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In perfixming estimation of the state of a nonlinear system, 
a standard approach that is usually adequate is to llmarizc 
th algebraic nonlinear measurement equation (that describes 
th operation of the measurement sensor) and to linearize the 
nonlinear differential -tion ((het describes th system or 
plant), es expressed in state variable notation This linearization 
(het is performed as part of an extended Knlman filter (EKF) 
algorithmic iqkmentation corresponds to use of the first 
two terns of t h  Taylor series expcusion of th system and 

measurement nonlinearity as a reasonable approximation 
It is well documented in the estimation theory literature that 

just a minor change in mechanization beyond this standard EKF 
inpkmentation CM result in a significant improvement in EKF 
performance. Frequently, with a few further iterations (of the 
masuremnt relinearization process), the resulting intermdiate 
linearization is greatly improved, resulting in a payoff of offering 
significantly improved EKF performance while t h  penalty 
incurred is merely the cost of mechanizing a variation of only 
slightly greater complexity or slightly higher operatiom counts. 
This work provides the details of how to implement the 

measurement iteration process, described above, as a software 
subroutine module for an exoatmospheric random variable (RV) 
target tracking application. The primary contribution is in 
providing a new mre computationaliy efficient general method 
for perfwmiqg measurement iteration (or rellmarization) within 
the inpkmntation of an EKE The results are illustrated, as used 
in a radar application of tracking exoatmosphcric RV targets. 
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I. INTRODUCTION 

First, an overview is provided in Section IA of 
the definition of the estimation problem and an 
explanation is offered for the standard notation that 
is employed. Section IA then proceeds to review how 
the linear estimation approach of Kalman filtering 
is extrapolated to form an extended Kalman filter 
(EKF), applicable for state estimation in nonlinear 
systems. Next, a mechanization of an EKF variation 
known as an iterated Em, offering improved 
tracking performance, is treated in Section IB. A 
streamlined version of an iterated EKF that is a lesser 
computation burden (having fewer operations per cycle 
or time-step) than prior formulations is offered in 
Section IIA as the primary theoretical contribution of 
this work. A nonlinear filtering application example, 
to be used as a testbed for this new approach, is 
described in Section IIB, where the detailed modeling 
considerations are discussed, as needed for radar 
target tracking. The performance of this new version 
of an iterated EKF mechanization is illustrated in 
Section I11 for this radar target tracking example and 
comparisons are made to the performance of an EKF 
without measurement iteration. 

A. Essentials of EKF Mechanization 

The standard linear dynamical system for which 
Kalman-type filters are designed has a discrete-time 
representation consisting of an n-dimensional state 
vector xk and an mdimensional measurement vector 
Zk of the following well-known form: 

System: xk+l = @(k + 1,k)xk + wk (1) 

Measurement: Zk = Hkxk + vk (2) 

with initial condition x(0)  - Af(T(O),P(O)) (Gaussianly 
distributed, with known mean Z(0) and covariance 
matrix P(0))  and where @(k + 1,k) is the known 
transition matrix and the process and measurement 
noises, wk and vk, respectively, are zero mean, 
white Gaussian noises (independent of the Gaussian 
initial condition) of known covariance intensity 
levels Qk and R, respectively. The three symmetric 
matrices P(0) and Qk must be positive semidefinite 
and R must usually be positive definite. The usual 
conditions of observability/controllability (or less 
restrictive detectability/stabibility conditions 
[2, p. 821) are assumed to be satisfied here by any 
appropriate application system of the form of (1) 
and (2). The above regularity conditions being 
satisfied guarantee that the covariance calculations 
from the associated Riccati equation (to be defined 
below) will be well-behaved and consequently that 
the resulting Kalman filter (KF) will be stable in the 
sense of providing an optimal estimate & that quickly 
converges to the true current state xk through use 
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of (i.e., processing the information provided by) the 
collection of available sensor measurements zi from 
i = O  t o i  =k. 

Equation (1) above is a discrete-time difference 
equation (compatible with recursive implementation on 
a digital computer) that corresponds to the solution of 
an associated underlying continuous-time state variable 
differential equation (describing the system) of the 
form: 

d 
dt 
- x  = F(t )x  + W ’ ( f )  (3) 

where the transition mafrix for the general time-varying 
case of F ( t )  is obtained by integration of the 
homogenous part of (3) over the time interval of 
interest prior to the next measurement becoming 
available for use by the filter. If F(r) is constant, then 
the appropriate transition matrix simplifies to just an 
evaluation of the fairly well-known matrix exponential 
as 

ip(k + 1,k) = eFA (4) 
where A is the appropriate time-step between 
measurements. Similarly, the appropriately exact 
discrete-time process noise covariance intensity 
level Q k  to use in the KF mechanization equations 
corresponding to (1) is obtained by integration 
of the known continuous-time process noise 
covariance intensity level Qe(t) associated with the 
continuous-time white Gaussian noise d( f )  of (3) as 
[3, p. 171, Eq. 4-127bl: 

f k t l  

Qk = o(tk+i,r)Qe(.r)ipT(lk+i,r)dr (5 )  

where A = t k + l -  t k .  
The standard familiar KF implementation/ 

mechanization equations for periodic measurements 
available every A units of time are well known, as 
succintly stated in [3, p. 217, Fig. 5.41, [4, p. 111, Figs. 
4.2-2 and 4.2-31. 

The covariance update equation is 

Pklk = [I - KkHkIPklk-1 

= [I - &H,]Pklk-1[1- KkH,IT + Kk RK: (6) 

while the above two forms are mathematically 
equivalent, it is the more complex final expression 
(known as Joseph’s form) that more effectively 
resists the deleterious effect of roundoff in machine 
computations [4, pp. 305-3061, [3, p. 237 and is 
therefore the preferred implementation. More 
detail on the fundamentals of a linear K F  estimator 
implementation and recommended steps to ease its 
software validation/checkout are provided in [l]. 

Mechanization of the optimal linear estimator as 
an information jifter formulation using the inverse of 
the covariance matrix is denoted as the “information 
matrix” (an approach that is especially appealing and 
more tractable (i.e., being a lesser computational 

burden than using the more familiar standard 
covariance form of (6))) when the linear system of (1) 
has no process noise, as is the case for nonmanuvering 
exoatmospheric reentry vehicle (RV) targets). The 
complete information filter can be summarized as 
represented in [8, p. 206, eqs. 7.41, 7.42, 7.43, 7.44 
for Q = 01. A side benefit of using this particular 
information filter formulation is that the inverse of 
the information murrix, Z(k, l), is identical to the 
corresponding Cramer-Rao lower bound for this 
situation when the linearizations are performed about 
the true position and velocity states (rather than about 
the filter estimates of these states, as is used in an 

KF usage is by no means restricted to just 
situations involving periodic availability of sensor 
measurements since a KF can handle asynchronous 
measurement availability of any known time spacing 
of measurements or even synchronized simultaneous 
measurements from several different sensors at a time. 
However, the formulation of a KF used here and its 
subsequent upgrade to an EKF, as implemented in 
software for this investigation, was instantiated for the 
case of periodic measurements from a single sensor (at 
a time) to keep the software mechanization simple. 

Mechanization of an EKF’ can be applied to 
nonlinear situations [6, pp. 3!2-59] (such as are 
encountered in a more realistically detailed model of 
an RV trajectory). This is accomplished by linearizing 
(as the first two terms of a Taylor series expansion, 
involving a constant term and a 1st derivative term, 
known as the Jacobian) of either the system equation 
or measurement equation (or both if each is nonlinear) 
as evaluated about the current state estimate R(k) 
as obtained via an on-line mechanization of the KF 
implementation equations of [3, p. 217, Fig. 5.41, [4, 
p. 111, Figs. 4.2-2 and 4.2-31 (corresponding to an 
assumed underlying model of the form of (1) and (2)) 
even though the actual system under consideration is 
now of the more general nonlinear continuous-time 
system/discrete-time measurement form 

EKF). 

d 
dt 

System: - x ( t )  = f ( x ( t ) , t )  + w ( t )  (7) 

Measurement: zk = h(xk,k) + vk (8) 

‘Other approaches to handling nonlinear situations involve use of 
more terms in a Bylor series approximation beyond just the first two 
that are used in the EKE These other approaches are called 
Gaussian or secmd-order filters such as the particulady nice 
formulation of [ll] which avoids a prior unlikely assumption that 
the resulting estimates are Gaussianly distributed within a nonlinear 
filtering scenario in favor of utilizing the more plausible assumption 
that just the errors Z ( t ) e  x ( t )  - 2(t) are Gaussian. Unfortunately 

some confusion has arisen since a recent textbook [IO, pp. 1W109] 
has referred to a nonlinear filter formulation involving Hessians (or 
the second derivative of the nonlinearities) as being an EKF, while 
prevalent almost universal convention is that an EKF involve use of 
only Jacobiam (or first derivatives of the nonlinearities). 
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where f(.) and h(-)  are the particular nonlinearities 
that are actually encountered in appropriately modeling 
the particular application. 

The explicit implementation equations for an 
EKF2, as posed for a discrete-time model of the 
form of (7) and (S), are covered here in Table I, as 
summarized in [8, p. 278, p. 3381 and derived in [lo, 
Section 3.31. Notice that this implementation differs 
from that of a standard KF for purely linear systems 
only in the propagate and update steps of the filter 
(viz., compare the last row of n b l e  I here with the 
last row of n b l e  I in [l]). However, another implicit 
difference is that O(k,k - 1) is now a function of the 
measurements zk-1, since it is now to be obtained as a 
linearization about the estimate R k - l ~ k - ~ ,  which itself 
is a function of the measurement zk-1. Consequently, 
the propagate step of the covariance Pklk-1 in Table 
I is implicitly a function of zk-1 since @(k,k - 1) is 
and so is the EKF filter gain Kk. A slight variation 
on the above EKF approach (as addressed in detail 
in Section IB) is to iterate within the linearization 
step a few times to greatly improve the quality of the 
estimates with but a slight penalty in increased number 
of operations. 

B. Explicit Implementation Equations of Iterated EKF 

The claim is well documented in the estimation 
theory literature that just a minor change in 
mechanization beyond this standard EKF 
implementation can result in a significant improvement 
in EKF performance. The slight change involves 
inclusion of a few further iterations on the linearized 
measurement equation (as in (9) below, as initialized 
with the condition of (10)). Frequently, with a few 
further iterations (of the measurement relinearization 
process), the resulting intermediate linearization 
is greatly improved, resulting in a payoff of having 
significantly improved EKF performance [S, pp. 
279-280,349-3511, [4, pp. 190-1911, [7] while the 
penalty incurred is merely the cost of mechanizing a 
variation of only slightly greater complexity or slightly 
higher operations counts than that of a standard 
EKF. 

The variation on a conventional EKF that was 
implemented here, called an iterated EKF, is as 
summarized in [8, p. 2791 and derived in [lo, Section 
3.51. The primary distinctive feature of an iterated 
EKF is that instead of the filter update step portrayed 
in Bble I, we instead use the result of a few iterations3 

2The EKF mechanization is to be distinguished from the 
sodesignated linearized KF [4, n b l e  6.1-3, p. 1891, which is also 
applied to the linearized versions of the system and measurement 
equations of (7) and (8)  respectively, but for which filter gains can 
be precalculated, unlike the situation for an EKE 
3With all these intermediate iterations being performed while the 
current time value k is fmed (before proceeding to the next value of 
k + 1). 

on i (say i = 1,2,3 for 3 iterations) of the following 
alternative mechanization equation 

qi+l = t k l k - 1  + &(zk - h(qi) - Hk )x=qi [ t k l k - 1  - Vi]) 

(9) 
starting with an initial value of ql = 2klk-1. The final 
value used for the filter update at time-step tk for the 
iterated EKF is 

Other than this slight variation, everything else 
associated with an EKF mechanization, as depicted 
in Table I, is also used for an iterated EKF 
mechanization. 

approach was flawlessly enunciated by Gura in 
[5] and this treatment is known for its clarity but, 
unfortunately, without clearly indicating how it should 
be computationally mechanized. This current paper 
provides the details herein of how to implement the 
measurement iteration process, described above, as 
a software subroutine module for an exoatmospheric 
RV tracking application. The primary contribution of 
this work is in providing a new, more computationally 
efficient general method for performing measurement 
iteration (or relinearization) within the implementation 
of an EKF, used here for target tracking. The results 
are illustrated in a radar application of tracking 
exoatmospheric RV targets, as described in detail in 
Section IIB, with an evaluation of simulation results 
provided in Section 111. 

t k l k  = 73- (10) 

A milestone implementation of an iterated EKF 

II. MECHANIZATION OF MEASUREMENT 
ITERATION FOR EXOATMOSPHERIC RV 
TRACKING 

A. Detailed Specification of Measurement Iteration 
Mechanization for an EKF 

This section offers the details of how to implement 
the measurement iteration described above as a 
software subroutine module for this application. The 
following are inputs to the measurement iteration 
software module: the prediction step state estimate, 
2(-)(6 x l),  the measurement z (m x 1) and the 
prediction step covariance matrix, P(- ) (6  x 6) (all at 
the current time k); the calculations constituting a 
measurement relinearization or measurement iteration, 
as depicted in the flowchart of Fig. 1, are implemented 
to obtain the desired outputs: the update step state 
estimate, t(+)(6 x l),  and the update step covariance, 
P(+)(6 x 6), at the current time k. 

iteration and its mechanization w a s  originally published 
in an earlier edition of [4] that appeared prior to 1982; 
but The Analytic Sciences Corp. (TASC) corrected 
its EKF measurement iteration formulation in all 
later editions of their Applied Optimal Estimation 

An erroneous version of EKF measurement 
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TABLE I 
Extended Kalman Filter Implementation/Mechanization Equations 

textbook (following helpful proding from R J. 
Fit~gerald).~ Because of its general clarity and ease 
of use, this textbook has had considerable influence 
on the entire estimation field since it is in widespread 
use. The subsequent correction utilized here is now 
essentially faithful to how measurement iteration 
was first described (alas, without instructions for 
actual mechanization) by the original developers [9] 
in its effect on performance and in the changes in the 
calculations; however, this current version offered here 
goes further to offer a sizable reduction in the required 
operations counts of its mechanization beyond what is 
indicated in [4, pp. 1%191]. 

Instead of just imitating what has always been 
done before on this important topic of measurement 
iteration mechanization (see Fig. l), it was noticed 
in this investigation that inclusion of the calculation 
of the covariance update within the loop (as all the 
other prior investigators had evidently done) wasn’t 
really necessary. This covariance update is the most 
computationally burdensome entity previously iterated 
in the loop, so to remove it and postpone it until 
after the loop represents a considerable savings in 
computational effort or computer time expended per 
a measurement sample time point. The iterative g 
equation (9) and calculation of the effective Kalman 
gain K are to still be iterated within the loop, but the 
covariance update need be calculated only once almost 
as an apparent afterthought (using the final value 
of the Kalman gain K* which completely captures 
the essence of having performed the additional 
relinearizing iterations at each time point k). The 
covariance update can then be calculated just once per 
a time point k from 

P(+) = ( I -  K*H)P( - ) (Z-  K*H)T  + K*RK*T.  

(11) 

It is already fairly well known (as discussed following 
(6)) that use of the above covariance update equation 
is computationally superior to use of the algebraically 
equivalent but apparently simpler 

P(+) = ( I  - K * H ) P ( - ) .  (12) 

An aspect uncovered by Nishimura [31] that is now 
well known, and which we utilize here in validly 
removing the covariance calculation from within the 
measurement iteration loop is that given any fdter 
gain K* (optimal or otherwise), the expression of 
(11) provides the correct corresponding consequential 
uncertainty incurred (while (12) does not). An explicit 
quantification of the computational savings to be 
reaped by using the modification advocated here can 
be gauged using the real-time assembly language 
operations count assessment of [32, Bbles IV and 
VI] (augmented here to consider (11) instead of 
(12) and using matrix dimensions of n and m, as 
defined just prior to (1)) as depicted in Table 11. By 
sidestepping the covariance calculation in the first 
two iterations of the measurement iteration loop as 
we recommend on the right hand flowchart in Fig. 1, 
the computational burden of having to perform the 
processing calculations associated with the operations 
counts tallied in the first row of Table I1 is reduced 
by 66.6 percent (rather than having to be performed 
two times more than is really necessary). This is 
approximately a factor of four speed up that is more 
significant the larger n is and consequently as n3 is, as 
the actual computational burden being avoided. We 
later found that Maybeck [6, pp. 58-59] appears to 
endorse use of the new path that we are taking here 
in implementing measurement iteration according to 
the right-hand flowchart of Fig. 1, but Maybeck doesn’t 
mention the conclusion arrived at here concerning the 
computational savings accrued by not strictly following 
what the measurement relinearization pioneers have 
advocated for so long. 

relinearization can take but which we refrain from 
pursuing at this time is “iterative relinearization of 
the entire system” of both measurement and system 
equations. This more encompassing topic (and larger 
computational burden), as well as the specific closely 
related topic of measurement iteration, is discussed 
further in [5]. 

A n  additional wrinkle in the mechanization which 

B. Earth-Centered Inertial System and Measurement 
Models Used as Preferred RV Target Motion 
Model 

4Extensive prior experience in the use of linear and nonlinear 
Kalman tilters is exhibited within the designs of RV tracking radars 
[12-14] such as those of PAVE PAWS, Cobra Judy, etc. 

Reference [26] offers a good discussion of how 
to handle RV (or satellite) target models (a topic 
that, unfortunately, is usually absent from other 
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TABLE 11 
Operations Counts for Measurement Iteration Option for Standard EKF Implementation/Mechanization Equations 

COVARIANCE UPDATE EQ. 11 
MULTIPLICATIONS ADDITIONS 

2n3 + 2n2m + nm 2n3 -I- 2n2m - 2n2 
FILTER GAIN 
FILTER UPDATE EQ. 10 

OLD ALGORITHM 

~ 

n2m + 2nm2 + m3 n2m + 2nm2 - 2nm + m3 
2nm 2nm 

n 
I START 1 

Y 
I 

-(?) - - - - 
I CALCULATE I 

-1 

NEW ALGORITHM 

START Q {===I 
R: COVARIANCE 

CALCULATE 

= 61,. 
CALCULATE U h(ETA) 

N E W A LG 0 RI T H M AVO I DS S I G N I FICA N T CO M P UTATl 0 N A L 

BURDEN OF UNNECESSARY COVARIANCE CALCULATION 
IN THE LOOP 

ADDITIONAL OPTIONS: RELINEARIZE ABOUT THE 
SMOOTHED ESTIMATE AND/OR RELINEARIZE A 

NONLINEAR SYSTEM MODEL AT EACH T IME STEP 
Fig. 1. Flowchart showing how implementation of measurement relinearization reduces computational burden below that of conventional 

approaches. 
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discussions concerned with the same type of RV 
tracking application) and provides a derivation of the 
particulars from first principles as well as providing 
an accounting and motivation for use of the various 
necessary coordinate systems. Other important analytic 
modeling considerations underlying a rigorous analysis 
are treated in [29]. We follow a similar path in the 
choice of mathematical models used here. 

In our investigation, a Keplerian trajectory 
is introduced within a detailed simulation of the 
exoatmospheric target motion to include the effect of 
an inverse square pull of gravity and use is made of 
a more sophisticated filter model than had been used 
in an earlier phase of this same investigation to now 
handle tracking in the presence of these inverse square 
nonlinearities. Use of this more exacting methodology 
to represent gravity more realistically requires that 
we depart from just the use of simplified covariance 
analysis (essentially corresponding to evaluation of a 
Cramer-Rao lower bound for the estimation objective 
in the exoatmospheric regime of no process noise being 
present, as used in earlier investigations [23, 301) and 
instead now requires that we incorporate full nonlinear 
filtering techniques (and the associated standard 
approximations). The prior straight line constant 
velocity target model previously used in generating 
convenient RV trajectories was extricated from the 
simulation in favor of using this more sophisticated 
and realistic nonlinear target trajectory involving use 
of an inverse square gravity term (discussed above) 
and the resulting RV trajectories will no longer be 
expected to be straight lines or have constant velocity. 
Instead of linearizing about the true target, as done in 
prior simplified covariance analysis, the EKF linearizes 
about the fiiter state estimates at each time-step (with 
perhaps an iteration or two, between the prediction 
step and measurement incorporation as the update 
step, as the standard technique treated here in Sections 
IB and IIA). 

The RV target system model used in the earlier 
phase of this investigation (as we bootstrapped 
ourselves up in the software development to 
incrementally include more realism) was initially 
nonlinear but was linearized and streamlined (in the 
manner exhibited in detail in the derivation in [16, 
pp. 36-39] to be a convenient simple approximation. 
The resulting simple system equation, as represented in 
continuous-time, was 

Fig. 2 ECI coordinates using this formulation (see [XI). 

with an appropriate value for the acceleration of 
gravity g used in the above simplified model, specified 
to match up the target velocity of traverse to have a 
speed of 7 km/s and with similar motivation for the 
choice of initial conditions of position and velocity 
that were used in the earlier phase of this investigation. 
The coordinate convention used as a reference in (13) 
is with respect to the convenient inertial coordinate 
system known as Earthcentered inertial (ECI, having 
an origin that is at the center of the Earth and which 
is motionless with respect to the “ f ~ e d  stars” that are 
astronomically far away), since the equations of motion 
simplify for this ECI coordinate frame in the sense that 
no additional Coriolis cross-product terms normally 
associated with a moving coordinate frame ([Z, pp. 
89-93]) need be ~onsidered.~ 

Instead of using the simplified linear model of (13) 
(corresponding to a local flat Earth approximation, as 
invoked in 8n earlier phase of this investigation), we 
now seek to work with the full nonlinear 6-state system 

[A, the RV tracking problem is decomposed into primary and 
secondary contributing effects to be considered in the modeling, and 
the effect of a rotating Earth on the overall problem is of the later 
category. Our goal here of investigating filter tracking performance 
in an exoatmospheric regime initially dispenses with use of the 
rotation of the Earth (and as a consequence ECI is identical to 
an Earthcentered moving (ECM) frame, with the Earth rotation 
rate intentionally taken here to  be zero for convenience and as a 
planned software validation benchmark). In the N 30 min of an 
ICBMBLBM trajectory evolution, the Earth rotation doesn’t alter 
the accuracy in EKF tracking performance. As in simulations for 
navigation applications [3, ch. 61 where similar concerns about the 
effect of ECM versus ECI arise in missile launch investigations, 
additional realism is introduced in a controlled quantized manner, 
where software implementations are demonstrated to work first for a 
mathematical model devoid of Earth rotation; then in a later phase 
the same software is shown to produce identical performance/output 
for ECM transformations that are introduced (but with the rotation 
parameter zeroed) as a logical step in the validation; and, finally, as 
the last step (not shown here) the rotation parameter of 360°/24 
h is introduced as part of this standard bootstrapping software 
validation approach to increased complexity and realism. 
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model, which in continuous-time is of the form: 

( Jw3 
- p 2  

where p is the familiar gravitational constant Earth 
mass product GM. This is one of the equations that 
is linearized in implementing an EKF and for which a 
Jacobian for the nonlinearity on the right hand side of 
(14) must be calculated. 

Explicit evaluation of the requisite Jacobian, 
obtained by performing the indicated differentiations 
on the system nonlinearity f (x), yields 

0 0 0 1 0  
0 0 0 0 1  1 
0 0 0 0 0  = I  a41 a42 a43 0 0 

SATELLITE OR RV 

STATION 

Fig. 3. Sensor measurements must now be referenced to ECI 
coordinates used in this formulation (see [XI). 

In order to use the above ECI coordinate frame 
and system equations, the measurement equations 
are of a form addressed below. The measurement 
equations used for the present sensor model are as 
obtained from Figs. 2 and 3. The resulting sensor 
measurements in terms of range R, and the direction 
cosines U and v, to the target RV are 

where x’, y‘, and z’ are as in Fig. 3 (and are to be 
defined next). 

In Fig. 3, the local coordinates x,y,z are located 
at the center of the sensor face in the plane of the 
array. In this coordinate system, z is directed along the 
local vertical and x and y lie in the horizontal plane, 
with x pointing East and y pointing North. From [26, 
sect. 111, these local level coordinates x,y,z can be 
reexpressed in terms of x’,y’, z’ coordinates, via the 
following transformation 

where 

O I  

- sin A 

cos$cosX -sin$ 
sin $sin X sin $ cos X cos $ 

as the appropriate change of coordinates corresponding 
to the rotation depicted in Fig. 3, where the above 
parameters of X and $ are also defined in Fig. 3. The 
coordinates x’,y‘,z‘ are oriented so that z’ is normal 
to the face of the sensor array, and y‘ lies on the face 
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of the array, and x lies along the intersection of the 
sensor face and the horizontal plane.6 

The above received sensor signal-processed 
measurement can be reexpressed in terms of the 
measurement of target range (as appropriate for a 
radar or other active sensor if not range-denied due 
to jamming), elevation, and azimuth as, respectively, 

r = Jx2+y2+z2 (W 
r -I 

(29) 

(30) A = arctan [ 3 
where the length in (28) is identical to the length in 
(25) since the transformation T is a rotation (and as 
such is an orthogonal transformation which preserves 
lengths). The expressions of (28)-(30) correspond to 
the following measurement equation: 

where the Gaussian white measurement noise v( t )  has 
a covariance that is of the form 

0 0  

R=[' gi ~~ ] 
0 0 -  

cos2(E) 

and the proper generic values to use for these 
variances (as squares of the following standard 
deviations) are found from [17, Xtble 11 (for radars 
comparable to Cobra Dane) to be 

g, = 15 ft (per pulse) 

bangle = 0.05 deg (per pulse). 
(33) 

(34) 
(If characteristics comparable to generic PAVE PAWS 
radars are desired instead, the requisite parameters 

6The mathematics of this transformation is consistent with Fig. 3. 
R. M. Miller's software implementation code for getting between 
sensor hcecentered coordinates to Earthcentered inertial 
coordinates avoids sinusoids within the transformation by resorting 
instead to the underlying right triangles corresponding to each 
angle measurement. R. M. Miller's alternative implementation 
appears to offer some nice efficiencies so we also employed it in our 
investigation. A standard approach for transforming between local 
level and ECI coordinates is provided in (211. 

26(t) _ -  aE  - a23(t) = -.e ; - = ta23(t) = a 
J 2 0  .2 a io 

p =@7-7- 
Fig. 4. Linearization of measurement equation in local 

coordinates (see [29, pp. 22, 231). 

are in [22].) An additional aspect not to overlook is 
that target location is referred back to ECI coordinates 
within the software by subtracting out the known 
location of the stationary radar array. Notice that 
for the above described RV target model of (14) and 
(31), respectively, both the system model and the 
measurement model are nonlinear. The linearization 
of the above nonlinear measurement of (31) is as 
provided in Fig. 4 (from [29, pp. 22, 231). In the 
earlier phase of this investigation that only performed 
covariance analysis and which utilized (13) as a 
simplified system model, evaluation of an effective 
linearized observation matrix H was about known 
true states, as obtained from a system simulation with 
zero process noise present. The linearization of the 
current EKF is about the most recent state estimate 
f~+ instead of the actual state (which is realistically 
presumed to be unknown to the observing sensor). 
Other transformations to easily get between local 
geodetic and Earth-centered coordinates are as in 
[18-201 (where operations counts and efficiencies of 
implementation are explored). 

azimuth, and elevation (RAE) measurements can 
be utilized within the nonlinear filtering application 
of exoatmospheric RV target tracking is offered in 
[27]. A more recent perspective is offered in [28]. The 
measurement model in [27] is identical to what is used 

A clever reformulation of how the radar range, 
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in this investigation. However, this approach of [27 
does not involve use of measurement iteration as is our 
thrust here. 

111. USE OF MEASUREMENT ITERATION YIELDS 
BETTER RADAR TARGET TRACKING 

The simulations of the radar case (using published 
Cobra Dane measurement covariances for generic 
range and angle7 being (15 ft.)2 and (0.05°)2, 
respectively) appear to be performing properly as 
depicted in Fig. 5 (corresponding to prior use of the 
system model of (13) for simulating the RV trajectory) 
for the case of a linear (point) target and in Fig. 6 
for the case of a nonlinear target (corresponding to 
use of the system model of (14) for simulating the 
trajectory, but linearized within the EKF) while both 
situations utilized the nonlinear measurement model of 
(31)). The true trajectory is depicted here as a solid 
continuous curve while the estimated trajectory is 
shown as a dashed curve? Although, the estimates 
of velocity in Figs. 5 appear to vacillate about the 
true velocity states having a known total speed of 7 
km/s, please notice from the coordinate scales that 
the estimates in Fig. 6 do in fact closely match the 
true velocity states within 10 percent, as is a goal 
of good estimator tracking performance. The better 
velocity tracking depicted in Fig. 6 is apparently due 
to the greater observability afforded by the system 
dynamics of (14), with inverse square gravity used 

’Expressed within the computer program in terms of kilometers and 
radians, respectively. 
*Notice that the results for the last 30 s or so for the nonlinear case 
are strikingly similar to straight lines thus justifying the simplifying 
assumption previously invoked in the earlier phase of this 
investigation. However, the RV velocities obtained in using this 
simplification were constant, while the velocities obtained in using 
the nonlinear model change in such a way that the speed increases 
as the impact point is approached (since no drag or damping 
is currently modeled in this software code that was developed 
primarily for investigating the behavior of radar tracking RVs 
exoatmospherically and uses this impact segment of the trajectory 
as merely a convenient crosscheck point). As with all the simulation 
runs depicted here, for convenience we cheat slightly and start the 
Kalman filter estimate off with the exact true value at the time of 
turn on or acquisition (time = 0 in the Figs. 5-7, but only at this 
start time). ’his would not be done in practice because it would give 
better tracking results than typically expected. However, if tracking 
results were lousy despite this better than average ideal initial 
estimate, then indications would be that something is drastically 
wrong, but which we, thankfully, did not encounter for this software 
mechanization. In the case of both system and measurement models 
being perfectly linear and okrvabili ty and controllability conditions 
holding, the ultimate long term performance of the Kalman filter 
estimator in performing tracking is independent of bad initial 
condition guesses since their effect dies out with the passage of time. 
However, for nonlinear models, the effect of bad initial condition 
guesses is long lived and if initially off by too much can trigger filter 
divergence or large scale departure of the estimates from the true 
state that just gets worse as time elapses without any ameliorating 
counter actions being available. 

rather than a constant for gravity, thus allowing better 
calibrationhacking of acceleration, and hence its 
consequence as better tracking of target velocity. 
The results depicted in Fig. 5 were obtained after 
using measurement iteration or relinearization, as 
portrayed both before and after invoking its use in 
Fig. 7. It is reassuring to see use of measurement 
relinearization improve EKF tracking performance in 
the manner that was claimed by KF specialists twenty 
years ago, despite encountering recent contradictory 
“conventional wisdom” (it is apparently commonly 
believed by several KF experts, recently polled, that 
no real improvement is offered through the use of 
measurement iteration since they claimed “to have 
never seen any improvements in EKF performance 
with the use of measurement iteration in their 
many years of experience”; a situation that is now 
understandable in light of the pervasiveness of the 
technical typo/faux pas introduced in the 1970s within 
this measurement iteration topic, as exposed and 
corrected in Section IIA). Measurement iteration 
brings expected improvements in tracking performance 
for the case of a linear target trajectory but apparently 
degrades performance in the case of the nonlinear 
target t ra ject~ry.~ 
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