that, in Eqs. (12a)–(12c),
p(sk | sk−1) is obtained from the state time-propagation
equations (2) with the assistance of the a priori known
probability (density) p(wk−1) of process noise wk−1 at
tk−1. Similarly, p(mk | sk) is determined from the mea-
surement equations (3) and with the assistance of the a
priori known probability (density) p(vk) of measurement
noise vk at tk . Knowledge of all these probability den-
sities and p(s0) recursively determines p(sk | Mk) for all
k = 0, 1, . . . .

Using the recursive probability equations (12a)–(12c)
in conjunction with various optimality criteria produces
a variety of recursive estimation schemes. However, due
mainly to mathematical and implementational considera-
tions, the MMSE criterion, equivalent to Eq. (7) and yield-
ing an estimator of the type in Eq. (8), is the most widely
used criterion at present. As already noted, this criterion
is applied to derive the KF equations.

E. Discrete-Time Kalman Filter

Given the discrete-time linear system model (including
the distributional Assumptions 1D–4D) and the defin-
ing relation of Eq. (8) there are several ways in which
the discrete-time KF algorithm can be derived. One tech-
nique, which is mathematically straightforward although
tedious in detail, is based on the use of recursive probabil-
ity equations (12a)–(12c) and the repeated application of
conditional multivariate Gaussian distribution to express
the probability densities p(sk | Mk−1) and p(sk | Mk for all
k = 0, 1, . . . in terms of mk, ŝk−1|k−1, Pk−1|k−1, the matri-
ces appearing in the system model, and the covariances
of noise processes {wk} and {vk}. Due to the regenerative
properties of Gaussian distribution, densities p(sk | Mk−1)
and p(sk | Mk) remain Gaussian for all k ≥ 0. By Eqs. (9),
(10a), and (10b), the first two moments of p(sk | Mk−1)
and p(sk | Mk) are ŝk|k−1 with Pk|k−1 and ŝk|k with Pk|k , re-
spectively. Hence, the mathematical expressions for these
quantities, giving the recursive estimation equations (13)–
(18), are explicitly obtainable from the mathematical ex-
pressions for p(sk | Mk−1) and p(sk | Mk).

Another technique for deriving the KF algorithm uses
the notion of innovations, defined as

rk = mk − E[mk | mk−1] = mk − Hkŝk|k−1.

In the innovation process {rk}, each rk constitutes that
part of the measurement at tk that contains new informa-
tion not provided by m0, m1, . . . , mk−1. Innovations {rk}
constitute a zero-mean white process. It follows that rk

represents the error in the orthogonal projection of sk on
the subspace generated by Mk = {m0, m1, . . . , mk}. This

projection, being a linear combination of the vectors in
Mk , defines a linear MMSE estimator of s. Using this no-
tion of orthogonality, the whiteness of {rk}, and the system
model [Eqs. (2) and (3)], especially the Markov property
of state propagation, it is then rather simple to derive the
KF recursion expressions.

Using the preceding system model and probabilistic as-
sumptions, one can state the KF algorithm for a discrete-
time linear system as follows.

Discrete-Time Kalman Filter Algorithm. At each
tk = tk−1 + �tk−1(k = 0, 1, 2, . . .), proceed as follows.

a. If k = 0 (i.e., at the initial time t0), initialize the esti-
mation process by setting

ŝ0|−1 = ŝ0 and P0|−1 = �0, (13)

where s̄0 and �0 are defined by Eq. (6).
b. If k ≥ 1, propagate the estimates of system state vec-

tor s and state error covariance matrix P from tk−1 to tk
by computing

ŝk|k−1 = 
k−1ŝk−1|k−1 + Bk−1uk−1 (14)

and

Pk|k−1 = 
k−1 Pk−1|k−1

T
k−1 + Gk−1 Qk−1GT

k−1, (15)

respectively.
c. Use measurements mk = Hk Sk + vk to update the

propagated estimate of s by computing the Kalman gain
matrix

Kk = Pk|k−1 H T
k

[
Hk Pk|k−1 H T

k + Rk
]−1

(16)

and the update of the state estimate

ŝk|k = ŝk|k−1 + Kk[mk − Hkŝk|k−1]. (17)

Next, update the estimate P of state error covariance ma-
trix by computing

Pk|k = [I − Kk Hk]Pk|k−1. (18)

The preceding algorithm assumes that one knows the val-
ues of s̄0 and �0 and also knows how to compute for all
k the matrices 
k , Bk , Rk , Qk , and Hk . In the literature,
ŝk|k is often called the measurement update of ŝk|k−1 and
ŝk+1|k the time update of ŝk|k .

If the state estimate update equation (17) is rewritten

ŝk|k = Kkmk + [I − Kk Hk]ŝk|k−1, (17′)

an equivalent expression for Pk|k is

Pk|k = Kk Rk K T
k + [I − Kk Hk]Pk|k−1[I − Kk Hk]T, (18′)

which is known as the Joseph form (named after P. D.
Joseph) of error covariance update. Since the right-hand
side of Eq. (18′) is the sum of two symmetric matrices (the
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first a nonnegative definite, the second a positive definite
matrix), the state error covariance update in this form nu-
merically is more stable, although computationally more
expensive, than the same operation in the short form
[Eq. (18)].

EXAMPLE 1. FILTERING OF AN AUTOREGRES-
SIVE PROCESS. This example illustrates the application
of the discrete-time KF to a simple linear system in which
both the state s and the measurement m are scalars. The
system model is of the form

sk = φsk −1 + wk and mk = hsk + vk ,

where φ and h are scalar multipliers, that is, ns = nm = 1.
Both noise processes, {wk } and {vk }, and the initial condi-
tions are assumed to satisfy Assumptions 1D–4D. In the
present case, the process noise covariance matrices Q and
R are 1 × 1; that is, Q and R represent the time-invariant
variances of wk and vk , respectively, and are scalar
quantities.

The KF equations now reduce to the following
procedure.

a. If k = 0, initialize the estimation process by specify-
ing s0 and P0|−1.

b. If k ≥ 1, propagate the estimates by computing

ŝk |k −1 = φŝk −1|k −1 ,

Pk |k −1 = φ2 Pk −1|k −1 + Q .

c. For all k ≥ 0, update the estimates by computing

Kk = h Pk |k −1
/[

h2 Pk |k −1 + R 
]
,

ŝk |k = ŝk |k −1 + Kk[mk − hŝk |k −1],

Pk |k = K 2
k R + [1 − hKk]2 Pk |k −1 .

Figure 1 summarizes the results of a sample simula-
tion of this KF. Figure 1a shows the generated time his-
tory of the true system state s. Figure 1b summarizes the
time history of estimation error, which, at tk , is defined as
ek = ŝk |k − sk . The values of parameters of the true system
model are

φ = 1.02, h = 100.0, Q = 4.0, and R = 1.0.

The values of the corresponding parameters in the system
model assumed by the KF are equal in value to those of
the true model. The true initial value of state is s0 = 5.0.
The initialization values used by the KF are s̄0 = 4.0 and
P0|−1 = 25.0.

Since, according to the true system model, the measure-
ments are very precise compared with the level of process
noise (i.e., the variance of m/h is R/h2 = 0.0001 � Q)

and the system model assumed in the KF agrees with the
true model, the filter practically converges at t0 after the
first measurement update. One can easily see this by ob-
serving in Fig. 1b that (for all k ≥ 0) the points ±(Pk|k)1/2

lie on two horizontal lines that are symmetrically located
with respect to the time axis.

In many respects, the above-described filtering prob-
lem for a random walk is trivial. Its only purpose was to
illustrate the KF computations for a very simple (scalar)
case. The following “reversion” of this problem has prac-
tical applications in time-series analysis and is known as
a system identification problem. Suppose that the value
of scalar multiplier φ is continuously undergoing random
perturbations and so is not completely known. Assume
that the dynamics of φ is adequately described by means
of an equation of the form

φk = φk−1 + w′
k−1

and that we are now directly observing the state s via
measurement equation of the form

sk = sk−1φk + v′
k,

which essentially is the state transition equation of the
original problem with a modified noise term. Making
the usual probabilistic assumptions for the noise pro-
cesses {w′

k} and {v′
k} and the initial distribution of φ

completes a system model for the KF of the system
identification problem (estimation of the unknown and
possibly time-varying values of parameters in the system
model).

F. Continuous-Time Kalman Filter

A year after the publication of Kalman’s seminal work on
discrete-time filtering, R. Bucy and R. Kalman laid the
foundation for continuous-time KFs. Although presently
the KFs, probably without exception, are implemented as
computer programs for processing on a digital computer,
strong interest in the continuous-time KFs persists. Often
the estimation problem for a stochastic dynamic system
can be precisely formulated only in terms of stochastic
differential equations. Thus, the continuous-time KF is an
important modeling tool to a designer.

The system model for a continuous-time KF is summa-
rized next. (As much as possible, the same notation as in
the discrete-time model is used here. Also, to simplify the
discussion of the continuous-time KF, the term represent-
ing the control inputs has been deleted from the system
dynamics model; the presence of such a term would affect
in an a priori known way only the mean value of the state,
not its covariances.) The dynamics of the system state, at
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FIGURE 1 Results of a simulation run of the Kalman filter, Example 1. (a) Generated time history of the true system
state and (b) time history of estimation error e (multiplied by 103).

least formally, is described in the continuous-time case by
a stochastic differential equation of the form

dst/dt = Ft st + G(c)twt , t ≥ t0. (19)

The measurement equation is written

mt = Ht st + vt , t ≥ t0. (20)

The time argument t presently ranges over a contin-
uum (an interval) of real numbers and is, as indicated,
finitely bounded from below. Thus, {wt }, {st }, {vt }, and
{mt } are now continuous-time stochastic processes with
t ≥ t0. With regard to vector and matrix sizes, the assump-
tions made and the notationused earlier continue to hold.

The subscript “c” distinguishes a continuous-time entity
from its discrete-time counterpart. The probabilistic as-
sumptions about the model specified by Eqs. (19) and (20)
are similar to those stated for the discrete-time version of
the KF.

ASSUMPTION 1C. The process noise {wt } is a
continuous-time, zero-mean, Gaussian white process with
the covariance structure of the form

E
[
wtw

T
t ′
] = Q(c)t δ(t − t ′), (21)

where Q(c)t is a known ns × ns nonnegative definite matrix
(which may optionally be a zero matrix) and δ(·) denotes
the Dirac delta function defined by Eq. (1).
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ASSUMPTION 2C. The measurement noise {vt } is a
continuous-time, zero-mean, Gaussian white process with

E
[
vtv

T
t ′
] = R(c)t δ(t − t ′), (22)

where R(c)t is a known nm × nm positive definite matrix
and δ(·) represents the Dirac delta function defined by
Eq. (1).

ASSUMPTION 3C. For all t and t ′ ≥ t0, RVs wt and vt ′

are independently distributed RVs.

ASSUMPTION 4C. The value s0 of s at t0 is distributed
as a Gaussian RV whose mean and covariance matrix, that
is,

s̄0 ≡ E[s0]

and

�0 ≡ E
[
(s0 − s̄0)(s0 − s̄0)T

]
, (23)

are known. Furthermore, the RV s0 is statistically inde-
pendent of the RVs wt and vt ′ for all t and t ′ ≥ t0.

Mathematically the stochastic differential equation (19)
is not meaningful because of the white noise assumption
(Assumption 1C) for the continuous-time process {wt }. It
is well known, however, that white Gaussian noise is the
formal derivative of a Brownian motion process {βt }, with
t ≥ t0, which has the property that the increments{

βt j − βt j−1

}
, j ≥ 1,

are independent Gaussian RVs for any ordered set
t0 < t1 < t2 < · · · < tn of epochs. Thus, the differential
equation (19) can be viewed as being equivalent to

dst = (Ft st ) dt + (G(c)t) dβt , t ≥ t0, (24)

and so to

st − st0 =
∫ t

t0

Fsτ dτ +
∫ t

t0

G(c)τ dβτ . (25)

On the right-hand side of Eq. (25), the first integral is
ordinary (Riemann or Lebesque), but the second is an Itô
stochastic integral. (Integrals of this type were defined in
the 1940s by the Japanese mathematician K. Itô.)

Replacement of Eq. (19) by Eq. (24) requires the
corresponding modification of Assumptions 1C–4C. In
these assumptions, {wt } must be replaced by {dβt }, where
{βt , t ≥ t0} is a Brownian motion process and

E
[
dβt dβT

t ′
] = Q(c)δ(t − t ′). (21′)

The modified assumption are referred to as Assumptions
1C′–4C′.

Rigorous treatment of continuous-time stochastic pro-
cesses and, in particular, of stochastic differential equa-
tions requires considerably more mathematical sophis-
tication than that of discrete-time stochastic processes
(sequences of RVs). Consequently, derivation of a

continuous-time KF is technically more difficult than
derivation of its discrete-time counterpart. Except for not-
ing that mathematically it is more rigorous to use Eq. (24)
in place of Eq. (19), we do not dwell any longer on these
theoretical issues and proceed to an intuitive definition of
a continuous-time KF.

According to whether the measurements are incorpo-
rated continuously over the time or are just sampled at dis-
crete time points, one could distinguish two variations of
continuous-time KF: a continuous-dynamics, continuous-
measurement KF and a continuous-dynamics, discrete-
measurement KF. Since the first is of little interest in
practice, we do not consider it in this chapter. Hence, from
now on the term continuous-time KF implies a continuous-
dynamics, discrete-measurement KF.

Continuous-Time (Discrete-Measurement) Kalman
Filter Algorithm. For the system model given by Eqs.
(24) and (20) and the modified Assumptions 1C′–4C′, the
evolution of the conditional mean ŝ t |t and the state error
covariance matrix Pt |t , during an interval tk ≥ t > tk+1 be-
tween two consecutive measurement sampling epochs tk
and tk+1, satisfies the differential equations

dŝt |t/dt = Ft ŝt |t

and

d Pt |t/dt = Ft Pt |t + Pt |t FT
t + G(c)t Qt G

T
(c)t .

At a measurement epoch tk (say = t), the estimates of the
state vector and state error covariance matrix are

ŝ t |t = ŝ t |t− + Kt [mt − Ht ŝt |t−] (26)

and

Pt |t = Pt |t− − Kt Ht Pt |t−, (27)

respectively, where

Kt = Pt |t− H T
t

[
Ht Pt |t− H T

t + R(c)t
]−1

. (28)

Above, ŝ t |t− (or Pt |t−) denotes the value of ŝ (or of P)
measurement-updated at tk−1 and then time-propagated
up to t = tk . At the initial time t = t0 the solution process
is started while using

s̄0 = E[s0]

and

P0|0− = �0 = E
[
(s0 − s̄0)(s0 − s̄0)T

]
as the initial conditions, which are assumed to be known.

As in the discrete-time KF, the matrices Ft , Q(c)t , and
R(c)t are also assumed to be known, but they differ from
the corresponding matrices of a discrete-time model even
for the same dynamic system.
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To handle (on a computer) the integration of differ-
ential equations implied by the propagation forward in
time of estimates, a common approach is (a) to con-
struct a discrete-time system model corresponding to
the continuous-time system model defined by Eqs. (24)
and (20) and (b) then to apply the discrete-time KF
algorithm to this discrete-time system model. Heuristi-
cally this can be done by considering a time interval
tk−1 ≤ t ≤ tk−1 +�tk−1 = tk and replacing dst , dt , and dβt

in Eq. (24) with sk − sk−1, �tk−1, and βk − βk−1, respec-
tively, which yields

sk � 
k−1sk−1 + Gk−1wk

if, for all k = 0, 1, 2, . . . , one defines 
k ≡ I + �tk Fk,

Gk ≡ �tk G(c)k, Qk ≡ �tk Q(c)k , and wk ≡ βk − βk−1.

III. MODIFICATIONS OF KALMAN FILTERS
AND NONLINEAR FILTERING

A. Filter Divergence

Discrepancies between the actual performance (the actual
quality of estimates) of a filter and its apparent perfor-
mance as indicated by the estimated state error covariance
matrices Pk|k−1 and Pk|k are called filter divergence. One
variation of this phenomenon, known as apparent diver-
gence, occurs when the actual estimation errors of state,
although they remain bounded, become by at least an order
of magnitude larger than indicated by P matrices. In such
a case, performance of the KF can often be adequately
improved by means of small parametric or structural ad-
justments in the linear system model, by changing the
characterization of noise (R and Q matrices) or the ini-
tialization values s0 and P0 of estimates, or by switching
to more accurate numerical procedures. Collectively such
improvements are referred to as filter turning. What is im-
portant to note is that apparent divergence usually does
not require changing from the linear system model or the
basic KF algorithm.

A more serious situation, called true divergence, arises
when the state error covariance estimates Pk|k−1 and Pk|k
remain bounded, while the actual errors in the state esti-
mates start growing without bounds. True divergence may
be caused by the numerical instability of filter algorithms
or by modeling flaws. For example, certain critical factors
or state components have not been included in the model,
the system dynamics equation or the measurement-to-state
transformation is incorrectly defined, or the noise model
is structurally or distributionally incorrect. Numerical in-
stability can usually be removed by resorting to better
numerical algorithms. (This problem is briefly discussed
in Section IV.) Modeling flaws can be detected by means

of simulation in which the filter constructed on the basis
of the assumed (say, linear) model is tested against a sce-
nario generated while using a true (say, nonlinear) model.
Model inadequacies arising from inherent nonlinearities
in the modeled system, if they are not too strong, can often
be compensated for by the techniques that do not require
complete abandonment of the KF algorithm. One may be
able to linearize locally the system model and then use
an extended form of the KF algorithm. Otherwise, if they
cannot be removed by such techniques, one must resort
to nonlinear filtering, which is characterized by the use of
nonlinear models for system dynamics and (or) measure-
ments. By comparison with the KF, nonlinear filtering is
considerably more difficult to attain both theoretically and
practically.

B. Filter Tuning and Modifications

Certain deviations of the assumed linear system model
or noise from the actual behavior of the modeled system
(from its true model), leading to apparent divergence, can
often be compensated for by means of a combination of the
following techniques: (a) modifying, typically raising, the
assumed levels of process or measurement noise through
appropriate changes in noise covariance matrices Q and
R; (b) bounding from below the main-diagonal elements
of state error covariance matrix P and then appropriately
adjusting the off-diagonal elements; (c) introducing the
so-called fading (finite) memory filtering or overweight-
ing the most recent measurements; (d) whitening (decor-
relating) the process or measurement noise, also removing
singularity or near-singularity from matrix R; (e) adding
more states; that is, increasing the length of the state vec-
tor. The foregoing list of possibly useful measures is by
no means complete.

Raising the level of process noise by an appropriate
modification of matrix Q often compensates for small non-
linearities and factors, such as states, unaccounted for in
the assumed model. Raising or lowering the assumed level
of measurement noise by modifying matrix R forces the
filter to decrease or increase, respectively, the dependence
on measurements.

Bounding from below the estimates of state error vari-
ances (the main-diagonal elements of matrix Pk|k) and
then correspondingly adjusting the estimated covariances
(the remaining elements of Pk|k) usually increases the nu-
merical stability of the estimation process and protects
the filter from blowing up. For example, the estimation
process can easily be destabilized by the cumulative ef-
fect of rounding errors that destroys the positive definite-
ness or symmetry of matrix P . Also, as the estimation
process progresses, the elements of matrix P tend to be-
come smaller; consequently, the filter starts to depend too
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much on the assumed model and to little on the incoming
measurements.

Fading memory techniques and the overweighting of
the most recent measurements (discussed in Maybeck’s
Volume 2) help in situations where, for example, the true
system model changes over time, perhaps in a manner
dependent on the system state. In such a case we may want
to suppress the effects of more remotely past estimates on
the current estimates.

Next we briefly examine how to handle several situa-
tions that arise when some of the distributional assump-
tions 1D–4D (or 1C–4C) are violated. To compensate for
nonwhiteness (autocorrelation over time) in the measure-
ment noise {vk} or in the process noise {wk} one can resort,
at the cost of increased computing load, to one of several
known “whitening” techniques. For example, if the mea-
surement noise {vk} is nonwhite so that the covariance
matrix E[v jv

T
k ] is not zero for some j �= k, one can con-

ceptually model the process {vk} as a finite-dimensional
system driven by white noise. This can be done only by
adding new states to the overall system model and, thereby,
increasing the processing cost. On the other hand, it saves
the optimality properties of the filter.

A different situation arises when both noise processes
{wk} and {vk} are white but the measurement noise covari-
ance matrix Rk is nonnegative definite with nullity q (has
q zero eigenvalues) for all k. Then (as shown by Anderson
and Moore) q functionals of the state are exactly known
and the length of the state vector can be shortened by q. If
the covariance matrices are nonsingular, one can construct
a suboptimal filter of reduced dimension.

Another pathological situation, violating the distribu-
tional Assumption 3D or 3C, comes up in feedback con-
trol applications when the process and measurement noise
processes {wk} and {vk} are correlated or even identical.
This problem can be solved by modifying the KF covari-
ance processing equations (15), (16), and (18).

Filter tuning and stabilization techniques mentioned in
the preceding paragraphs are critically important in ap-
plications work, that is, in designing filters for real-life
situations and then making them work properly. Actually,
every such development requires at least some tuning.

C. Nonlinear System Model

We now generalize the discrete-time system model defined
in terms of Eqs. (2) and (3) to

sk = fk−1(sk−1, uk−1) + Gk−1(sk−1)wk−1 (29)

and

mk = hk(sk) + vk . (30)

We do it by replacing the linear terms 
k−1sk−1 and
Bk−1uk−1 of the linear dynamics model by a function
fk(·, ·), allowing the process noise-to-state transformation
matrix Gk−1 to depend on system state, and generalizing
the state-to-measurement transformation matrix Hk to a
function hk(·). The subscripts attached to f , G, and h
emphasize that these functions may be of time-dependent
form. Furthermore, f may be nonlinear in s and possibly
in u; h may be nonlinear in s. The same distributional
assumptions as made for the linear discrete-time model
(Assumptions 1D–4D) are used for the nonlinear model
defined by Eqs. (29) and (30). Now as before, the noise is
included in the model through additive terms; also, func-
tions f and h in general are vector-valued so that their
dimensions, respectively, agree with the lengths of vec-
tors s and m. More general nonlinear system models are
possible.

One could similarly define a continuous-time nonlinear
system model, but we do not do it in this chapter.

D. General Approach to Nonlinear Filtering

Nearly all presently known approaches to nonlinear filter-
ing are based, in one way or another, on the application
of Bayes recursive probability equations (12a)–(12c) to a
nonlinear system model, say to one of the form defined
by Eqs. (29) and (30). The underlying problem is then to
estimate from measurements Mk = {m0, m1, . . . , mk} the
evolution of the posterior probability densities p(sk | Mk)
over tk for k = 0, 1, . . . . Knowing p(sk | Mk) at each sam-
pling epoch tk enables one to apply the optimization crite-
rion of a desired type (such as the MMSE, the maximum
a posteriori, or one of some other type) to obtain the cor-
responding estimates of state.

When the low-order moments or some other statistics
are sufficient in the sense that they define or adequately
approximate p(sk | Mk), optimal or nearly optimal filter-
ing schemes can be derived for certain limited classes of
problems. Typically, this can be done when a combination
of the following conditions exists: (a) the nonlinearities in
Eqs. (29) and (30) locally can be well approximated at each
tk by a linearized model (e.g., by a Taylor series approxi-
mation to the original model); (b) an adequate approxima-
tion to the state trajectory (known as a nominal state trajec-
tory) is a priori available; (c) the actual noise levels are low
and both noise processes are Gaussian. Several versions
of the linearized extensions of the KF discussed below, are
the most commonly used representatives of such nonlin-
ear estimators. In general, although the manner in which
p(sk | Mk) evolves can be described by means of difference
(in discrete-time case) or differential (in continuous-time
case) equations, these equations usually are too complex
to be solved for practical implementation analytically in
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closed form, or even numerically. This is especially true
for real-time filter implementations. Because of these dif-
ficulties, much of the research thrust has been in the direc-
tion of developing tractable approximations to p(sk | Mk).

E. Linearized Extensions of Kalman Filters

If the functions f and h are sufficiently smooth and can
be locally expanded in Taylor series with respect to the
estimates or with respect to an a priori generated nominal
time history of system states, then one can apply the KF
algorithm to the linearized system model

sk = Fk−1sk−1 + Gk−1wk−1 (31)

and

mk = Hksk + vk, (32)

with the matrices F , G, and H defined in terms of their
(i, j)th elements as

Fk ≡ Fk[s0k, uk] ≡ ((Fi, j)t ))t=tk

≡ ((
δ f(i)t (s, u)

/
δs( j)t

))
s=s0k ,u=uk ,t=tk

, (33)

Gk ≡ Gk(s0k) ≡ ((
G(i, j)t (s)

))
s=s0k ,t=tk

, (34)

and

Hk ≡ Hk[s0k] ≡ ((
δh(i)t (s)

/
δs( j)

))
s=s0k ,t=tk

. (35)

Here we introduce the notational convention X =
((X (i, j)t )) to denote matrix X at time t in terms of its
(i, j)th element X (i, j)t . For example, the right-hand side
of Eq. (33) indicates that the (i, j)th element of matrix Fk

is the partial derivative at t = tk of the i th component of
fk with respect to the j th component of s; the subscript
expression to the right of double parentheses specifies at
what point these partial derivatives are to be evaluated. In
(33), this point is

s = s0k, u = uk, t = tk,

where: s = s0k indicates the value of the nominal state
vector s0 at t = tk ; u = uk is the value of control u at t = tk .

The two most common choices for the nominal state tra-
jectory {s0k} are as follows: (a) sok ≡ ŝk|k , or ŝk|k−1, which
yields the extended Kalman filter (EKF), or (b) {s0k} is a
priori set to be a nominal state trajectory, which gives the
so-called linearized Kalman filter (LKF). As an example,
we next state in detail the algorithm for the discrete-time
EKF, which is similar in form to the discrete-time KF al-
gorithm defined in terms of Eqs. (13)–(18).

Discrete-Time Extended Kalman Filter Algorithm.
At each tk = tk−1 + �tk−1 (k = 0, 1, 2, . . .) proceed as
follows.

a. If k = 0 (i.e., at the initial time t0), initialize the esti-
mation process by setting

ŝ0|−1 = s̄0 and P0|−1 = �0, (36)

where s̄0 and �0 are as defined by Eq. (6).
b. If k ≥ 1, propagate the estimates of system state vec-

tor s and the state error covariance matrix P from tk−1 to
tk by computing

ŝk|k−1 = fk−1(ŝk−1|k−1, uk−1) (37)

and

Pk|k−1 = Fk−1 Pk−1|k−1 FT
k−1 + Gk−1 Qk−1GT

k−1, (38)

respectively.
c. To update the estimates, first compute

Hk = Hk[ŝk|k−1] (39)

according to Eq. (35) and evaluate the Kalman gain matrix

Kk = Pk|k−1 H T
k

[
Hk Pk|k−1 H T

k + Rk
]−1

. (40)

Next use the current measurements mk to update the esti-
mate of s by means of

ŝk|k = ŝk|k−1 + Kk[mk − hk(ŝk|k−1)]. (41)

Then update the estimate of state error covariance matrix
P by computing

Pk|k = [I − Kk Hk]Pk|k−1. (42)

d. Finally, compute the matrix

Fk ≡ Fk[ŝk|k, uk] (43)

according to Eq. (33) and evaluate the process noise-to-
state transformation matrix

Gk ≡ Gk[ŝk|k]. (44)

The above-stated discrete-time EKF reduces to the stan-
dard discrete-time KF with its all-optimality properties if
the true system model is linear, that is, if the true model
is defined by Eqs. (2) and (3). When the EKF algorithm is
applied to a nonlinear system whose true model is of the
form given by Eqs. (29) and (30), the resulting estimator
is no longer linear or optimal, which makes it more prone
to various problems. For example, if the time step �t used
is too large to accommodate nonlinearities in system dy-
namics or in measurements, the estimates may be biased
or even the entire estimation process may be destabilized
by filter divergence. Thus, the tuning and the performance
validation of an EKF or an LKF typically require con-
siderably more work (simulation and analysis) than per-
forming the same tasks for a KF applied to a truly linear
model.

In addition to the LKF and the EKF several other types
of linearized extensions of the KF are known. One class
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of variations can be derived by including more than the
first-order term in the Taylor series expansions of func-
tions fk(sk, uk) or hk(sk). For example, the estimation
algorithm obtained by including the first- and second-
order terms is known as the second-order extended (or
linearized) KF. Another variation can be constructed by
using several, say I , iterations to perform the measure-
ment update of state with each set of measurements mk .
In such a scheme, step c of the discrete-time EKF algo-
rithm is repeated I times. One enters the i th pass of this
step with ŝk|k(i − 1), then computes ŝk|k(i) and all other
quantities dependent on ŝk|k(i). The first iteration is en-
tered by defining ŝk|k(0) ≡ ŝk|k−1. At the end of the I th
iteration, one defines ŝk|k ≡ ŝk|k(I ).

Although the measures described in the foregoing two
paragraphs often stabilize the EKF and produce satisfac-
tory results, they fail for some nonlinear or non-Gaussian
systems. The cause of such failures is usually ascribed to
two kinds of approximations used in the construction of
EKF: (a) the linearization of system equations relative to
some reference values and (b) the assumption of Gaus-
sianity for all a priori distributions in the system model.
Approximations of the second kind enforce the retention
of a false illusion that the probability densities p(sk | Mk)
continue to be Gaussian for all k. For example, if the true
conditional distribution of state is multimodal [i.e., den-
sities p(sk | Mk) have multiple peaks], the EKF functions
more as a maximum likelihood than as an MMSE estima-
tor and the estimated mean may end up following one (if
any) of the peaks.

EXAMPLE 2. ESTIMATING THE MOTION AND
THE DRAG CHARACTERISTICS OF A BALLISTIC
PROJECTILE ENTERING THE ATMOSPHERE. Con-
sider the problem of estimating the motion and the drag
(air resistance) characteristics of a ballistic projectile (BP).
To simplify the problem without robbing from it its illus-
trative value, assume that the BP is aimed at the North
Pole and is approaching the earth along the polar axis. We
denote this axis the Y axis of the one-dimensional coordi-
nate system whose origin is assumed to coincide with the
North Pole and whose positive direction points “upward”
from the pole.

Notation. In this example, the individual components
of a vector are referred to by means of parenthesized sub-
scripts. For example, if z is a column vector of length 2, we
write z = [z(1), z(2)]T. In particular, to refer to the values
of these components at time t , we write either [z(1)t , z(2)t ]
or [z(1), z(2)]t . If t represents a sampling epoch, say tk , we
write either [z(1)k, z(2)k] or [z(1), z(2)]k . Another notational
convention adopted here is the use of dots above a symbol
to denote the derivatives with respect to time of the quan-
tity represented by the symbol. For example, ẏk and ÿk ,
respectively, denote the values of dy/dt and d2 y/dt2 at

time tk . In addition, we use “hats” over lowercase letters
to denote unit vectors. For example, v̂ denotes the unit
vector in the direction of velocity vector v.

Physical Model. We model the earth as a perfect sphere
of radius

RE = 6,378,135 (m).

For the present problem, the gravitational field at any point
P on the polar (Y ) axis, y meters above sea level, is
approximated by

−g(y)ŷ = −(g0)(C)(1.0 + y/RE )−2 ŷ (m/sec2),

where

g0 = 9.7803327 (m/sec2)

and

C = 1.00530246.

The air density at P (y meters above sea level) is approx-
imated by

ρ ≡ ρ(y) = ρ0 exp(−γy) (kg/m3),

where

ρ0 = 1.22 (kg/m3),

γ = 1.6404 × 10−4 (m−1).

The drag force on the BP, divided by its unknown mass
and moving with velocity ẏ, is approximated by

d ≡ d(−v̂) = (ẏ)2[ρ(y)](DF ) (m/sec2),

where v̂ is the unit vector in the direction of velocity, and
DF is the unknown drag factor (m/kg). In the present case,
v̂ = −ŷ. Hence, the drag can be written

d(y, ẏ)ŷ = (ẏ)2[ρ(y)](DF )ŷ.

It follows that the differential equation of motion for the
BP is of the form

ÿ = −g(y) + d(y, ẏ) + process noise.

System Model. Analysis of the physical model suggests
the use of a four-dimensional (ns = 4) state vector (SV)
defined by letting

s(1) ↔ y, s(2) ↔ ẏ, s(3) ↔ ÿ, s(4) ↔ DF .

The state transition equations for this SV can be directly
written from the time-propagation equations,

yk+1 = yk + h ẏk + (0.5)h2 ÿk + w(1)k,

ẏk+1 = ẏk + h ÿk + w(2)k,

ÿk+1 = ÿk + h...yk + w(3)k,

(DF )k+1 = (DF )k + w(4)k,
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where

h ≡ �tk = tk +1 − tk ,

...yk = {(d /dy)[−g(y)] ̇y + (d /dy)[d(y , ẏ)] ̇y

+ (d /d ẏ)[d(y , ẏ)]ÿ }k ,

is a function of y , ẏ , ÿ, and DF (all evaluated at t = tk);
w( j)k are components of process noise vector wk . Hence
writing

s( j)k +1 = f( j)(sk) + w( j)k for j = 1, . . . , ns ,

we get

f(1)(sk) = (
s(1) + hs(2) + (0.5)h2s(3)

)
k ,

f(2)(sk) = (
s(2) + hs(3)

)
k 
,

f(3)(sk) = (
s(3) + hṡ(3)

)
k ,

f(4)(sk) = (
s(4)

)
k 
,

where, as it follows from a previous expression for ...yk ,
the time derivative ṡ(3)k can be expressed in terms of
s(1) , s(2) , s(3), and s(4) (all evaluated at tk).

We assume that at each observation epoch tk a ground-
based sensor measures both the position (y) and the veloc-
ity ( ̇y) of the incoming ballistic missile. Hence the mea-
surement equations are of the form

m(1)k = yk + v(1)k ,

m(2)k = ẏk + v(2)k ,

or (in vector/matrix form)

mk = Hsk + vk .

Here vk represents the measurement noise and

H =
(

1 0 0 0

0 1 0 0

)
.

Filter implementation requires a procedure for eval-
uating the F matrix. As noted in the description of the
EKF algorithm, the (i , j)th element of Fk is obtained by
differentiating f(i) with respect to s( j) and then evaluating
this derivative at tk . For example, in the present case, we
get

F(1,2)k =
(
δ f(1)

/
δs(2)

)
k = h = �t .

In our implementation of the filter for the present prob-
lem, we included an algorithm for bounding the state er-
ror covariance matrix P . (This algorithm is described in
Maybeck’s Volume 2.) We found it to be effective in sta-
bilization of the filtering process.

Results of a Simulation Run. Figures 2A–E illustrate
the results of a computer simulation run performed for the

parameter values and the initial conditions summarized
in Fig. 2A. The filter was tuned up to respond rapidly to
relatively accurate measurements. Note that the drag factor
DF (expressed as square meters per kilogram) is treated
as an unknown constant parameter that is estimated along
with the dynamic variables of system state.

F. Other Approaches to Nonlinear Filtering
and the Gaussian Sum Approximation Filter

Since it is generally impossible to construct for a nonlin-
ear or non-Gaussian system an exact representation of a
posteriori probability density functions (PDFs) p(sk | Mk),
various types of finite approximations to p(sk | Mk) have
been investigated. As an illustration of this approach we
outline next one specific technique, known as the Gaussian
sum approximation (GSA).

Let Rn denote the n-dimensional Euclidean space. The
GSA method is based on a theoretical result, according to
which any probability function p of a vector (or scalar-)-
valued RV x , say of length n, can be approximated as
closely as desired in the L1(Rn) space (i.e., the integral∫

Rn | p(x) − pA(x) | dx can be made arbitrarily small) by
a function of the form

pA(x) =
L∑

i=1

αi N [x − ai , Bi ] (45)

for some positive integer L , positive scalars αi such that
α1 + α2 + · · · + αL = 1, suitably selected n-dimensional
vectors ai , and n × n positive definite matrices Bi . In
Eq. (45), N [x − ai , Bi ] represents the n-variate Gaussian
PDF

(2π )−n/2|Bi |−1/2 exp
{− 1

2 (x − ai )T B−1
i (x − ai )

}
, (46)

with |Bi | denoting the determinant of Bi . Furthermore, it
can be shown that pA(x) converges uniformly in x to any
PDF of practical interest as the covariance matrices Bi tend
to a zero matrix and L increases. There are many ways of
selecting the parameters ai , Bi , and αi . For construction of
a filtering scheme, it is convenient (a) to choose the values
of ai so as to build up in the state space a grid covering
at least a substantial part of the mass of the PDF to be
approximated and (b) to set Bi = bI (with I representing
an identity matrix) for some small positive scalar b. Then
each term in the Gaussian sum on the right-hand side of
Eq. (45) converges to an impulse function centered at ai as
b(>0) converges down to zero. Hence, for a small b > 0,
each term in the Gaussian sum is practically zero outside a
small open neighborhood (hypersphere) in Rn containing
ai . Since pA(x) ≥ 0 and

∫
pA(x) dx = 1, pA is a PDF.
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FIGURE 2 (A) The upper part shows the state vector and filter matrices at the initialization time t 0. The lower part
compares the true and initialized state vectors at t 0. (B) True position (the Y coordinate) of the ballistic projectile
vs time. (C) Error in position estimates vs time. Because of the compression of time scale, the initialization error of
1 km is invisible in the graph. (D) Error in velocity estimates vs time. Because of the compression of time scale, the
initialization error of 10 m/sec is not visible on the graph. (E) Error in DF estimates vs time.
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Next suppose that p(sk | Mk) is approximated by

pA(sk | Mk) =
L∑

i=1

αik N [sk − s̄ik, Bik]. (47)

Then pA(sk | Mk) is also a PDF, and while using appropri-
ately selected values of s̄ik , one can show that

ŝk|k ≡ E[sk | Mk] =
L∑

i=1

αik s̄ik (48)

and

Pk|k ≡ E
[
(sk − ŝk|k)(sk − ŝk|k)T

∣∣Mk
]

=
L∑

i=1

αik
[
Bik + (ŝk|k − s̄ik)(ŝk|k − s̄ik)T

]
. (49)

This suggests that perhaps the conditional MMSE estima-
tor ŝk|k can be approximated as a weighted sum of con-
ditional mean estimators, each representing an EKF. It
can be proved that this is indeed the case. Combining the
foregoing ideas with the nonlinear system model given
by Eqs. (29) and (30) and Assumptions 1D–4D, the latter
now possibly relaxed by dropping some or all Gaussianity
assumptions, leads to a filtering scheme, which we outline
next.

Discrete-Time Gaussian Sum Approximation (GSA)
Filter Algorithm. This algorithm applies to the system
model defined by Eqs. (29) and (30) and by the probabilis-
tic assumptions 1D through 4D. Let ns be the dimension
of state vectors.

a. Let k = 0 (i.e., initialize the sampling time tk to
t0) and select appropriate values of the parameters s̄ik

and αi,k−1 (all αi,k−1 ≥ 0 and
∑L

i=1 αi, k − 1 = 1) for
i = 1, . . . , L .

b. To complete a GSA,

L∑
i=1

αi,k−1 N [s − s̄ik, B̄ik]

to p(sk | Mk−1), where Mk = {mk, Mk−1} and Mk−1 is an
empty measurement set when k = 0, initialize (reinitialize)
all L covariance matrices B̄ik to bI , with b representing a
small positive constant and I the ns × ns identity matrix.

c. Approximate p(sk | Mk) by means of the following
measurement-update procedure. For i = 1, . . . , L , com-
pute

Hik = ((δhk(s)/δs))s = s̄ik ,

Dik = (
Hik B̄ik H T

ik + Rk
)−1

,

Kik = B̄ik H T
ik Dik,

Bik = B̄ik − B̄ik H T
ik Dik Hik B̄T

ik,

sik = s̄ik + Kik[mk − hk(s̄ik)],

with the new weights determined by

Sk =
L∑

j=1

α j,k−1 N
[
mk − hk(s̄ jk), D−1

ik

]

and

αik = αi,k−1 N
[
mk − hk(s̄ik), D−1

ik

]/
Sk .

Finally, compute ŝk|k and Pk|k by means of Eqs. (48) and
(49), respectively.

d. Approximate p(sk+1 | Mk) by means of the following
time-update procedure:

L∑
i = 1

αik N [sk+1 − s̄i,k + 1, B̄i,k + 1],

where

Fik = ((δ fk(s)/δs))s = sik ,

s̄i,k+1 = fk(sik),

B̄i,k+1 = Fik Bik FT
ik + Gk(sik)Qk Gk(sik)T.

e. Let k ← k + 1 (i.e., increment the sampling time by
setting tk ← tk+1). If the new tk > tmax (= estimation end
time), then quit; otherwise, proceed to step f.

f. Test whether B̄ik < bI (i.e., whether [bI − B̄ik] is
a positive definite matrix) for all i . If yes, go to step c;
otherwise, go to step b.

In the preceding algorithm, use the same rule for com-
puting matrices Hik and Fik as given for matrices Hk and
Fk [see the text following Eqs. (33)–(35)]. As the above al-
gorithm indicates, both the measurement-update and the
time-propagation equations for each constituent filter in
the Gaussian sum are essentially those of an EKF; be-
sides, when any covariance matrix B̄ik becomes too “big”
(in the sense explained in step f), all L covariance matrices
B̄ik must be reinitialized. If L = 1, the GSA filter reduces
to an EKF.

The following two important advantages of the GSA
come from the choice of the Gaussian weighting PDFs
and the positive weighting coefficients that add to 1: (a)
any finite Gaussian sum is a PDF; (b) the presence of
Gaussian weighting PDFs allows the utilization of certain
Gaussian properties in the computation of approximations
to p(sk | Mk), though the resulting approximation func-
tion pA is not Gaussian. However, the GSA approach has
one disadvantage: The series obtained from the Gaussian
sum expansion cannot be orthogonalized. Consequently,
it is difficult to obtain useful error bounds. Thus, as an
alternative to the GSA, the use of approximations based
on orthogonal series expansions (e.g., the Edgeworth and
Gram–Charlier series) has been investigated. Despite the
attractiveness of orthogonality, such approaches have one
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distinct disadvantage. The resulting truncated sum approx-
imations are not PDFs.

Finally, we should mention the nonlinear filtering meth-
ods based on the assumption that p(sk |Mk) is Gaussian
for all k. The EKF was one example of this approach. As
already noted, this assumption often leads to discarding a
great deal of information present in the actually true PDF,
especially in the multimodal case.

IV. FILTER IMPLEMENTATION

Filters of the type considered in this chapter are usually
implemented in software form. Besides a filter is typ-
ically designed for ultimate implementation as part of
a real-time system, which means that it will be subject
to timing constraints of that system. Thus, in addition to
tasks already discussed (e.g., defining the system model,
selecting a filter algorithm, and making a trial filter work),
one must (a) select appropriate numerical procedures to
be used with the filter algorithm and (b) adapt the program
implementing the filter to the real-time processing envi-
ronment in case the filter is to become part of a real-time
system. In the latter case, one must also time and size the
algorithms for a particular real-time computer.

A. Numerical Procedures

The accuracy, stability, and computing efficiency of a fil-
ter depend critically on the adopted numerical procedures.
For example, the unnecessary use of multiple precision
arithmetic may be prohibitively expensive in some real-
time applications; on the other hand, careless computation
of dot products while using operands of insufficient length
may quickly lead to an unbounded accumulation of round-
off error and destabilization of the estimation process. As
another example, consider a continuous-time nonlinear
filter. It often uses numerical integration to propagate the
estimates of the state to the next time point, and thus one
faces the problem of selecting an appropriate method for
propagating numerically the solution of underlying differ-
ential equations.

There are several simple rules of thumb with regard
to matrix operations in Kalman filtering of linear sys-
tems: (a) Dot products should in general be computed
using arithmetic of a higher precision than used in the re-
maining matrix operations; (b) matrices that theoretically
are symmetric should be periodically resymmetrized [this
simply requires replacing each member of every pair of
elements ai j and a ji , where i �= j , of a theoretically sym-
metric matrix A with (ai j + a ji )/2]; (c) positive definite-
ness of theoretically positive definite matrices should be
preserved. Furthermore, in many applications, such as in

precision navigation, the state must be known to many
more significant digits than the gain and the state error co-
variances. Hence, nearly all gain–covariance processing
can be performed at a lower precision than the process-
ing of the state vector, but this approach is safe only if
the gain–covariance processing is computationally stable.
Square root filtering, discussed next, provides a numeri-
cally stable method for preserving the positive definiteness
in state error covariance matrices.

B. Square Root Filtering

By far the greatest trouble spot in computer mechanization
of the KF is the updating of state error covariance matrix
P , that is, the computation of Pk|k according to Eq. (18).
As the estimation process progresses, the elements of Pk|k
typically continue to decrease in magnitude and so matrix
Pk|k keeps approaching the zero matrix, although theoret-
ically it should forever remain positive definite, no matter
how small in magnitude its elements become. Hence, un-
less special measures are taken, accumulation of roundoff
error in the repetitive use of Eq. (18) may cause the com-
puted Pk|k to lose its positive definiteness. As suggested
by the matrix inversion operation appearing on the right-
hand side of Eq. (16) for computing the Kalman gain,
this situation is aggravated if several components of the
measurement vector are very accurate and consequently
the positive definite measurement error covariance matrix
R is ill conditioned, that is, if R has eigenvalues of both
relatively very large and small magnitudes.

Let A be a nonnegative definite symmetric matrix; then
there exists a matrix S such that A = SST. Matrix S is often
called the square root of A. The Cholesky decomposition
algorithm provides a method of constructing from A the
matrix S so that S is lower triangular; that is, all elements of
S above the main diagonal are zero. Square root filtering
is motivated by the observations that, if the state error
covariance matrix P = SST, then (a) since SST is always
nonnegative definite, matrix P expressed as SST cannot
become negative definite, and (b) matrix S is generally
less ill conditioned than matrix P .

Several versions of the square root filtering algorithm
are known. The earliest form was developed by J. E. Potter
in 1964 for applications in which the process noise is
absent (i.e., covariance matrix Q is zero) and the mea-
surements are sequentially processed as scalars. In 1967
J. F. Bellantoni and K. W. Dodge extended Potter’s re-
sults to vector-valued measurements. A. Andrews in 1968
and then S. F. Schmidt in 1970 published two alternative
procedures for handling the process noise. In 1973 N. A.
Carlson described a procedure that considerably improved
the speed and decreased the memory requirements of
square root filtering and in which, as in Potter’s algorithm,
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vector-valued measurements are processed sequentially as
scalars. Finally, the so-called UDUT covariance factoriza-
tion method is the most recent major milestone in numer-
ical handling of KFs. This method, developed by G. J.
Bierman and C. L. Thornton, represents the state error co-
variances before and after the measurement update step as

Pk |k −1 = (Uk |k −1)Dk |k −1(Uk |k −1)T

and

Pk |k = (Uk |k)Dk |k(Uk |k)T ,

with D being a diagonal matrix and U an upper triangular
matrix with 1’s on its main diagonal. In this method,
the square root of the covariance matrix, which now
would correspond to UD1/2, is never computed explicitly,
which avoids numerical computation of square roots.
Like Carlson’s algorithm, the UDUT factorization method
maintains the covariance matrix in factored form and so
(like Carlson’s algorithm) is considerably more efficient
in processor time and storage than the original Potter
algorithm.

As a quick comparison of computational efficiency, the
conventional Kalman method, the less efficient form of
Carlson’s algorithm, and the UDUT factorization method
are roughly equal: The processing of each time step (con-
sisting of one time propagation and one measurement up-
date) requires of the order of 1

6 [9n3
s + 9n2

s nm + 3n2
s n w]

adds and about the same number of multiplies, plus a rel-
atively modest number of divides and square roots (square
roots are required only in some, as in Potter’s or Carlson’s
square root algorithms). Here, as before, ns is the length of
the state vector, nm the length of the measurement vector,
and nw the lenght of the process noise vector w. The faster
version of Carlson’s algorithm is more efficient and re-
quires only of the order of 1

6 [5n3
s + 9n2

s nm + 3n2
s n w] adds

and 1
6 [5n3

s + 12n2
s nm + 3n2

s n w] multiplies, plus 2nsnm di-
vides and nsnm square roots, at each time point. The sta-
ble (Joseph) form of the KF [as given by Eq. (18′)] fares
more poorly: At each time step, it requires of the order
of 1

6 [18n3
s + 15n2

s nm + 3n2
s n w] adds and about the same

number of multiplies.
As a summary, (a) a square root filter is a numerically

stable form for performing the KF covariance–gain pro-
cessing defined by Eqs. (15), (16), and (18); (b) the effi-
ciency of its more recent versions roughly compares with
that of these three equations; (c) the increased stability al-
lows one to use relatively low-precision arithmetic in the
KF gain–covariance processing, with a possible exception
of some dot products.

Real-time implementation of a filter involves additional
issues that are unimportant in the non-real-time environ-
ment. Besides the adequacy of functional performance,
the most important of these issues is the requirement to

produce timely responses to external stimuli. Thus, resort-
ing to a parallel or concurrent processing may be the only
way out. This usually implies the use of special hardware
architectures such as parallel, vector pipelined, or systolic
processors.

As one example, consider the use of a filter in the track-
ing of multiple objects in a hard real-time environment
characterized by strict deadlines. In such a case one may
want to maintain simultaneously many estimation pro-
cesses, each handling a single object. Parallel processors
may seem to be a suitable hardware architecture for this
problem, but if separate estimation processes in such an
application progress at different rates and at any time some
of them require a great amount of special handling, then
parallel architecture, such as a single-instruction multiple-
data stream computer, may not be the best choice. As an-
other example, consider a KF to be implemented as part of
a navigation system on a small airborne computer (unipro-
cessor). Suppose that the navigation measurements come
at a certain fixed rate. If the filtering process cannot keep
up with the arrival rate of measurements and so not all
of them can be utilized, the estimation performance may
deteriorate. In this problem, if there is an upper bound
on hardware resources, the only solution may be to de-
compose the estimation algorithm into concurrently exe-
cutable processes. For instance, the time-propagation step
(which, say, is to be executed at a relatively high rate) may
constitute one process and the measurement-update step
(which needs to be executed only at some lower rate, say, at
the rate of measurement arrivals) may constitute another.
Such a decomposition of an estimation algorithm into con-
current procedures often creates a surrogate algorithm that
performs more poorly than the original algorithm.

The effects of the finite-length word computing is an-
other issue that must be considered in filter implementa-
tion for real-time applications. The computer on which a
filter is developed and validated through successive off-
line simulations is often more powerful and uses higher-
precision arithmetic and number representations than the
ultimate real-time processor. Hence, one must in advance
determine in advance what effect a shorter word length
will have on performance.

V. APPLICATIONS

A good part of present-day technology would be un-
thinkable without recursive estimators, especially mod-
ern computer-based control and communication systems.
Kalman and other types of recursive filters have been
widely adopted by the defense and aerospace communities
for applications such as navigation, aircraft flight control,
satellite tracking, and orbit determination.
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Early applications of recursive filtering were mainly in
the estimation and identification of uncertain dynamic or
control systems. Many of these applications, although in
general successful, were hastily executed in the sense that
insufficient thought was given to various theoretical, nu-
merical, and purely implementational issues. The first two
decades were also marred by a flood of papers describing
specific applications, published in the technical literature
or presented at various engineering conferences. How-
ever, during that period many important theoretical issues,
especially gaps in theoretical knowledge, were identified
and resolved.

In contrast to the quick, widespread adoption of recur-
sive estimators to control and of dynamic systems during
the 1960s and 1970s, their penetration of signal process-
ing was considerably less decisive. One reason for that was
the inadequacy of computer hardware and software with
respect to the stringent timing constraints of on-line signal
processing, although there are several application areas of
signal processing, such as the analysis of economic time
series, in which real-time constraints are virtually nonexis-
tent. Another factor was the technological culture of that
period, which was also reinforced by the nature of the
problem. In communication problems, one is usually inter-
ested in steady-state behavior. Alternative signal process-
ing techniques, notably those based on frequency domain
analysis, such as the fast Fourier transform, were devel-
oped and then adapted to digital signal processing. How-
ever, developments in computer hardware and software
technologies (e.g., the introduction of gallium arsenide
devices, very large-scale integration, and data-flow archi-
tectures such as systolic processors) promise to change
this situation.

Several interesting types of functional extensions of fil-
tering are known. We briefly mention only one of them,
which is known as adaptive filtering. Adaptive filtering
is concerned with the generalization of estimation algo-
rithms, especially of KFs, to state estimation situations
in which the system model is not completely known. For

example, one may want to estimate the state of a stochas-
tic dynamic system for which some parameters, such as
the covariance matrices of noise processes or a few coef-
ficients in the system dynamics equation, are unknown or
are changing in an unknown way in time. A filter that es-
timates the state while concurrently estimating the values
of the unknown components of the system model is called
an adaptive filter. Example 2 illustrates a relatively sim-
ple case of adaptive filtering: estimation of the parameters
that define the drag force while estimating the trajectory.
In that example, the adaptive filtering problem is solved by
introducing an additional component into the state vector.
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