





GENERAL @D ELECTRIC

TECHNICAL INFORMATION
SERIES

General Electric Company
Corporate Research and Development |
Schenectady, New York

AUTHOR it dynamic system sim- |4
Kerr, TH ulatiég; steady—ystate initial DZ,EZCRD095
’ value evaluation March 1972
"M ADA70 Steady-State Initial Value Con- [
vergence Techniques NO. PAGES 112

ORIGINATING CORPORATE

COMPONENT . . - 3 RESEARCH AND DEVELOPMENT
Information Science and Engineering SCHENEOTADY M.

sk Three distinct approaches for obtaining the ADA
steady-state initial values are discussed:

(1) using the ADA steady-state option, which requireg
the use of convergence factors;

(2) calculating the inital values directly by hand, by a
graphical analysis, or by using a special purpose com-
puter program;

(3) using the transient start option with assumed ini-
tial conditions and integrate to a steady-state.

The underlying theory of each of the three approaches is
discussed to show when and how they may be used.

A method is presented for determining bounds on the
convergence acceleration factors that ensure convergence
for linear systems. Extensions of all the techniques to
particular classes of nonlinear systems are included.

Numerous concrete examples of how the various techni-
ques are applied to actual computer simulations are included
tofacilitate reading. Although slanted toward ADA, theoryis
applicabletothe universal steady-state evaluation problem
faced by any general purpose continuous simulation program.

T ADA, differential equations, dynamic systems,

simulation, digital computations, continuous systems

INFORMATION PREPARED FOR _ Information Science and Engineering

Information Studies Branch

Additional Hard Copies Available From : Corporate Research & Development Distribution
P.O. Box 43 Bldg- 5, Schenectady , N.Y.,1230]

Microfiche Copies Available From Technical Information Exchange

P.0. Box 43 Bldg. 5, Schenectady , N.Y.,1230l
RD-54 (10/70)



S




TABLE OF CONTENTS

Section I: Introduction

Section II: Computation of Convergence (Acceleration) Factoxs
for Linear Systems

A,

Section III: Computing Initial Values Divectly (iinear systems and

Single D.E. with no feedback
Example 1: No loops

Single D,E. with arbitrary feedbaczk
Case 1: O = k, k, <1

3 4 -
Case 2: 1 <« k3 RQ
Case 3: k3 k4 = o~ 1
Ca§e by -1 < k3 k4 < 0
Case 5: k. k, = ~ 1
3 4

Example 2: Negative feedback
Example 3: Positive feedback

Two D.E. with arbitrary feedback
Case l: Series

Example 4: Series with negative feedback
Case 2: Parallel

Example 5: Parallel

General Approach for linear systems
Example 6: Partitioning a complicated
linear system

Example 7: How to proceed when a partitioned
system is not a special case of
the general cases analyzed above.

Exampie 7b: Another analytic technique for

solving Example 7.

gsome nonlinear systems)
Example 8: Nonlinear system by hand calculations73

Section IV: Computing initial Values by Integration (stable linear
systems and asympiotically stable nonlinear systems)

Section V: Linear System Configurations for which both Integration
and Iteration Fail to Yield the Steady-State Initial

Example 9: Nonlinear system by a graphical

analysis

Example 10: A nonliinear example

Values,

A,

The problem
Example 11: Initial wvalue calculations fail

for iteration and integration

Page No.

~J

12
13
14
14
15
16
16
21

24
24
32

45
48

54
55

57

60

68

74

76

81
86

86
86



Table of Contents (Cont'd)

Section V:

Section VI:

Appendix:

References

(Cont'd)

Theorem 1: Necessary conditions for iteration
failure of 2 D.E. configurations

Theorem 2: Sufficient condition for iteration
failure of 2 D,E. configurations

Theorem 3: Sufficient condition for integration
failure of 2 D.E. configurations

B. Detection of the problem: an application of
signal flow-graph techniques

Conclusion

A technique for solving nonlinear algebraic systems
or demonstrating that no solution exists
Example 12: Application of the technique to
demonstrate the inconsistency of a
particular system of 10 nonlinear
algebraic equations in 12 unknowns
(high dimensionality)

Page No,

88

96

98

100

102

104

105

112




ADA70 Steady~State Initial Value

Convergence Techniques

Section I: Introduction

The following approaches may be used to obtain the steady~-state

initial conditions for ADA simulations:

(1) use the steady-state start option, which requires the use
of convergence factors;

(2) calculate the initial wvalues dirvectly by hand, by graphical
analysis, or by using a speclal purpose computer program,

(3) use the transient start option with assumed initial

conditions and integrate to a steady-state.

For a stable linear system, all of the above approaches yield the correct
steady-state initial conditions. However, further investigation is
required for each nonlinear system to determine whether or not the
approaches will converge. There is no all inclusive theory for nonlinear
systems (please see the remarks in Section IIiI for some particular

peculiarities).

The underlying theory of each of the three approaches is discussed to
show when and how they may be used. The method of using the steady-state
start feature of ADA is discussed in Section II, A method is presented
for determining bounds on the convergence acceleration factors that ensures
convergence for linear systems. Several general cases are presented so
that the user may identify his problem as a special case of one of the

general cases and make use of the results of the general analysis. For

Manuscript Received 3/17/72
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many problems a quick sketch is all that is required to determine the

proper bounds,

Methods of calculating the steady-state initial wvalues directly by
solving the associated system of simultameous algebraic equations is

discussed in Section III.

The method of making a transient start and computing until all of
the wvariables balance to obtain the steady-state initial conditions is
discussed in Section IV. The limitations of this method are also

emphasized.

In Section V, examples are given of linear sysitem models where both
the steady-state iteration method and the integration method fail,
However, based on proofs of necessity and sufficiency, it is concluded
that this double failure only occurs when the system being simulated is
an inherent type n system, where n > O (D'Azzo and Houpis, 1960, p. 172).
For this type of system the initial values must be specified to assure a
zero input to the integrator. When both the iteration and integration
methods fail to converge, a more detaiied analysis of the model is
required. A system may not appear to be of type n (n > 0) but actually
is (please see Example 10). A method is given, using signal flow-graph

techniques, for detecting when a linear system is of type n (n > 0).

A technique is presented in the Appendix which may be used to solve
systems of nonlinear algebraic equations (or to determine that a solution
does not exist).

(Note: The version of ADA implemented on the computers at some G.E.

installations reverses the sign of the convergence acceleration
factor, so that if on,ewan'i:sR2 = - ,9, he must enter + .9)
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Section II: Computation of Convergence (Acceleration) Factors for Linear
Systems

The steady state initial value computations of ADA normally use a Gauss
Sidel Iteration technique. The iteration equations are in actuality difference
equations, so knowing whether the iterations converge is equivalent to knowing
whether the difference equations which describe the iterations converge.
Associated with each differential equation in an ADA simulation is a constant
known as a convergence acceleration factor to be specified by the user. This
Section will deal with how to determine bounds on the convergence factors to

ensure that the steady-state iterations converge when convergence is possible,

The iterations are described by difference equations and difference
equations converge as the number of iterations become "large" if and only if
the characteristic equations for the system of difference equations has all
its roots within the unit circle. In Section IL:A and Section I1:B, the
roots of the characteristic equation will be examined directly. Jury's
stability test (B.C. Kuo, 1963, p. 156) enables one to determine whether
a system of difference equations has all its roots within the unit circle
simply by observing whether certain inequalities derived from the coefficients
of the characteristic equation are satisfied. 1In this report, for sys;ems
involving two differential equations, Sections II:C-D, these inequalities are
replaced by equivalent functions of two real variables, which are investigated
to determine where these functions change from positive to negative. Once
these boundary regions are established, the results of each individual graph

can be superimposed to yield the regionms in which all the inequalities
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associated with Jury's stability test are satisfied. Essentially, this is a
graphical application of Jury's stability test to determine for what values

of the convergence acceleration factors the iterations converge. If there

are no values of the convergence acceleration factors for which the iterations

converge, then this fact will be evident in the graphical technique.

The purpose of this report is to derive the bounds on the convergence
acceleration factor for the single differential equation, no loop and single
loop case, and to do all the derivatiomns for the graphical technique to be
applied to the two differential equation configurations. To use the results
of this report the user will only have to identify his problem as a particular
special case of the general case treated, and quickly use the results that are

derived in this report.

It is possible that some systems will not converge for any choice of
convergence factors (please see Example 10). 1In case this situation should
arise, the conclusion that it is impossible is readily apparent from the

graphical technique.

Finally, a method of approach will be given (Section I1:D) for
extending the results of Section I to more complicated systems both linear
and nonlinear. The overall purpose of Section II is to present a rationale

in the selection of convergence acceleration factors.

A. Single D.E. with no Feedback

¥ = constant k Z

A 3
> l+k53.“ >

i,c. = Guess?
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The iteration equation for calculating the steady-state initial

condition is:

(1) ZN = k3 XA + R2 [k3 XA - ZN—l]

ZN + R2 N-l = k3 1+ R2) XA
The associated homogeneous equation is:
(2) 2yt Ry Zy =0
Assuming a solution of the form Zk = erk, where r is to be determined, and
substituting into (2) yields

erN + R er(N-l) =0

2
or

e’ 4+ R, =0 since er(N~l) # 0.

Therefore r = ln;— RZP and
[ 1 .

: _ (Ini- R Dk _ In - R 1k _ k
(3) Zk = C1 e 2 = C1 [e 21" = Cl ( R2)

is the transient solution of (l). Stability of (1) (i.e., whether the transients
die out as k > «) can be determined by investigating (3); it is from this
equation that bounds are determined for the convergence acceleration factor Rzu

Consider

(4) lim 2, = lim C1 (- Rz)k .
k> Te>o0



The limit in (4) exists only for

(5) -1 §_R2 <1 .

Let us now investigate the particular solution of equation (1). By the
method of undetermined coefficients (DeRusso, Roy, Close, 1965, p. 86), we

can find a particular solution of equation 1 making the assumption that XA

is a constant. Assume ZP S (k) = C2 and substitute into equation (1),

C2 + R2 C2 = k3 a+ R2) XA

c, (1 + R2) =k, 1 +R)X

2 3 2 A
(6) C, =k, X, for R, # -1 ;
hence ZP.S.(k) = k3 XA
The general solution is ZG.S.(k)’= Cl (- R2)k + k3 XA' Now iiﬁvzc.s.(k)
= Cl + 0+ k3 XA = k3 XA for ~ 1 < R2 < 1.

In summary, the iteration equation converges for - 1 < R, < 1, and this

2

iteration equation converges to k3 XA as shown in (17), where it has been

assumed that XA is a constant.

In actual practice for a D.E. with no loops, if X, is a constant, it is

A

best to let R2 = 0, in which case ZN = k3 XA for all N. Here the steady-state

is reached on the first pass of ADA.

If XA is not a constant but varies as a result of various inputs or

feedback loops we camnnot determine the required R2 unless we know explicitly

what XA is; in general, we must expand our field of view to encompass all



the feedback loops to determine what acceleration factors are needed to

ensure convergence.

Example 1: Consider the following block diagram:

By the theory for D.E.'s with no loops, for convergence, it must be

that—l<R2<+l.



SLIST ITER2
01/03/72

30010
G3020
06030
00340
00050
00060
o0a70
Oa6a0
OGa90
a0100
ga110
00120
003130
0140
“&3@0

STRP»/s1s »8s16555Ts13519s255315375435251452653850,62,

10:56 -8~

/7% SNUMB THKAA N e B

/$ IDENT T.KERRsKERR 37 S5S78D S5-41T1

/% PRGRAM RLHS. . '

/$ LIMITS 1516000551000,

/% PRMFL H¥%,Z,R,WATSON/ADATOA

/% DISC Q2,X2R,20L" .

£ PEMFL PsRAA/SsLs%/P

7% NOTIFY %75

03403231

"T.KEFR 9/21/71

"R&DC 37 578D 8%235-4171 ;
*CANVERGENCE ©F ITERATIONS FOR Se5. FOR NO LO@P
141550315551

7 h

5:1
Pe0

&NDJ@B

PRS]



SLIST QUTS |
01703772  11:09 -9- R = 4+ .05

LDATO 108472 104517
CASE 1 STEADY-STATE INITIAL VALUES ITERATION 10
CONSTANT» STEPs AND TABULAR FUNCTI@NS
NAME . VALUE  NAME VALUE NAME VALLE
U 3.0000E 00

DIFFERENTIAL EQUATIONS

NAME Y. DY1 oo
W 6 -0000E 00
CASE 1 FINAL VALUES AT TIME 1.0000E 00

CONSTANT»> STEPs AND TABULAR FUNCTI®NS

NAME VALUE . NAME VALUE NAME VALUE
u- 3.0000E 00
DIFFERENTIAL EQUATI®NS
NAME Y DY1 oos
W 6.0000E 00

CASE 1 C@NVERGENCE OF ITERATIONS FOR S.S. FOR NO LGP

TIME L W
0. 3.0000E 00 6.0000E 0O
0. ..  3.0000E 00 6.0000E 00

E1.0000E 00 3-.0000E 00 6.0000E 00
CPU TIME - T@TéL = 0.410 SECGNDS-

READY



SLIST @UT6

01703772  11:29 -10-
R
2
ADATO Q1703772 11.414
CASE 1 STEADY-STATE INITIAL VALUES ITERATION 10
CONSTANT» STEP, AND TABULAR FUNCTIGNS
NAME VALUE NAME VALUE NAME VALLE
U 3.00008 00
DIFFERENTIAL EQUATIONS
NAME y - 2R
W 6.0000E 00
CASE 1 FINAL VALUES AT TIME 1.00G0E 00
CONSTANT»> STEP, ARND TABULAR FUNCTIZNS
NAME VALUE NAME VALUE NAME VAL LE

U 3.0000E 00
DIFFERENTIAL EQUATIGNS
NAME Y DY1 os

w 6.0000E 0O

CASE 1 CONVERGENGE OF ITERATIONS FOR S.S. FOR NO LRGP

TIME U W
0. 3.0000E 00 6.0000E 00
De . .. . L 3.0000E QO 6 0000E 00

E1.000PE 00 B8.000UE 00 6.0000E 00
CPU TIME - TOTAL = 0.417 SECONDS.

READY




SLIST QUTTY

- o o S e e e _ll_
01/Q03772 11232 R, = 0
ADATO  01/03/78 11454
CASE 1 STEADY-STATE INITIAL VALUES ITERATI®N 2

CONSTANT, STEP, AND TABULAR FUNCTIENS

NAME VALUE . NAME VALUE NAME VALUE
u 3.0000E 00

DIFFERENTIAL EQUATIONS

NAME Y DYl eo.
W 6<0000E 00 |
CASE 1 FINAL VALUES AT TIME 1.0000E 00

CONSTANT> STEP> AND TABULAR FUNCTIONS

NAME VALUE . NAME VALUE NAME VALUE

u- 3.0000E 00 |

DIFFERENTIAL EQUATIONS

NAME . Y. . DY1 o

W 6+0000E 00 |

CASE |  CONVERGENCE OF ITERATIONS FOR S.Se. FOR NG LAGP

TIME v W

0. 3.0000E 00 6.0000E 00
O-. .. . 3.0000E 00 650000E 00
E1-QOOGE QO 3-0000E 00 6-0000E 00

CRU TIME - TOTAL = 0.466 SECONDS.

READY
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The problem is programmed on file ITER2. File OUT5 is the output

when R2 = + 0.25., V¥File OUT6 is the output when RZ = - 0.25. Both the

positive and negative value of R, yield convergence at the same rate

2
(within 10 iterations) for the no loop case. As mentioned in the
previous theoretical discussion, for no loops, it is best to have
R2 = 0. The file OUT7 is the output when R2 = (0. Convergence is

achieved within 2 iterations.

B. Sinegle D.E. with Arbitrary Feedback

| Algebraic solution

- h T Tk3+ S “r ky W=k, ¥) =¥~
- A s
i R, | ky U= [1+%ky k1Y
!
| — |
= v '["1‘”?'1';“ 1

The above block diagram can be used for analyzing the convergence when

there is positive feedback simply by making the necessary changes in k4.

'he difference equation which describes the iteration in the steady-state

iteration procedure is

YN+l = k3 (U - k4 YN) + R2 [k3 (T -~ k4 YN) - YN]
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or

YN+1 + [k3 k4 + R2 (k3 k4 + 1] YN = k3 1 + R2) U.

The solution of the associated homogeneous equation satisfies

N+1

N
R + [k3 k4 + R2 (k3 k4 +1)]1 8 =0 ,

which is the characteristic equation; the solution is

B =~ [k, k, +R (k3 k, + 1)1

3 74 2 4

We have convergence of the iteration equation if and only if

—l<—[k3k4+R2 (k3k4+1)<1.

This means that using the above inequality we can obtain bounds on R2, such
that the above inequality is satisfied. Rearranging the above inequality

we obtain

k3 k4 -1<- R2 (k3 k4 + 1) < k3 k4 + 1.

Assume k3 > 0, we have five cases to investigate.

Case 1: 1 3_k3 k4 > 0
k, k, - 1D
3 74
- >R, > -1
(k3 k4 + 1) 2
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Now 1 i.k3 k4 k3 k4 > 0 =0 > - k3 k4
0>kyk, -1 kyk, >0>=kyk,
- (kyk, - 1) >0 kyk, > - ky k,
(U m D L+ kg ky > 1=Ky k, == (kg kg = 1)
(k3k4+-1)-— .
- 1+ k3 k4 . (k3 k4 + 1)
1+ k3 k4 (k3 k4 + 1)
- (k3 k4 - 1)
For k3 k4 > 0, we have that 1 > (k3 k4 ™D > R2 > - 1, for convergence.
Case 2: k3 k4 > 1
Now k3 k4 -1>0
S
374
) (k3 k4 - 1) <o
(k3 k4 + 1)
(k3 k4 - 1) »
For k3 k4 > 1, we have that 0>—W>R2 > - 1, for convergence.
Case 3: (Positive feedback) k3 k4 < -1
k3 k4 < -1

k3 k4 +1 <0

1>-1



k3 k4 +1> k3 k4 -1

k3 k4 -1

1o =t
ky k, + 1

(k, k, - 1)

1. ._-3
(c, k, + 1)

4

(k3 k

For k3 k, < - 1, we have that - &

4

(k3 k4 - 1)

(k3 k4 + 1)

Case 4: (Positive feedback)

(k k4 + 1)

(k3 k4 -1

(k3 k4 + 1)

For - L <k, k, <0 , we have that -

3 74

i (ky k, = 1)
(k3 k4 + 1)

» 1, for convergence.
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_l)

(k
(k

- < R, < - 1, where
3k4+1) 2

< -1 , for convergence.

-1 <k, k

<

0

+,
'—‘1
~r
1
i
e
o
i
pmt
v
s
=
i
-

k, - 1)
3 4 _—

k, + 1) 2

3 74

>

1

b

where



-16—

Case 5: (Positive feedback) k, k, = -1

The difference equation which describes the iteration is:

<
I

k.U -k, k YN + R, [k, U-%k, %k, Y- Y]

N+1 T T3 3 74 2 "3 374 N N
=k3U+YN+R2k3U
or
YN+1-YN=R3 (1+R2) U.

The characteristic equation is

YN+1 - YN = 0 or (E ~ 1) YN = 0 ; the iterations will not converge no

matter what the acceleration factor is.

(However, this is good since the closed loop transfer function is

k3‘

1+ Ts + ...
-1
1+ Tg+ oo

=3
i

1+

k3 . k3

"1+ Te+ oo -1 5 (TH+ ...y 3

which is called a type one system and which should have the initial condition
specified exactly.)
Example 2: Negative Feedback

A numerical example will now be worked to illustrate how to apply the

general results of the above analysis to a specific problem with negative



-17-

feedback. Consider the following block diagram:

U E
+ 1 ios : >
- i.co = 57
guess
k3 = 10
k4 =1
k3 k4 =10 > 1

By Case 2 of the analysis of a single differential equation with a feedback

loop, the required convergence factor has the following bounds:

RCUEL
374
- i .
- .8181 = 11~ R2 1.

These results are verified in the following computer simulation:



SLIST

ITERY . ..

01/03/72  11:46 -18-

00010
00020
00030
00040
Q0050
00050
00070
00080
00090
00100
00110
00120
00130
00140
00141
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250

READY

STR#:/)!: 38:160::7:13019:25;31:37343,.al4:26:38a50’62:: 6

/% SNUMB THKAA .
/% IDENT.T. KERR,KERR 37 578D 5-4171
/% PROGRAM. RLHS. .

/$ LIMITS. 1,16000,51000. . |

/% PRMFL H*:Z;RaWATS@N/ADA?OA

/% DISC 02,X2Rs20L. }

/% PRMFL P%sR/A/SsLs%/P

/% NOTIFY %x/S

03403231 . .

"TKERR 9/21/71 o

*R&DC '37. 578D 8#%235~ 4171

iCQNVERGENCE oF ITERATIQNS FBR S. S. F@R 1 LBBP

151550313531

6 1 2 10

o T\ w0 1)

C,.)C:‘“Q"‘N

E 1152:U3Y

53,,91,10 l 1
034031
/$ ENDJEB

Necessary for Convergence




SLIST OUT8 .
01703772  1R:35 ~19-

\

-1<-.91< - .8181

GASE 1 STEADY-STATE INITIAL VALUES ITERATIMN 5

ALGEBRAIC FUNCTI@NS

NAME VALUE . NAME VALUE NAME
E 207273E-01

CONSTANT» STEP» AND TABULAR FUNCTIGONS
NAME VALUE. . NAME VALUE NAME
u 3.0000E 00

DIFFERENTIAL EQUATI@NS

NAME Y DY1 ooe
Y 2.7273E 00

!

CASE 1 FINAL VALUES AT TIME 1.0000E 00

ALGEBRAIC FUNCTIONS
NAME VALUE NAME VALUE NAME
£ 2.7270E-01

CONSTANT» STEP, AND TABULAR FUNCTIONS

NAME VALUE NAME VALUE NAME
u 3.0000F 00

DIFFERENTIAL EQUATIONS

NAME 'S . PYI ooo

Y 2.72738 00

VALUE

VALUE

VALUE

VALUE

CASE 1|  CONVERGENCE OF ITERATIONS F@R SeS. FOR 1 Lagp

TIME Y u E
0. 2.7273E 00 3.0000E 00 2.7273E-01
0e . 2.7273E 00 3.0000E 00 2.7273E=01

E1-0000E 00 2.7273E 00 3.0000E 00 2. 7270E~01

CPU TIME ~ TOTAL = 0.446 SECONDS.




SLIST ouT9 .
01/03/72 12143 20—

ADAT0 01103/72 12.527

1 1 o

ADA CASE 1

qQ
8181_"_—<—-

STEADY-STATE . INITIAL CZNDITIONS HAVE N@T BEEN FUND

WITHIN. 50 ITERARIGNS, . ..
RESULTS @F LAST ITERATION F@LL@W‘

[X]

ALGEBRAIC FUNCTI@NS

NAME  VALUE. _  NAME VALUE
E -9.6732E 05

te

CONSTANT, STEP,» AND TABULAR FUNCTIONS

NAME ~ VALUE . NAME VALUE

u 3.0000E 00 |
PIFFERENTIAL EQUATIONS

NAME ~ VALUE ~ ERRGR _  NAME
Y ~1.8678E 06 1.0641E 07

READY

- .79
NAME VALUE

NAME VALUE

VALUE ERR@R
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Example 3: Positive Feedback

A numerical example will now be worked to illustrate how to apply
the general results of the above analysis to a specific problem with

positive feedback. Consider the following block diagram:

R,
() Tt . 1 i
+-$~‘</ S + 1 - 4s >
! m— R,
: - 1

k3 =7 >0

k, = -1

k3 k4 =7 (~1)=-7<-1<0

By Case 3 of the analysis of a single differential equation with a feedback

loop, the required convergence factor has the following bounds:

- (k3 k4 — Y <R, < -1 or
(k3 k4 + 1) 2
Ty -8 ;
- 1,333 = ~ :g < R2 < -1 .

These results are verified in the following computer simulation.



SLIST ITERS |
01/03772  14:31 -22-

QU010 STRPs/Zs s :8316::@7:13319325;31337:439o914:263&§9599é¥3 s0
G0020 /3 SNUMB THKAA. -
00030 /7% IDENT T.REREsKERR Si 5?8D 5°4171

00040 /% PRAGRAM RLMHS. . ..

000590 /% LIMITS 1916000991000 ..

QoGea 75 PRE H*sZsRsWATS@N/ADA?OA

Q070 /% I@" DRy APR220L .

OGOBD /% pRMFL P*:R/A/bsLa*/P

DGOY0 /% NETIFY #/8 '

Q0100 03403231 . .

G130 *TeKERR 9/21/71

0320 °"R&DC 37 S78D 8%235- 4371 . e - o
00130 "CANVERGEMCE @F ITERATIONS FOR S+S« F8R P@BSITIVE FOBK» 1LAAP
QOLa0 1313503513531 o '

no1s50 2
00160 1=5:
QRL70 Q35
QUIRD 323Y
00190 s
goz00 &6 ... i
QORID H219323UsY

Q0220 Ysis3Es13Yy . .
00230 1g-1.16662T721:~4
00240 0354031 B
DOZ5H0 /%5 ENDJOB

éiéééiwééib

READY

Necessary for Convergence

- 1.333 < R, <=1
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$LIST @UTI10
01,0372 14335

R, = - 1.1666
ADATO 0D1/Q3772 14.510
CASE 1 STEADY-STATE INITIAL VALUES ITERATI@N 3
ALGEBRAIC FUNCTIGNS
NAME VALUE NAME VALUE NAME VALUE
E -1.0000E 00
CONSTANTs STEP»> AND TABULAR FUNCTI@NS .
NAME VALUE NAME VALUE NAME VALUE
U 6+0000E 00
DIFFERENTIAL EQUATIONS
NAME y DY1 «..
Y -7.0000E 00
CASE 1 FINAL VALUES AT TIME S.0000E 00
ALGEBRAIC FUNCTI®NS
NAME VALUE " NAME VALUE NAME VALUE
E -1.0000E 00
CONSTANT» STEP»> AND TABULAR FUNCTIG@NS
NAME VALUE NAME VALUE NAME VALUE

u 6.0000E 00
DIFFERENTIAL EQUATI®GNS
NAME Y DYl oea

Y «7.0000E 0O

CASE 1 CONVERGENCE OF ITERATIONS FOR S«S« FOR POASITIVE FDBK.,1L@GP

TIME Y U E
O =7.0000E 00 6.0000E 00 ~-1.0000E 00
0. -7.0000E 00 6.+0000E 00 ~9.9999E-01

1 .0000E 00 =-7.0000E 00 6.0000E 00 -1.0000E 0O
2.0000E 00 -7.0000E 00 6.0000E 00 -1.0000E 00
3.0000E 00 -7.0000E 00 6.0000E 00 =-1.0000E 00
4.0000E 00 -7.0000E GO 6.0000E 00 -1.0000E 00
E5.0000E 00 -7-D000E 00 6.0000E 00 -1.0000E 0O

cPU TIME - ToTAL = 0509 SECONDSN
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C. Two D.E. with Arbitrary Feedback

Case 1: Series

i k
U - E1> 3 oY
~ 1+ T1 s+ ...

The above block diagram can be used for positive feedback simply by
making the necessary gains (k4, k5, or k6) negative. The absence of feedback

can be obtained by making the appropriate gains zero.

The difference equations which describe the iteration in the initial

value calculation for the above configuration are:

YN+1 = k3 U - k6 YN - k4 Z.) + R2 [k3 U -k, ¥ -k, Z)~-7Y_]

N 6 N T Ky %y N
= - ! - -
Zypp = Mg (Y = kg 20 + Ry Img (Y = kg Z) - 2]
or
Tyep = Ky (L4 R U= kg ke Yy = Ry Ky ki Y= Ry Yy - kg k, 7 - Ry Ky k, 2y
7 o =m. Y.+ R'm

- - v - 1
N1 - My Yy PRy mg Y mmy kg 2y - RyTomg kg 2 - Ry 2y
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or

YN+l + [k3 k6 (1 + R2) + R2] YN + k3 k4 (1 + R2) ZN = k3 1+ R2) U

i
o

Z + [m3 k

: 1 ' _ ' ;
N+1 (1 + RZ )y + R2 ] ZN m3 1+ R2 ) YN

5

or, equivalently,

{E + [k3 k6 (1 + R2) + R, 1} Y + k k (1 + R2) ZN =k, (1 + R2) U

2 3 3

— . Ty v ; ’ e [}
my (1 + R2 ) YN + {E + [m (1 + R ) + R '3 ZN 0.

Now eliminate the variable YN to obtain a second degree characteristic

equation for the system of iterations. The associated homogenous difference

equation is:

2 7 Voo o
E + [m3 k, (1L + R )+ R2 + k3 1+ R2> + R2] E +

{[m3 k. (1 + Rz') + R, [kB k6 (1 + R2) + R2] + my k k4 (1L +R ) (1 + R Y} =0

5 2

The characteristic equation for the system of case 1 is:

2 o .
E + [m3 k5 (1 + R2 ) + k3 k6 (1 + RQ) + R2 + R2 1 E

+ R, R."+m, k, (k

1
) Ry 3 Kq + k ) (1 + R Yy (1 + R )+ R m

5 (LR,

5 6 3

' =
+ R2 k3 k6 (1 + R2) o .

The iteration equations converge if and only if the roots of the characteristic
equation are within the unit circle. Jury's stability test gives a convenient
criteria for determining when the roots of the characteristic equation are
within the unit circle by looking at relationships between the coefficients

of the characteristic equation. Jury's stability test (B.C, Kuo, 1963,

p. 156) indicates that for the system of case 1, we have convergence if and
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only if all of the following four inequalities are satisfied:
Condition I:

1]
k6 1+ Rz) + R, + R, '] +

1
1+ [m3 k5 1+ R2 ) + k 9 2

3

1 \i ]
+ R2 R2 + my k3 (k5 k6 + k4) (1 + R2) 1+ R2 ) + R2 m, ks (1 + R2 )

1
+ R2 k3 k6 a + R2) >0

Condition II:

1
1 - [m3 k5 1+ R, )+ k. k, (1 + R2) + R

1
3 % R,y

2

| 1 1
+ R2 R2 + m3 k3 (k5 k6 + k4) 1+ R2) 1+ R2 )+ R2 m3 k5 (1 + R2 )

1
+ R2 k3 k6 a + Rz) >0

Condition III:

1 . 1] 1]
R2 R2 + My k3 (k5 k6 + k4) 1 + R2) a + R2 ) + R2 m, kS (1 + R2 )

\
+ R2 k3 k6 (1+ R2) +1>0
Condition IV:

\i 1] 1]
0 > R2 R2 + my k3 (k5 k6 + k4) 1+ Rz) (1 + R2 ) + R2 m, ks (a1 + R2 )

1]
+ R2 k3 k6 1+ Rz) -1

In order to assure convergence of the iterations, we must pick R2 and R2'

so that all four of the inequalities of the preceding paragraph are satisfied.

It is frequently useful to make the following definitions:
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let H

1 1+ R2

; 1
9 1+ R2

=
]

Now conditions I-1IV become
Condition I-a:

(k3 k6 m, ks + m, k3 k4 + my k5 + k3 k6 + 1) H1 H2 >0

Condition 1I-a:

4 = 2 (m3 k5 + 1) H2 -2 (k3 k6 + 1) Hl

+ (k3 k6 ., k5 + m, k3 k4 + m, k5 + k3 k6 + 1) Hl H2 >0

Condition III-a:

2 + (k3 k6 M, k5 + m, k3 k4 + m, k5 + k3 k6 + 1) Hl H2

- (m, k_+ 1) H2 - (k

53 Ko + 1) Hl > 0,

3 K

Condition IV-a:

(k, k, m, k., +m_ k, k, +m, k_ +k, k, + 1) Hl H2

376 35 37374 3°5 376

- ¢ - k .+
(m3 k5 + 1) H2 (k3 k6 1) H1 <0 ,
Once we know in what region of the Hl - H2 plane these inequalities are satisfied,
we know (by a translation) in what region of the R, - R,' plane the inequalities

2 2

are all satisfied. Now let the following real valued functions of the two

real variables H H, be

)
, ,
ho(H, Hy) = (kg kemy kg +mgkyky +my kg +ky ke +1) B H
. A .
g (H,, Hy)) =4 -2 (myk,+ 1) Hy - 2 (kg k, + 1) B



-28-

+(kkmk+mkk+mk+kk+l)HlH

376 35 3734 35 376 2

o

p (Hj, Hy) 2= (my kg + 1) Hy - (kyket 1) H

+ (k k + m, k. k, +m, k. +k_ k, + 1) H

6 M3 %5 374 35 376 2 ’

and

q (H,, H ko + 1) Hy = (kg k

A _
) = = (my kg + 1) Hy

1 6

+ (k, k, m, k. + mg k k, +m, k., +k, k, + 1) H

376 35 374 375 376 2

We want to find the (Hl, H2) a member of Euclidean 2-space,|R 2, such that

h (H HZ) >0, g (Hl, H2) >0, p (Hl, HZ) >0, and q (Hl’ H2)< 0, that is,

l’

we want the set

{(Hl, Hz) | h (Hl, Hz) > 0}{’\{(H1’ H2) | g (Hl, H2)<> o}(—‘{(ﬂl, Hz) | p (Hl, Hz) > 0}

{RW{(Hl, HZ) | q (Hl’ H2) < 0}, the region of the Hy - H, plane in which all of

the inequalities are satisfied.

We can find the regions in which, simultaneously, h (Hl’ HZ) > O; g (Hl, Hz) > 0,
P (Hl, H2) >0 and ¢q (Hl, HZ) < 0 by first finding the boundaries of the region
for each individual function, determining on which side of the boundary the
correct ine&uality is satisfied for each function, and then taking the intersection

of the allowable region of the Hl - H2 plane for all four functions.

For h (Hl’ HZ}, the bogndary occurs where h (Hl, H2) = 0, which is

Hy H)y=0 (l.e., H =0 and H, = 0 are the boundaries).



> T

v
jax

If (k3 k6 m3 k5 + m3 k3 k4 + m3 kS + k

region is n» 2

3 k6 + 1) » 0, then the allowable

If (k3 k6 m3 kS + m3 k3 k4 + m3 k5 + k3 k6 + 1) < 0, then the allowable

region is \ H

2

For g (Hl, HZ), the boundary occurs where g (Hl, Hz) = 0, which is

-4+ 2 (k

k, + 1) H ]
0 = 36 1

373

2 [- 2 (m3 k5 + 1) + (k3 k6 my kS + m, k k4 +m, k., + k, k, + 1) Hlj

35 376
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a hyperbola having a vertical asymptote at

2 (m3 k5 + 1)

+m, k, k, + m, k_ + k3 k6 + 1) °

H m, k
6 375 373 74 375

1 (k3 k

a horizontal asymptote at

2 (K, k, + 1)
. 3%

1]
2 k3 k6 m3 k5 + m3 k3 k4 + m3 k5 + k3 k6 +1

an Hl intercept at

2

H )
3 ke + 1)

17 (k
and an H2 intercept at

2

H -
3 k5

2 (m + 1)

If the Hl - intercept is larger than the vertical asymptote, i.e., if

2 (m3 kS + 1) 9

< ’
(k3 k5 my k5 + my k3 k4 + m, k5 + k3 k6 + 1) k3 ke + 1

the hyperbola is of the form A By
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However, if the H. - intercept is smaller than the vertical asymptote, i.e., if

1

2 (m k5 + 1) 2

s ,
(k3 k6 my k5 + . k3 k4 + my k5 + k3 k6 + 1) k3 k6 + 1

the hyperbola is of the form

H2
A g B
> 4 .
1
g___.mm_//!
R e T o BRI ey X Tt
i (
!
i C
!

The region partitioned by the graph of the hyperbola must be further examined
to determine in which regions, A, B, and C, the inequality, g (Hl, HZ) > 0, 1is
satisfied, This can be determined by picking one convenient point (Hj, Hz)
and computing g (H:, Hz)o The direction of the inequality between g <H1’ Hz)

and 0 is the same in region A as it is in region.C, while the inequality is

reversed in region B.

Similarly, the boundaries for p (Hl’ H2) and g (Hl, H2) are the

hyperbolas
[-2+(k '6«&‘1)}1]
H =
2 [- (m3 5 + 1) + (k k6 m, ks + my k3 k4 + m, k5 + k3 k6 + 1) H ]
and

[+(k 6+1)H]

H =
2 [- (m3 k5 + 1) + (k3 k6 my kS + my k3 k4 + m, kS + k3 k6

+1)H]
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respectively. The orientation of the hyperbolas and the regions in which
the inequalities p (Hl’ H2) >0, q (Hl, H2) < 0 are determined in a manner

analogous to that described for g (Hl, HZ)'

Once the regions in which each inequality is satisfied is obtained, one
may obtain the region in which all of the inequalities are satisfied by
superimposing the various individual graphs. This can be visualized as
overlaying several transparénciés of the four individual graphs to obtain the

appropriaﬁe region.
Example 4: Series with Negative Feedback

A numerical example will now be worked to illustrate how to apply the
general results of Section II:Case 1 to a specific problem. Consider the

following block diagram which is to be simulated using ADA:

10 LN 1.6666 z_,
"+Q (IEEREE 1+ 1.276 s + .07783 2

T
R2 RZ

In the simulation, it is desired that the steady-state initial values be
calculated by ADA; to do this, it is necessary to specify R2 and R2', the
acceleration factors. To obtain correct bounds on R2 and R2' we can use

the results of Case 1 with

kS =0 = k6
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Now k3 k6 my kS = 0 m, k3 k4 = 16,666 ; my k5 =0 = k3 k6. The four

functions are

h (Hl, H2) = (17.666) Hl H2 ,

g (Hl, Hz) =4 -2 H) = 2 Hy + (17.666) H1 H2 ,

p (M, Hy)) = 2 - H, ~ H + (17.666) B H, ,

q (B, Hy) = - Hy - H + (17.666) H OH,
we seek the region in which h (Hl’ Hz) =0, g (Hl, Hz) > 0, p (Hl, H2) > 0,
and ¢ (Hl, HZ) < 0 simultaneously. Recall from Case 1 that H1 & 1+ R2,

H, R RZV; for convenience let X 2 Ry, ¥ = Rz'.

Considering the first equation, h (X, Y) = 17.666 (1 + Y) (1 + X); the
boundary of the desired region is where h (X, Y) = (17.666) (1L + Y) (1 + X)
= 0; this means that Y = - 1 and X = - 1 are boundaries. The region in

which h (X, Y) > 0 is shaded below.

X==11]
\

!
f
B
1
i
|

> X

Considering the second equation, g (X,Y,) = 4 - 2 (1 +X) -2 (L +7Y) + 17.6
(1 +X) (1 +Y7Y); the boundary of the desired region is where g (X, ¥) = &4 - 2

- 2X -2~ 2Y + 17.666 + 17.666 X + 17.666 Y + 17.666 XY = O, or
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v =" (17.666 + 15.666 X)
T (15.666 + 17.666 X) °

The above is the equation of a hyperbola having vertical and horizontal

asymptates of - ,886792 and X~ and Y- intercepts of - 1,1276. The region

in which g (X, Y) > O is shaded below.

g X, Y)y<o0

= - ,886792

Considering the third equation, p (X, ¥) =2 -~ (1 +Y) - (1L + X)
+ 17.666 (1 + X+ Y + X Y) ; the boundary of the desired region is where

p (X, Y) = Y (16.666 + 17.666 X) + (17.666 + 16.666 X) =

g o - (17.666 + 16.666 X)
oF (16.666 + 17,666 X)

The region in which p (X, Y) > O is shaded below.

| ] F}—L:\\\\ \' \-\ - 094339

(1, - 1
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Considering the fourth equation, q (X, Y) = =« (L +Y) - (L + X) + 17.666

(1 + X) (L + Y); the boundary of the desired region is where

q (X, Y) = 15,666 + 16.666 X + 16.666 Y + 17.666 XY = 0

or

- (15,666 + 16.666 X)

Y = (16.666 + 17.666 X) ° the reglgzliz which q (X, Y) < 0 is shaded

'

= - .94339

Now that we have the region in which the four inequalities are satisfied,
we can plot them all on the same graph to find their common intersection
(i.e., that region in which all four inequalities are satisfied). The

detailed graph of all four is now given.
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Nq (X, ¥) =0

Q—_—.-———.———s—_--—.

0

K\\_q(X,Y) = Q ﬁ‘\w

interactions converge

X -1
P(X,Y) =0 g(XsY) =0

q(XsY) =0

The shaded area in the region ef the (X, Y) - plane (i.e., the region of the
(R2 - RZ') - plane) for which the iteration scheme for calculating the
initial conditions converge. A more detailed graph which has the proper scale

follows.
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Simulation of Example

A computer simulation can now be performed to verify the results of the

theoretical calculations.

U= 2.08 10 Y 3 1.666 .~ Zp
1+ .25 s : 2
- 1+ 1.276 s + 0.07783 s
i.c. = 1,175 i.c. = 1.96
R .
2 Rz‘

Algebraic result:
Y =10 (U - Z)
7 = 16.6 [U - Z]
17.6 Z = 16.6 U
For U = 2.08, the answers should

7 = 16.5' U be Z = 1.9622

17.6 Y = 1.1778
Y =10 (1 - 0.94339) U

These answers are verified by the computer choosing R2 and R2' in the
shaded region of the composite graph. For R, = - ,94339, R '=+ 1.2, this

2

point is near the boundary of the allowable region for convergence and 225

2

iterations are required. For R2 = - ,97, R2' = 1.4, well within the shaded
region, convergence is obtained in 22 iterations. Convergence is obtained

for R2 =+ 1.4 and Rz' = - ,97, It is not necessary for the initial guess

of the initial condition to be close to the actual solution. They can be off

by a large factor and atill the iterations will converge. Notice that the



$LIST ITER4 . -
01703772 12155 a0

Q0010 STRPs/sls 282165357513s19225531537543523,14,26538,80562,°,0
Q0020 /% SNUMB THKAA. .. .. .. B
00030 /% IDENT T-KERRsKERR 37 578D 5 4171

Q0040 /8% PROGRAM RLHS =

00030 /% LIMITS. 1:16000::1000

QR060 /% PRMFL. H*aZsRaWATS@N/ADA?OA

0Q070 /% DISC.P2sXRR+20L. _

0008Q /3 PRMFL . P¥%sR#A/SsLs%x/P

00090 /3% NATIFY */§

00100 05403251

00110 "T+KERR 9/21/71 Coe

00120 °*R&DC.37. 578D. 8%235= 4171 L P ) _
00130 °CONVERGENCE @OF Twg LQ@P SeSe ITERATIONS FOR I+Ce
00140 191930091;531

00150 2

00160 1- 581 -5 l 6¢ 1 2 10

00170 0:181:0:0

00180 323UsYSZ3E

860190 Use.

50200 2.08

00210 E3i11323Us2

00220 0s1s-1

00230 YsisEs131

00240 1017528=.97¢ 10918025

0pe50 zZstisvys2s1

00260 1.9621. 4210 666 l 1 276.o07783

00270 034031

00280 /% ENDJOB

READY



-40-

SLIST QUT11 .
01703772  13:32

ADATQ 01703778 18.900

CABE 1 STEADY-STATE INITIAL VALUES ITERATION 22
ALGEBRAIC FUNCTI®NS

NAME VALUE NAME VALUE NAME VALUE

£ 1.1778E-01

CONSTANT» STEP» AND TABULAR FUNGTIONS

NAME VALUE NAME VALUE NAME VALUE

U 2.0800E 00

DIFFERENT 1AL EQUATIONS

NAME Y DY1 ees

z 1.9622E 00 O.

Y 1.1778E 00

CASE 1 FINAL VALUES AT TIME 1.0000E 00
ALGEBRAIC FUNCTIBNS

NAME VALUE NAME VALUE NAME VALUE

£ 1.1778E-01

CONSTANT» STEP» AND TABULAR FUNCTI@NS

NAME VALUE NAME VALUE NAME VALUE

U 2.0800E 00

DIFFERENTIAL EQUATIGNS

NAME Y DY1 eos

z 1.9628E 00 1.0507E-06

Y 1.1778E 00

CASE 1  CONVERGENCE OF TW® L@OP S.S. ITERATIONS FOR I.Ce

TIME U Y z E

0. 2.0800E 00 1.1778E 00 1.9622E 00 1.1778E-01
0. 2.0800E 00 1.1778E 00 1+9622E 00 1.1778E-01
E1+-00P0E 00 2.0800E 00 1.1778E 00 1.9622E 00 1.1778E-01

CPU -TIME -~ T@TAL = 0+3527 SECONDw.
READY
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$LIST BUTI1Z2

01/03/72 13142 R, = - .97
R," = 1.4
ADATD 01/03/72 13.643
CASE 1 STEADY-STATE INITIAL VALUES ITERATI@N 24
ALGEBRAIC FUNCTI®@NS
NAME . MALUE NAME VALUE NAME VALUE
E 1.1778E-01
CONSTANT, STEP» AND TABULAR FUNCTI@NS
NAME VALUE NAME VALUE NAME VALUE
u 2.0800E 00
DIFFERENTIAL EQUATIBNS
NAME Y DYl s
z 1.9628E 00 0.
Y 1.1778E 00
CASE 1 FINAL VALUES AT TIME 1.0000E 00
ALGEBRAIC FUNCTI@NS
NAME VALUE NAME VALUE NAME VALUE
E 1.1778E-01
CONSTANT» STEP» AND TABULAR FUNCTI@NS
NAME VALUE NAME VALUE NAME VALUE

u 2.0800E 00

DIFFERENTIAL EQUATJIONS

NAME Y . DY1 ee.
z 1+.9628E N0 1.2341E-05
Y 1«1778E 00 ,

CASE i CONVERGENCE OF TWO LOOP S+S. ITERATIONS FOR I«C.

TIME u Y z E
O 2+0800E 00 1+1778E 00 1+.96822E 00 1.1778E-01
O« 2.0800E 00 1.1778E 00 1.9622E 00 1.1778E-01

E}}OOOOE 00 2.0800E 00 1«1778E 00 1+9622E 00 1.1778E-01

CPU TIME - TOTAL = 0575 SEC@NDS.
READY
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$LIST BUT13

Q1703772 13:51

R, = - .94339
: Ry’ = 1.2

ADATQ 01703772 13.818

CASE 1 STEADY-STATE INITIAL VALUES ITERATI@N  2@5
ALGEBRAIC FUNCTIBNS

NAME VALUE  NAME VALUE NAME VALUE
£ 1.1778E-01

CONSTANT» STEP» AND TABULAR FUNCTIONS

NAME VALUE NAME VALUE NAME VALUE
U 2.0800E 00

DIFFERENTIAL EQUATIONS

NAME Y DYl oo

z 1.9622E 00 O -

Y 1.1778E 00

CASE 1 FINAL VALUES AT TIME 1.0000E 0O
ALGEBRAIC FUNCTI®NS

NAME VALUE NAME VALUE NAME VALUE
E 1.1778E-01
CONSTANTs STEP» AND TABULAR FUNCTI®NS

NAME VALUE NAME VALUE NAME VALUE
U 2.0800E 00

DIFFERENTIAL EQUATIONS

NAME Y DY1 eoo
z 1.9622E 00 -1.2558E-06
Y 1.1778E 00

CASE ! CONVERGENCE OF TW@ LoeopP

TIME u Y
0. 2.0800E 00 1.1778E 00
0. 2.0800E 00 1.1778E 00

EI;OOOOE 00 2.0800E 00 1.1778E 00

CPU.TIME - TOTAL = 0.735 SECONDS.
READY

SeSe ITERATIONS FOR I.Ce
z E
1.9622E 00 1.1778E-01

1.9622E 00 1.1778E-01
1.9622E 00 1.1778E~-01



SLIST ITER4
L R 43—
01/03/72 14306

00010 STRP:/:QQ 98.916:::7:13,19:25;31337,439-;14:26:38:50:62a :O
00020 /$ SNUMB THKAA . .

00030 /$ IDENT T.KERRsKERR 37 578D S5-4171
00040 /$ PROGRAM RLHS a
00050 /8 LIMITS 151600051000, =

00060 /% PRMFL H%»ZsRsWATSON/ADATOA

00070 /% DISC 02,X2Rs20L

00080 /% PRMFL P*aR/A/S;L;*/P

00090 /% NOTIFY */S

00100 03403231 '

30110 "T.KERR 9/21/71

00120 "REDC 37 S78D 8%235-4171

00130 *CONVERGENCE OF TW@ LOGP S.S. ITERATIONS FOR I Co
00140 1313300313531

00150 2

00160 1-5:1-531-621-22 10

00170 0321212020

00180 323UBYSZ3E

00190 Usé

00200 2.08

00210 E5113235U3

00220 Osiz:-

00230 YsisEsi131

00240 BE=-97210812.25

00250 ansy,zsa o R

00260 Er1-451:666:131:2761.07783

00270 054051 o

00280 /% ENDJOB

READY

Initial Guess

Way Off
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SLIST pUT14

o1s03/772 14209

ADATO Ql/Q@/&E 14.099

Initial Guess Way Off

CASE 1 STEADY-STATE INITIAL VALUES ITERATION 39
ALGEBRAIC FUNCTI@NS

NAME VALUE NAME VALUE NAME VALUE

£ 1.1778E=01
CONSTANT» STEP» AND TABULAR FUNCTI®NS

NAME . VALUE NAME VALUE NAME VALUE

u 2.0800E 00
DIFFERENTIAL EQUATI@NS

NAME Y DY1 coo

z 1.9682E Q0 O.

Y 1.1778E 00

CASE 1 FINAL VALUES AT TIME 1.0000E 00
ALGEBRAIC FUNCTI@NS

NAME VALUE NAME VALUE NAME VALUE

E 1.1778E-01

CONSTANTs STEP» AND TABULAR FUNCTI@NS

NAME VALUE NAME VALUE NAME VALUE

U 2.0800E 00

DIFFERENTIAL EQUATIONS

NAME Y DY1 oee

z 1.9622E 00 1.447S5E-06

Y 1.1778E 00

CASE 1 CONVERGENCE OF TW@ LOGP S.S. ITERATIONS FOR 1.C.

TIME U Y z E

0. 2.0800E 00 1.1778E 00 1.9622E 00 1.1778E-01
0o 2.0800E 00 1.1778E 00 1.9622E 00 1.1778E-01
E1-0000E 00 2.0800E 00 1.1778E 00 1.9622E 00 1.1778E-01

CPU TIME - T@TAL =
READY

0615 SECONDS.
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choice R, = i.4, R," = - .97 was nearer to the center of the shaded region
2 2 €8

in the graph than was the choice R2 = - ,97339, R2' = 1.2, hence convergence

was faster.

Case 2: Parallel

; Y S
I ;k4§ i
3 |
R
k3 2 Y
 ITE TS " >
2
U - A E
»() »
+ A
- T
i vm3 .R2 7 .
b{ 1 +T, s+ ... )
1 |
(e
;k5 jrrme——

The above block diagram can be used for a situation in which there is
positive feedback simply by making the necessary gains (k4, k5) negative.
The absence of feedback can be obtained by making the appropriate gain

Zero.

The difference equations which describe the iteration in the initial

value calculation for the above configuration are:

Vg = Ky U=k, Yo - kg Z) + R, [ky (U - k, Yo - kg Z) - Y]
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—-— — — 1 — — -
ZN+l = m3 (U k4 YN kS ZN) + R2 [m3 (U k4 YN k5 ZN) ZN]
or
YN+l = k3 1+ Rz) U - [k3 k4 a+ R2) + R2] YN - [k3 ks 1+ Rz)] zN
- ' - ' _ 4 '
zN+l = m, 1+ R2 yu [m3 k4 1+ R2 )] YN [m3 ks (1 + R2 ) + R2 ] zN

or, equivalently,

{E + [k3 k4 (1 + Rz) + R I} Y. +k, k. (1L + Rz) Zg = k3 1+ Rz) U

21} Yy + kg kg

' o 1y N = e
[m3 k4 a+ R, )] Yot {E + [m3 ks Q + R, ) + R, 1} zn m, a + R, Y U .

Eliminating the wvariable YN to obtain a second degree characteristic equation

for the system of iterations yields a characteristic equation for the system of

— 2 4 1
0=E" + [myky L+ R +R)' +kyk, (L+R)+R]E

1 1 - 1
+ {[m3 ks (1 + R2 ) + R2 ] [k3 k4 a1 + R2) + Rz] m, k4 k3 ks (1 + RZ) (1 + R2 )}

=

With the substitution Hl & 1+ Rz, H2 1+ R2', the characteristic

equation becomes

0=E + [(my kg + 1) Hy + (cy k, + 1) B - 2] E

5 374

+ [(m3 k., +k, k, +1) Hl H, - (k

5 3k, + 1) Hl - (m

9 3 k4 3 k5 + 1) H2 + 1]

The four conditions that must be satisfied in order that the roots of the

characteristic equation remain within the unit circle are:
Condition I-a:

(m, k. +k, k, +1) H

3 K5+ kg k, 05

1y ”
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Condition II-a:

4 -2 (m, kp, + 1) H2 -2 (k3 k

3 kg + 1) Hl + (m, k. +k, k, +1) H L H, >0,

4 375 374 1 2

Condition III-a:

2 - (k3 k4 + 1) Hl - (m3 k5 + 1) H2 + (m3 k5 + k3 k4 + 1) H1 H2 >0,

Condition IV-a:

- (k3 k, + 1) Hl - (m + 1) H2 + (m +k, k, + 1) H1 H, < 0,

4 3 K5 3 kg T kg k, 2

Now we proceed in a manner analogous to Case 1 by defining functions
of the two wvariables H., H,, and finding the boundaries upon which the

1* 72

functions are identically zero.

Let
ho(H, Hy) g (g kg + kg k, + 1) H H,
g (H, H) 4 -2 (my kg + 1) H, -2 (kyk, + 1) H
g g+ kg k, + 1) HH
p (H, H) £, (g ke, + 1) H = (@, kg + 1) B
+ oy kg + kg k, +1) B H
q (H), H) . (ky &, + 1) H -~ (ny k, + 1) K

+(m3k +k, k, +1)H

5 7 K3 Ky, 1 By -

We want to find the région in which h (Hl, H2) >0, g (Hl’ Hz) > 0,

P (H19 H2) »> 0, and q (Hl, H2) < 0., First the boundaries are found from

h (Hl’ HQ) =0, g (Hl9 HZ) =0, p (Hl, Hz) = 0, and q (Hl, H2> = 0, Then by

superimposing the various graphs, we find



~48~

{8y, By | h (Hy, Hy) > o}ﬂ{Hl, H,) | g (H,, H, > O}m{(Hl, H,) i p(H , H)) > 0}

(\ {(Hl, HZ) l q (Hl, Hz) < 0}, the region in which all of the inequalities are

satisfied.

Example 5: Parallel

An example will now be presented which illustrates how to apply the
results of the analysis of how to pick the acceleration factors to ensure the

convergence of the i.c. calculations for two parallel differential equations.

Y

.—-—-——.———»
> 1+ 2s

1+ 8s

m, k., =1k, k, =2 3 (m3 k5 + 1) =2

(m, kpy +k, k, +1)=(1+2+1) =4

3 K5t k3 Kk, ; (k +1) =3

3 K,
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The four functions of interest are:

i

h (H, H) 2 4 H H,
A

g (Hy, Hy)) S 4 -2:2H - 23 Hy + 4 H H o,
=4-4H,-6H +4H H,
A

p (Hy, H) =2 -3H -2H +48 H,

11>

-3H -2H,+ 4H H .

q (Hy, H)) 1 2 1%

Next we find the boundaries where these functions of two variables change

from negative to positive (and since they are continuous, pass through zero).

For convenience let X g R2 = Hl -1, 7 s R2' = H2 - 1. Fromh (X, ¥) =0,
we obtain
0=4 1+X) 1+Y) = X=-1,%Y=- 1, a degenerate hyperbola.

From g (X, Y) = 0, we obtain

0=4-4 (14+7Y)-6(Q+X)+4(1L+X+7+XY)
=4 -4 -6+4-2X+4XY

3 _2+2X 1+X .

or Y = A X - o x 0@ hyperbola.

From p (X, Y) = 0, we obtain

@)
i

2-3({1+X)-20+Y)+40+X+7+IXY)

]

20e 3 -2+ 4+ X +2Y+4 XY



or

e et —— e .y

an hyperbola.

From q (X, Y) =

N

-3 (@1 +X) -2 A+Y)+4 (1l+X+7Y+XY)

-50—

1. (1+X)
C RS

0, we obtain

~3-24+4+X+2Y+ 4+ XY

e s ettt s gy

(1 - X).
G+ %

s, an hyperbola.,
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SLIST QUT1S.

N1/03/72 15208 =52~
R. = - .99
2
L : ) R2'=_ 5
ABATO 01/03/72 15.148
i
CASE 1 STEADY-STATE INITIAL VALUES ITERATION 208
ALGEBRAIC FUNCTIOGNS
NAME VALUE = NAME VALUE NAME VALUE
E 1.0000E 00
CONSTANT» STEP, AND TABULAR FUNCTIBNS
NAME VALUE. NAME VALUE NAME VALUE
U 4.0D00E 00
DIFFERENTIAL EQUATIONS
NAME Y DY1 es
z 1.0000E 00 o
Y 4.0000E 00
i
CASE 1 FINAL VALUES AT TIME 1.0000E 00
ALGEBRAIC FUNCTIG@NS
NAME VALUE NAME VALUE NAME VALUE
E 1.0000E 00
CONSTANTs STEPs AND TABULAR FUNGTI@NS
NAME VALUE.. . NAME VALUE NAME VAL UE

U 4.0000E 00
DIFFERENTIAL EQUATI@NS

NQME . Y DYi o0 e

z 1.00G0E 00
Y 420000E 00

CASE 1  CONVERGENCE OF TWO LOOP S.S. ITERATIONS FOR 1.C.

TIME U Y z E
Oo 4.0000E 00 4.0000E 00 1.0000E 00 1.0000E 00
0o 4.0000E 00 4.0000E 00 1.0000E 00 1.0000E GO

E1.000Q0E 00 4.0000E 00 4.0000E 00 1.0000E 00 1.0000E 0O



SLIST BUT16

R —53-
01/03/72 15126 T
P : Rz' =- .75
ADATD 01/Q3/72 15,859
CASE 1 STEARY-STATE INITIAL VALUES ITERATIGN 17
ALGEBRAIC FUNCTIBNS
NAME VALUE. . NAME VALUE NAME VALUE
E 1.0000E 00
CONSTANT> STEPs AND TABULAR FUNCTI®NS
NAME VALLUE . NAME VALUE NAME VALUE
u 4.0000E 00
DIFFERENTIAL EQUATI@NS
A 1.QQ000E 00 S
Y 4.0000E 00
CASE 1 FINAL VALUES AT TIME 1.0000E 00
ALGEBRAIC FUNCTIONS
NAME  VALUE. . NAME VALUE NAME VALUE
E . 1.0000E 00
CONSTANTs STEP. AND TABULAR FUNCTI@NS
NAME VALUE. . NAME VALUE NAME VALUE

u 4.0000E 00

DIFFERENTIAL EQUATIONS

NAME Y DY! oo
z 1.Q000E QO '
y 4:0000E 00

CASE 1  CONVERGENCE OF TWO LOOP SS. ITERATIONS FOR I-f.

TIME U Y z E
0o 4.0000E 00 4.0000E 00 1.0000E 00 1.0000E 00
Q. . 4J0000E 00 4<0000E 00 1-0000E 00 1s0000E 00

E1-0000E 00 4-0000E 00 4.0000E 00 1<0000E 00 1-0000E 00
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g (1, 1) =-2-2+4=0
g (2,2)==-2-2@)+4(2X2)==-6+10=10 >0
p(1,1)=14+1+2+4=28

q (3, 3) =-9-2@)+4(9)=36-9-6>0

The above indicates that choosing convergence factors anywhere within the

shaded region should cause the iterations to converge.

D. General Approach for Linear Systems

Thus far this report has given explicit results for all possible
configurations involving one and two D.E.'s. What does one do if one wishes
to specify the convergence acceleration factors for a more complicated

system?

When one encounters a more complicated system one partitions it up into
smaller component subsystems (please see Example 6) which have been treated
in this report. If the component subsystems look exactly like the one and
two D.E. configurations explicitly treated in this report except for the
presence of additional outside additive inputs, the results of the analysis
of the configuration without the additional inputs still applies. The
theory still applies because convergence is assured on the basis of the
characteristic equation of the difference equations which describe the
iterations; additional additive inputs will not change the characteristic

equations. Example 6 illustrates this approach.
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Example 6: Partitioning a Complicated Linear System

An example will now be presented of a linear system containing more than
two differential equations for which the graphical method for the selection
of iteration convergence acceleration factors is applicable. Consider the

following system simulation:

l+s 2 ~

BN
1+ s+ S2 1+ 10 s

1 3 > e 2 e 1
R M>—§ - 1+ 4s 1+5s "\g-; 14+ 20 s

1+ s .
/ PO |
— . ;
2 INER 1 i =
1765 l'; 2 12
. 1
5 s
10
1+2s

Convergence acceleration factors will be chosen by partitioning the
general simulation into several smaller more fundamental block diagram
configurations which are special cases of the configuration treated in the

report. The partitioning is as follows:
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— )
2 >

l+lOs/

Section A can be considered to be a special case of the general 2 D.E.

parallel arrangement. The input U_ doesn't cause any added difficulties

5
because if one thinks of the underlying difference equations that describe

the steady-state iterations, the presence of U_ just means that there is

5
another forcing function present; the characteristic equation is still
the same, and convergence acceleration factors are chosen on the basis of
considering where the roots of the characteristic equations lie. Section
B and section E are special cases of the single loop D.E. Section C and
section F are special cases of the no loop case. Section D is a special
case of the general 2 D.E. series case. By finding the convergence
acceleration factors for each of these component configurations by the

methods presented in the report, we have the convergence acceleration

factors for the whole system.
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Suppose that after a complicated system is partitioned into smaller
component subsystems, some of the subsystems are not special cases of the
general cases treated in this report. How does one proceed to obtain the
convergence acceleration factors? First write the difference equations
that describe the iterations for the individual subsysfem and obtain the
characteristic equation. Now, using properties of the roots of polynomial
equations or constructions, graphic or analytical, based on the Jury
stability criterion, find the convergence acceleration factors that will
yield roots of the characteristic equation that are only within the unit

circle. This approach is illustrated in Example 7 and Example 7b.
Example 7

An example will now be presented of what approach to take when one
encounters a system that has component systems which are not all special
cases of the general cases treated earlier in this report. Consider the

following system simulation and its partitions:

e ; U2 1 ) *_i
> e |2 » $-3 e
142 1+s] ‘
- R rit ;
2 R2 )
e A
R .y — .
1+ 10s 7 >
o ) L f 1+ .5s :
R.' Yy o ""
2 ; s
- g 3}
— 4 R
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Now Section B is a special case of the general one loop D.E. that has
been treated in the report. Section A, however, has not been treated in
the report. To determine the proper convergence acceleration factor,

first write the difference equations which describe the iterations

(neglecting constant inputs which don't affect the characteristic

equations of linear systems).

wm+1)=%¥@)+%"%Y(m—w(M]
Y@+1)=2[-2w@n -32@ -Y @]+

R. 2[-2w@ -32M@-Y @]-Y @}

2@+ =[-2w®@=-32@]+R,' {[-2w () -32 @] - 7 ()}

or

1 - l»_ LAl
(E + R2 ) v 3 (1 + R2 ) Yn + 0

il
o

4 (1 + Rz) wn + (E+ [2 (1+ Rz) + Rz]) Yn + 6 (1 + R2) zn =0 ,

2 1 +R.Dw +0+ (E+[3+R")+R'] =0,
2 n 2 2

which has the characteristic equation

t - __1; n
(E + RZ ) 3 (1 + R2 ) 0

0=A= 4 (1 + Rz) E +[2 1+ RZ) + R, DD 6 (1 + RZ)

2

+ 1 1 t
2 (1 R2 ) 0 E+ [3 (1 + R, ) + R2 ]
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= (E+R2") (E + [2 (1+R2)+R2] (E+ [3 (1+R2')+R2'])
1 1" - . 1
—§(I+R2)6(1+R2)2(1+R2)
l " i 1 1
+-§(1+R2)4(1+R2) (E+ [3 (1+R2)+R2 1)

Considerable simplification occurs if we take R, = R2' = R2" (the assumption

that all acceleration factors can be the same is only reasonable when there is

no positive feedback), the characteristic equation is now

~ vy 2 3
0= (E+ R2)(E + [2 (1+ R2) + R, D7 - 4 (1 + Rz) +

4 2
3 1+ Rz) (E+ [3 (1 + R2) + RZ])

Let 1 + R2 = H, the characteristic equation becomes

0= B+ [H-1DE+BHE-D’ -4 + 28 @+ 48 - 1)
from which a root may be factored as
(E+ [H-1] {(E+[3H—l])2+%H2}=O
One root of the characteristic equation is El = - H+ 1, and the other two

roots, obtained from the formula for the roots of a quadratic equation, are

2-6H+3 4H

By 3= 7 .

In order that all the roots lie within the unit circle, it must be that
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1> | E |2 =1-6H+13H,and 1> | €, | =] 1-8H]

2,3 L |

or, equivalently, we must find H so that the following inequalities are
satisfied:
(- 6+ 13 H) H<O,

0O<H<2,.

Now since O < H < 2, the only way the first inequality may be satisfied is

for - 6 + 13 H< O or H <'f%° Just pick H in (O, {%ﬁ and all the inequalities

required for convergence of the iteration scheme are satisfied; this

corresponds to a convergence acceleration of - 1 < R2 < - f%; For instance,
take R, = - 10 (R, = R.," =R, = - L0, and R," is obtained from the
2 13° 2 2 2 137°? 2
general one loop D.E. considered in the report (an acceptable value is
o _l-é.
R2 - l6)a

Example 7b: Another Analytic Technique for Solving Example 7

Solving for convergence acceleration factors of Section A in Example

7 by the method used in the proof of Section IV:
Case 2:b.

From Example 7, the characteristic equation is

0= (E+H,-1) (E+[3H -11) (E+ [41H,-1]) - Ly 6u 2m

3 1 373 1 2

1
+3H34H1(E+[4H2—1])0
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Let H, = X, H, = X, H3 = BX, then the characteristic equation becomes

(E+ (BX - 1)] [E+ 3% = 1)] [E+ (4 aX = 1)] - 4 o X3

o
H]

+%ex2 [E + (4 oX - 1]

Now % sz [E+ (4 aX - 1)] -4 oB x> = %-BXZ E +-§ Bla x> - X2] ,
4 .2
3 BX
4 .2 4 3 4 o2
E+ (3X-1) )3 BX™ E + 3 BoX 3 BX
4 2 3 4 ,.2
3 BXT E+ 4 BXT - = gX

(%‘Ba w4 B) X3

If C% Bo = 4 B) X3 = 0 (we have zero remainder in the above equation),

then

. - i 4 2.
[E+ 3X~1)] {[E+ (BX - 1)] [E+ (4 oX - 1)] + 3 BX'} = 0 and for
stability - 1 <1 - 3 X < 1 or, equivalently, 0 < X < %-o

Now X # 0, so the condition that R C% o - 1) = 0 requires that either

8 =0 or that-% o -1 =0, Look at what occurs if 8 = 0; the second order

characteristic equation after one root has been extracted is
[E-1] [E+ (4 oX - 1)] =0 ;

a root of this equation is 1, hence this is unstable; hence we desire that

B# O. Since we cannot have B = 0, we must take-% a=1o0r a= %z The

second order characteristic equation becomes

4

[E + (BX - 1)] [E+(3X—l)]+§BX2=O
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oY

B[+ x-21E+ [Bex’ - G+e) X+ 1] =0

By Jury's stability test we must have that

h (X, 8) = = X > 0
g (X, e>=4~2(3+s>x+-1:§3-3x2>o
p (X, B)=2—(3+8)X+%§-sx2>o

0> - (348) X+ 20 =q (X, B)

Recall that already X is such that 0 < X < 2; let X = k (%D + (1 - k) (0) ,

0 <k < 1. Now Jury's stability condition becomes

4o 2.2
3 (3)

h (k, B) 8 k2 >0,

4

g(k,6)=4—-3(12+6)k+%9-{3k2>0,

it

p(k’ B) 2_

Wi

(12+B)k+%9-8k2>0,

q (k, B) -%(1z+s>k+—‘*-393k2<o.

Adjust B until (12 + 8) = W, a constant, The constant will be determined

later. Jury's conditions become

oo, =R G w-1216 0,
g(k,w>=4—5w1<+—l-‘9[w—12]k2>o,

3 3
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b (kgw)=2—%w1<+f‘§9[w-12] >0,
q (k, w)=—%w1<+539[w-12] k2<0°
i , 1 W , .
Note that q (k, W) < 0 for O < k < W< 12t Since k must be such that

0 < k < 1, we have that (%80 12 < W,

Let k = %%, then Jury's stability test becomes

3 2 2

W

40 3.2 [Ww - 12
po1+ gt B0,
W

40 3.2 [W = 12]
3 Q) 7
W

2 + > 0,

09
il

huig(;fzi)ziﬂ_:z_l&lwo

3 W

Since 0 < k < 1, it must be that % < W3 combining this with the last

condition we obtain

.20

20
T9

) 12] = (52 12

W > max [éy 19

2
For any W > (igﬁ 12, all the conditions of Jury's test are satisfied. Now

1 3 W= 12
1w B Hy =

’ 20 D
i ) =7 » Hy - , for all W = (igﬁ 12 yield convergent

iterations.
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Example 7b o

STRPs 7515 2B51653-7513:19,2 5,31;J7;43;.:14;&5,38,50362;

/% SNUMB THKAA, ] )

/% IDENT TeKERR>KERRKR" 37 578D 5-4171

/% PROGRAM RLHS

/S LIMITS 1516000551000

/S PRMFL H¥%»sZ>RsWATSOGNAADATOA

/% DISC 02:%X2R»20L y

/% PRMFL FrsRZA/SsLak/P

/5 NOTIFY */S‘

35403231 T

*ToKERR 9/21/71

CR&DC* 37 578D 8%235- 4171 S . .. . D .
P GENERAL APPROACH TO FINDING C@NVa AGCEL FACTHRES FUR ARB. SYSTEM
131355%00351355s81

=681-2210

E131385333U137Z34
Qsle=32=2
E2311325E13Y
0 P-4} ISR
Y3513823153.
gﬁ”a959:23§:
E3s11323U23Y

0 081l

Qﬁlﬁnd
0320
003340
00346
00350
0360
0370
G380
gaE%0
00400

READY

;‘JJR@ESJlSl
Se=.52.3333: 1-n
Z31s3E1s5131.
cB8T52181510
F4311323523K
G2ls=3
A313E45131

c 1 8=.9373581¢-5
034031

/% ENDJOB

-

,‘l@ L

'a
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01703772 10:07

R, = = .769
R, = - .769

ARATO Q1/Q37782 10.067 R," = - .769
CASE } STEADY-STATE INITIAL VALUES ITERATI@N R7
ALGEBRAIC FUNCTI@NS

NAME VALUL NAME VALUE NAME VALUE _
El ~T«497RE~D2 E2 ~2.4992E-02 E3 1.9500FE 0Q
Ed4 ~4.6862E-03

CONSTANT, STEP», AND TABULAR FUNCTIONS

NAME VALUE NAME VALUE NAME VALUE

u1 1.0000E 00 U2 2.0000E 00

DIFFERENTIAL EQUATI®ONS

NAME Y DY1 e

X -2,3431E-02

z ~7+4972E-02

W 6+ 4994E-01

Y ~449984E-02

CASE 1 FINAL VALUES AT TIME 1.0000E 00
ALGEBRAIC FUNCTI®NS

NAME VALUE NAME VALUE NAME VALUE

El ~7+4969E-02 E2 -2.4989E-02 E3 1.9500E 00
E4 -4.7130E-03
CONSTANT, STEP» AND TABULAR FUNCTIGNS

NAME VALUE NAME VALUE NAME VALUE

Ut 1.0000E 00 uy2 2.0000E 00

DIFFERENTIAL EQUATIONS

NAME Y DYl oeo
X ~263419E-02
Z ~7+4971E-02
W 6e4994E-01
Y ~4.9980E~-02

CASE 1 GENERAL APPRGACH T@ FINDING CONV. ACCEL FACTORS FBR ARB. SY
ok kokdokkkkkTEM

TIME Y
ST@P

READY
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01/03/72  09:39 W = 24
R, = - .959
R,' = - .875
ARATQ Q17037172 2418
Rll=_5
2
CASE 1 STEADY-STATE INITIAL VALUES ITERATIAN 99

ALGEBRAIC FUNCTIQNS

NAME VALUE NAME VALUE NAME VALUE
El ~T+4972E-02 E2 -2.4990E-02 E3 1.9500E 00
E4 -4.6863E-03

CONSTANT», STEP» AND TABULAR FUNCTIG@NS

NAME . VALUE NAME VALUE NAME VALUE
ut 1.0000E 00 U2 2.0000E 00

DIFFERENTIAL EQUATI®NS

NAME DYl ose
X -2.3431E-02
z ~7.4972E-02
W b+4994E-01
Y -449980E-02

CASE 1 FINAL VALUES AT TIME 1.0000E 00

ALGEBRAIC FUNCTI®@NS

NAME VALUE NAME VALUE . NAME VALUE.
El ~T+4968E-08 KR -2.4990E-02 E3 1.230Q8 0Q
E4 ~4+7621E-03

CBNSTANT, STEP», AND TABULAR FUNCTIBNS

NANME VALUE. NAME VALUE NAME VALUE
uil 1.0000E 00 U2 2.0000E 00

DIFFERENTIAL EQUATIONS

NAME Y DYl ese
. S ~2.3408E-02
z ~T+4972E~02
W 6-4994E-D1
Y ~4.9978E~02

GASE 1 GENERAL APPROACH TO FINDING CONV. ACCEL FACTGRS FOR ARB. 3Y
$okok sk dokk oKk ek TR M

. . TIME Y 4 W
LSToR

READY
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Even for nonlinear system simulations, the methods of this Section may
often be successfully used. A nonlinear system simulation may be partitioned
into component subsystems. Some of these subsystems may be linear and the
techniques of this section should be applied to them first. Convergence
factors for the strictly nonlinear component subsystems may sometimes
be determined by, first, obtéining a linear model to represent the
nonlinearity by a linearization technique. and, second, by trial and error
perturbations within and near the allowable region for convergence

factors that are established for the linearized model of the nonlinearity.
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Section IIl: Computing Initial Values Directly
(linear systems and some nonlinear systems)

As will be discussed in more detail in Section IV, at the initial time,
a linear system can be represented in state vector notation (DeRusso, Roy,

Close, 1965, p. 329) as

°

(eq. LI) X

AX+Bu,
o

<
ii

HX+D ugs where u, is a comnstant.

The problem of solving for the steady-state initial values can be posed

algebraically as trying to find the Xo and Y0 such that

. IIT, = +
(eq. 1II) 0 =A Xo B u s
Y =HX +Du.
0 o} o
Under the assumption that A is non-singular, the solution of the above problem
is
{(eq. LV) X =-A7Bu .

Y = [-HA B+ D] u

b

if A is singular, the solution of the above problem is

#

(eq. V1I) X - A B u s

il

#

=<
il

[-HA"B+D]u ,
(o]

where A# is the pseudo inverse.
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At the initial time, a nonlinear (i.e., not necessarily linear) system

can be represented in state variable notation as

®

(eq. VIII)

>~
]

f (X, to’ uO) N

o
It

h (X, Y, £ uo) .

The problem of solving for the steady-state initial values can be posed

algebraically as trying to find the Xo and Yo such that
(eq. IX) o= f (XO, to, uo) ,

Yo =h (Xo, YO, to, uo) .

It is impossible to write out an analytic solution for the general nonlinear

case.

When confronted with the problem of calculating the steady-state initial
values of a linear system, the simulation engineer may choose between several

alternatives in calculating the initial values directly:

(1) He may perform the calculations directly by hand since
(eq. ITI) is just a set of simultaneocus linear algebraic
equations and there is ample theory available on the
existence and uniqueness of solutions of simultaneous linear
algebraic systems (Kreyszig, 1962, p. 423). The problem is
tractable by hand if the dimensionality of the problem is

not too great.
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(2) He may write a program in some other computer language such
as in, say, FPRTRAN to solve the simultaneous linear algebraic
equations that arise.

(3) He may use a packaged program such as LINEQ/CLINEQ to

solve the simultaneous linear systems of algebraic equations.

Given enough time and patience, each of the above choices is guaranteed to

yield correct results (ignoring ill-conditioned matrices).

When confronted with the problem of calculating the steady-state initial
values of a nonlinear system, the simulation engineer may choose between

several alternatives in calculating the initial values directly:

(1) He may perform the calculations directly by hand; (eq. IX)
is a set of simultaneous nonlinear algebraic equations which
sometimes succumb to hand calculation if the dimensionality
of the problem is not too great.

(2) He may write a program in some other computer language such
as in, say, FPRTRAN to solve the simultaneous nonlinear
algebraic equations that arise by, say, a generalized Newton-
Ralphson or steepest descent technique.

(3) He may use a packaged program such as SECANT to solve the
simultaneous nonlinear system of algebraic equations.

(4) If he has table data or even if he doesn't, he may resort to

a graphical technique of some type.,

Unfortunately, with nonlinear systems, there does not exist the pleasant state

of affairs that is associated with systems of linear equations. None of the
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above four approaches can be guaranteed to work for nonlinear systems just
because nonlinear theory is not cleaned up enough to allow anything to be
guaranteed. (It is probable that a general nonlinear theory will never
emerge, but for a variety of special cases, some of the above approaches

to handling the nonlinear problem can be guaranteed).

As an aside, consider the impossibility of predicting uniqueness or
the multipliicitly of solutions based on the number of nonlinear equations
and the number of unknowns (an area that has been explored completely for
linear systems with many fruitful results). Consider the two nonlinear

equations in three unknowns

X2 + (Y - a)z + 22 = b2 s

x4+ ¢% + 2% = b7,

where a, b are elements of the real number field. For a= 2 b > 0, the above
system can be represented in Fuclidean three space as the intersection of

two spheres 7

unique solution

; I 3
which has a unique solution. For a = E’b, the above system can be represented
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as the intersection of two spheres

circle of solutions

which results in a circle of solutions, an infinite number of solutions.

For the single equation X2 + Y2 + 22 = bz, a nonlinear equation in three
unknowns, if b = 0, the equation in three unknowns has the unique solution
(0, 9, 0). The nonlinear equation X2 = — 1 has no solutions over the real
field. The above four examples have been mentioned to point up the
unsatisfactory state of affairs that must be lived with when working with
nonlinear systems and how nothing may be said about existence and uniqueness
from the number of nonlinear equations and the number of unknowns. The

four options available to the simulation engiheer for handling nonlinear
systems will never work if no solutions exist to the nonlinear algebraic
system. Existence cannot be argued from the point of view that the physical
system has a steady-state equilibrium point; therefore, the nonlinear
equations which represent the physical system must have an equilibrium point
solution because the simulation is a mathematical idealization of the physical
system and this particular simulation mathematical model may fail to capture

the essence of the physical problem which ensures existence of an equilibrium.

An example of demonstrating the nonexistence of a solution for a simultaneous
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nonlinear algebraic system is given in the Appendix in the hope that the

general technique employed will be useful to others.

Example 8: Nonlinear System by Hand Calculations

An example of a nonlinear system will now be presented which has steady-
state initial conditions which may be found by direct hand calculation.

Consider the system of Example 10,

Y+ 2Y - Y+ 400 y> =0

°

Y, the state variable representation for the system is

Let X, = Y, X

1 2

510 < %,

_ 3
X2 = - 400 Xl + Xl 2 X2 .

Steady state initial conditions occur where the derivatives are zero,

]
=] b
0 = X2
0= - 400 X 3 + X, - 2X
1 1 2

can be solved simultaneously to yield the following three singular points

(solutions)
(- 0.05, 0) , (0, O) , (+ 0.05, 0) .

Upon further investigation (DeRusso, Roy, and Close, 1965, p. 485) it is
found that (0, 0) cannot be the steady-state equilibrium point for a dynamic

physical system; therefore, either (- 0.05, 0) or (+ 0.05, 0) is the
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equilibrium point (i.e., the steady-state initial condition).

Example 9: Nonlinear System by a Graphical Analysis

An example of a nonlinear system will now be presented which has steady-
state initial conditions which may be found directly by graphical analysis.

Consider the following system:

grormrc———

Y
Vo 2 -

3
Y) Y = u, = u Y" , where Uy 0) <o,

=<t

<+

'<'
|

™
|

o = 3
X - X2 + (1 - X2) Xl + u, - uy Xl .

Steady state initial conditions occur where the derivatives are zero,

X 0
,l - [ ] ; hence
X2 0

0= X2

3
0= - X2 + (1 - X2) Xl + u, (0) - uy (0) Xl
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3

o]
a1
>
N
]

0 and 0 = Xl + u, (0) - uy (0) Xl

3 1
5 0 and Xl = o ©) (Xl + u, (0))

o]

[a]

g
Il

The above equation can be solved for the required Xl by a graphical analysis.

Let 7, = X 3 and Z. = —1 (X; + u, (0)), which may be plotted as
uy (0) 1 2

1 1
AN z

S X
* (0) - 1
- u
Xl 2
The point of intersection of the two graphs when projected to the X, -~ axis

1
1 . % - “(0)’
.__.....__.)... (Xl + uz(O)).

* *
is X, , the solution of both equations and so (X )3 =
1 1 uy (o]
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Section IV: éomputing Initial Values by Integration
(stable linear systems and asymptotically stable nonlinear
systems)

If the system to be simulated is a linear system, there is yet another
method that may be used to obtain the steady-state initial conditions. One
may just run the system simulation while keeping the inputs constant at
their initial values until there ceases to be any change in the variables
other than what could properly be attributed to roundoff and truncation
effects. This method may be preferable when trying to obtain the steady-
state initial conditions for a linear system of high dimensionality. The

justification for this method will now be discussed.

Any linear system may be represented in state variable notation

(DeRusso, Roy, Close, 1965, p. 329) as

A (t) X () +B (£) u (£)

!

(eq. I) X (t)

Y (t) H (£) X (£) +D () u (£) .

At t = 0, the system becomes

(eq. II) X (0) = A (0) X (0) + B (0) u (0)

i

Y (0) H (0) X (0) + D (0) u (0) .

If the system is initially in the steady-state, X (0) = O,
Let

A4 @ 828 ;u2H @ ;0

>

il

D (0) .
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The algebraic problem is the following: Solve for X (0) and Y (0) given that

(eq. III) 0=AZX (0)+ 3B u (0)

Y (0) =H X (0) +D u (0) .

Under the assumption that A is non-singular, the solution of the above

problem is

(eq. IV) X (0 =-At3pu (0)

-1

Y (0) = [-HA ™ B+D]u(0),

which are the steady-state initial values., This is the most direct way of

obtaining the steady-state initial values.

The simulation language ADA is designed to efficiently solve dynamic
problems, problems involving integration, rather than algebraic problems;
however, the dynamic approach may be used to advantage in solving the

algebraic problem of the preceding paragraph. The solution of equation IT is

t
(eq. V) X (t) At x (0) + eAt‘jF A 3y (0) dr ,
(o]

Y (&)

t ] '
P eAt_/. e B4 (0) dt +D u (0) .
(o]

As in the above algebraic solution, if we assume that A is non-singular, we

have

A

e t X (0) + eAt

At

X (t) T -4y ) ,

H e x (0) + B At “Aty 471

Y () [I - e ] A7 Bu (0) +Du (0) .
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If A has all eigenvalues with negative real parts, then lim eAt = 0. There

teo
is no fear that a stable time varying system will have an A (0) which is
unstable since the transfer function of a stable variable system is

analytic and bounded in the right half plane and on the imaginary axis for

all t. (Gibson, 1963, p. 193). This result yields that

(eq. VI) lim X (£) = 0+ 0 ~ a7t B u (0)
>
limY(t)=O+OwHA—lBu(O)+Du(O)=[—HA—lB+D]u(O)
>0

In performing integrations on the computer using ADA, it is ridiculous to think

of integrating until t ~ «, but it is only necessary to integrate for

10

t >

' to reach steady-state, where A
~re (A

A having the smallest negative real part. Notice that eq. IV and eq. VI yield
the same results, so that "integrating out'" is an effective method of obtaining
the steady-state initial conditions for a stable linear system. In the

solution of eq. IV, if A was singular, the solution would be

#

(eq. VII) X (0) - A B u (0)

#

Y (0) [-HA B+D]u (0,

where A# is the pseudo inverse.

The decision as to what method should be used in calculating the steady-
state initial condition should be made after considering the cost of man-hours
required for fairly accurate initial guesses as to what the initial conditions
should be and the proper selection of the convergence acceleration factors
against the cost of rﬁnning the computer simulation until all the values

reach steady-state.
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The steady-state initial values may always be found for stable linear
systems by "integrating out" until balance is achieved; however, the_same
may not be claimed in general for nonlinear systems. Both linear and non-
linear systems may be simulated on ADA, so the results of a further

"y

investigation into when the method of "integrating out" to attain the steady-

state values for nonlinear systems will now be discussed,

For nonlinear systems there are three possible, mutually exclusive,
responses to an infinitessimal displacement from an equilibrium state

(DeRusso, Roy, Close, 1965, p. 501):

(1) the state may ultimately return to the neighborhood of the
equilibrium point,

(2) it may happen that the state does not return to the
neighborhood of the equilibrium point, but its distance
from the equilibrium point remains finite,

(3) the state vector may grow without bound. TFor the second
and third possibility, the method of integrating out to

achieve balance is not feasible.

The method of "integrating out" to achieve balance is feasible for the first

possibility only if 1im X (t) = X
s
stability. Whereas for linear systems, stability was independent of the

the condition of asymptotic
equilibrium’ ymp
initial displacement, for nonlinear systems the type of stability may depend
upon the displacement from the equilibrium, Systems which exhibit asymptotic
stability for small displacements from the equilibrium position are said to

be asymptotically stable in the small. Systems which exhibit asymptotic
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stability for large displacements from the equilibrium position are said to be

asymptotically stable in the large.

1f the nonlinear system being simulated using ADA is asymptotically stable
in the large (synonym: absolutely stable), then the method of "integrating out"
to obtain balance will yield the steady-state initial values independent of
the initial guesses. If the nonlinear system being simulated using ADA is
only asymptotically stable in the small, then the method of "integrating out"

to obtain balance will yield the correct steady-state initial values only if

the initial guesses are fairly accurate.

As a result of investigations in the area of nonlinear system stability
theory, there are a variety of tests which may be applied to special
configurations to determine if they are asymptotically stable. One such
test, which is sufficient but not necessary for asymptotic stability in the
large, is the first Canonic form of Lur'e (J.P. LaSalle, 1962, pp. 600-603).
Unfortunately, since the test is only a sufficient condition, the system
under consideration may actually be asymptotically stable in the large while
the test does not confirm this. The second method of Lyapunov (LaSalle
and Lefschetz, 1961) is both necessary and sufficient for absolute stability,
but here one has the difficulty of finding the correct Lyapunov function to

demonstrate stability,

In conclusion, the method of "integrating out' to find the steady-state
initial values is not universally applicable to nonlinear systems. Further
investigation on the part of the simulation engineer is required to assure

that the method will yield correct results.

§
|
|



~81-

Example 10: A Nonlinear Example

To emphasize the conclusion that the method of "integrating out" can not
be universally applied to nonlinear systems to find the steady-state initial
values, an example of a system for which this method fails will now be

given,

Consider the system below.

+
® |

400 & ®

It is a special case of the following nonlinear differential equation

©@ c 2
Y+2aY—%—Y+C2Y3=O ,
where E & Y y Z g % , Y g Y,a=1,>b= V 2 , and C = 20. This nonlinear

system has gingular points at (0, 0), (- 0,05, 0), and (+ 0.05, 0) in the
Z - Y - plane, (see Example 8). Locally, (0, 0) is a saddle point while
both (-~ 0.05, 0) and (+ 0.05, 0) are stable focii. In the Z - ¥ phase plane,

the situation can be portrayed as follows (DeRusso, Roy, Close, 1965, p. 485):
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Z

separatrix Z=(-1+ W[EB Y
L7
,_/W

z=-@a+\V2) ¥

As a physical system, the system can only assume one stable equilibrium point
or the other; it cannot be both at the same time. For convenience, assume

that the actual equilibrium that the physical system attains is at (- 0.05,0).
Now suppose one were interested in obtaining the steady-state initial values
by integration. If one begins the integration procedure with an initial

guess that is above the separatrix the integration will converge to (+ 0.05, 0)
rather than to (- 0.05, 0). Hence, this example is not asymptotically stable.
However, this system is asymptotically stable in the small and if the initial
guess were close enough to be on the correct side of the separatrix, then

the method of integrating out will yield the correct initial values.
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ENTIAL EQUATIONS

NAME Y

DYl oo
Y 4+49897E~02
Z ‘2091355‘04
CASE 1 N@ S+S¢ I.Ce BY INTEGATI@N F@R N@NLINEAR SYSTEM
TIME Y a E W
0. 5+.0000E~03 0. 4+9500E-03 5.0000E-05
1.0000E 00 6.4929E-03 2+5060E-03 1.3713E~03 1.0949E-04
2+.0000E 00 9.6480E=03 3.9667E-03 143554E-03 3.5923E-04
3.0000E 00 1.4406E-02 5.6387E-03 1.9324E-03 1.1958E-03
4.0000E 00 2.0969E-02 7.8412E-03 1.5987E-03 3.6881E-03
5S+0000E Q0 2.9439E-02 9.4609E-03 3.1173E-04 1.0206E-02
6.0000E 00 3.8839E-02 8.6130E-03 ~-1.8220E-03 2.3435E-02
7<0000E 00 4.5990E-02 6.1084E-03 =5.1356E-03 3.8909E~02
8+0000E 00 4.9808E-02 1.8088E-03 -3.2356E-03 4.9426E-0Q2
9+0000E 00 5.0459E-02 -1.1302E-04 ~7.0489E=04 5.1390E-02
1.0000E 01 5.0187E-02 ~2.5649E-04 1.3627E~04 5.0564E-02
1.1000E 01 S5.0018E-02 -8.4201E-05 1.3230E-04 5.0054E-02
142000E 01 4.998SE~02 -3.9510E-06 3+7T15E-05 4.9955E-02
1+3000E 01 5.0013E-02 -1.5557E-05 S.5797E-06 5.0038E-02
1.4000E 01 4.9988E-02 2.182SE~05 -2.0017E-05 4.9965E-02
1+5000E 01 5.0006E-02 -5.2258E-05 9.1745E-05 5.0019E-02
1+6000E 01 5.0020E-02 2.8016E~05 =9.5273E-05 5.0059E-02
1.7000E 01 4.9911E-02 4.1859E-05 9.3666E-05 4.9734E-02
1.8Q00E Q! S.0153E-02 =-1.6658E-04 2.5592E-05 5.0461E-02
1+9000E Q1 4.9813E-02 3.536BE~04 -3.3481E-04 4.9440E-02
2.0000E 01 S5.0093E-02 =5.1573E-04 8.4457E-04 5.0280E-02
2.1000E 01 4.9889E~02 =2.0476E-05 2.6207E-04 4.966BE=-02
2.2000FE Q1 4.9936E-02 7.1099E-05 -1.5073E~05 4.9809E-02
2¢3000E 01 4.9988E-02 3.0931E-05 ~3.81539E-05 4.9964E-02
2.4000E 01 95.Q0Q2E-02 5.3547E-06 -1.5221E-05 S.0007E-0Q2
2.500Q0E 01 4.9990E-02 -2.8351E=05 7.7455E-05 &.9969E-02
2.6000E 01 5.0039E-02 =7.1075E-06 =6.4315E=05 5.0]18E-02
2.7000E 01 4.9906E-02 9.8287E-05 -1.0057E-05 4.9720E-02
2.8000E 01 S.0118E-02 -1.9765E-04 1.5862E-04 5.035%E-02
2.9000E 01 4.9926E-02 2.8869E-04 -4.2970E~04 4.9778E-Q2
E3.0000E 01 4.9897E-02 -2.9135E-04 7.8894E-04 4.9690E-02
CPU TIME - TOTAL = 1.196 SECONDS.
T Z
j
; s >
READY i _/// -
L T
] . N
Fa - 3 -~ Y
.005 o 5“#,'/
Yo \*ﬂ\\\vo.os
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NAME
Y
Z

B
~4.928927E-02
' 2.9140E-04

DY1 oso
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CASE 1 NGO SeSe I.Ce BY INTEGATION FOR NONLINEAR SYSTEM

TIME

0s
1.0000E
2+0000E
3-0000E
4+.0000E
5.0000E
6.0000E
7+0000E
8.0000E
9-0000E
1.0000E
1-1000E
1+ 2000E
1.3000E
1.4000E
1-5000E
1 <6000E
1.7000E
1.8000E
1s9000E.
2.0000E
2.1000E
20 2000E
2. 3000F
2. 4000E
2.5000F
2+6000F
2. TQQQK
2.8000E
2.9000EF
E3-0000E

CPU TIME

00
00
€0
00
00
00
00
00

00

01
01
01
01
01
o1
01
01
01
01
01
01
ot
01
01
01
01
01
01
01
01

Y
=5.0000E-03
=6.4929E-03
~9.6480E-03
=1 e 4406E=02
~2.0969E=02
=2,9439E=02
~3.8839E-02
~4.5990E=02
=40.9808E~02
=5,0459E-02
~5.0187E-02
=5,0018E=02
=4.9985E-02
=5.0013E-02
=40.998BE=02
=5.0006E=02
=5.0020E=02
‘40?911E°02
~5.0153E=-02
«4.9813E=02
=550093E-02
~4.9889E=-02
=4,9936E-02
=4.9988E-02
=5,0002E-02
=4+9990E=-02
=5.0039E~02
=4.9906E-02
=5:0118E-02
=40,9926E-02
=4.9897E=-02

1.

Z
G :
~2:.5060E-03
=3.9667E-03
=5.6387E-03
=1.8412E=-03
=9 4609E~03
=8+.6130E-03
=6.1084E-03
=1.8088E-03
1-1302E<04
2e5649E-04
8.4201E~-05
3.9510E-06
1.5556E-05
=2.,1825E<05
5.2261E-05
=2.8022E-05
=401 B4BE=05
1.6657TE=04
=3.9367E-04
5.1575E-04
2.0494E-05
=7.1093E-05
=3.0931E=05
=5.3555E~-06
2.8356E~-05
T-0984E-06
=9.8275E~05
1:9764E-04
=2.887T0E-04
2.9140E=-04

122 SECONDS.

E
=4.9500E-03
=1e3713E~-03
~1+3554E=03
=19324E~03
=1 .5987E-03
=3.1173E=04

1 -8220E-03
503356E’03
3.2356E~-03
T-0489E~04
=1e3627TE~04
=1.3230E=-04
=3.7T715E~05
=5.5774E-06
2.0014E=-05
=9,1743E-05
9.5276E=05
=9.3680E-05
«22,5566E=05
3:.3478E=04
=Bad4454E-04
=2.6208E=04
1.5062E=05
3.8157E=05
1.5220E-05
=T T454E~05
6.4323E=05
1.0035E=05
=1 5859E-04
4.2968FE-04
=T 8895E-04

™~

W

=5-0000E~-05
=1.0949E~-04
=3.5923E~04
~1.1958E-03
=3.6881E-03
°100206E§02
5203435E‘02
=3.8909E-02
°4a9426E;02
“501390E°02
=5.0564E-02
=5.0054E-082
~4.9953E-02
@5»00385=Q2
w40996§E“Q2
“5600193”62
”SQGO§9£°02
~429734E-08
=5.0461E-Q2
”409440E562
=5-0280E-02
=4.9668E-08
=4.9809E=-02
=4.9964E~-02
°500007E502
=469969E=02
=2.Q118E-02
=4,9T20E=02
~5.0355E=02
=4.9778E~-02
~4.9690E-08

- TOTAL =

-0.05

READY
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Section V: Linear System Configuration for which both Integration and
Iteration Fail to Yield the Steady~State Initial Values

A, The Problem
There do exist linear systems for which both the method of iteration and

the method of integration fail to yield the steady-state initial conditionms.

Example 11: Initial Value Calculations Fail for Iteration and Integratiowo

16;;f5 Vo2

U ;é £y >4\/—2m Y+ N 1/\/2* vA .

1+ s 1+ 2 s T

RZ 2

Now applying the notation of Section 1I: C: Case 1,

1 1 .15
mg kg =5 5 Ky kg =g s myky k= -
B = g' s C = %—; B C= %5'; A = 0. By Jury's stability test, the
iterations fail to converge for any Hl’ H2 since h (H., Hz) = A Hl H2 = 0
is not satisfied for any H., H, when A = O.

1’ 72
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As shown in Theorem 2, Case 1, of this section,

[B + s DZ] [1 + s Dl]

A+s [BD +CD,+sD D]

E. (s) U .

1

Now with A = O, and the input kept constant, as is done when obtaining initial
conditions by integration, the output is

I[B+ s D2] [1 +s Dl] U

)
s [B D1 + C D2 + s Dl D2] s

E (s) =

o

Applying the Laplace final value theorem, we have that lim e (t) = lim
t>e s->0

S El (s) = » , which indicates that this variable does not settle out as the

integration proceeds; therefore, obtaining steady-state initial values by

integration fails,

The salient features of a simulation that cause both of these methods
of determining the steady-state initial conditions to fail will now be

investigated.

For one D.E., it is easily established that the iterations do not
converge for any choice of convergence factor if and only if the loop gain

k - 1. Sufficiency is established by observing that when k3 k4 = -1,

k, =
374
the root of the characteristic equation is not within the unit circle, as

shown in Section II: B:, Case 5. Necessity is established by observing

that if k # - 1, Cases 1-4 of Section 1:B yield regions in which

k
374
convergence of the iterations is guaranteed. That the method of integration

fails to yield the initial conditions can be seen by observing that the

k
transfer function for the closed loop system is T E—YE_%—_——T » as pointed

out in Section II: B:, Case 5, and which is a type one system. Applying the
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Laplace final value theorem when the input is constant, we obtain

lim Y (£) = 1lim s

“3 Eg
Lo s -0 s

g—?ff:————y . = « . which indicates that the

method of integration will never settle out.

We now want to establish that, for two D.E.'s, we can have the steady-

state initial condition iterations not converging only for either

(1) A=0

or (2) B

It

0, C=0, A# 0 .

We now present the proof of necessity for the iterations not to converge for
two D.E.'s. The approach taken will be to prove the contrapositive, that

is, it will be shown that if A # O and not both A = 0, B = O, then convergence
acceleration factors may be produced which ensure that the iteration will
converge (or, equivalently, that the roots of the characteristic equation

will all lie within the unit circle).
Theorem 1: Necessary conditions for Iteration Failure of 2 D.E, Configurations

Proof: Assume that A # 0; to establish necessity it is enough to produce an

R.' which will cause the characteristic

1 — s
R2, R.,' or a non-null region for R2, 5

2

equation associated with the 2 D.E. configuration of Section I: C: Case 1 to

have all roots within the unit circle.

The characteristic equation associated with the iteration is

2
0=E + [B H2 + C Hl - 2] E+ A Hl H2 - C Hl - B H2 +1,
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5 6 + 1), A=BC+ mg k3 kA. The inequalities

that must be satisfied for stability by the Jury test are

where B = (m3 k. + 1), C = (k3 k

AH H) >0,

4-2BH,-2CH +AH H >0,

2+AH H -CH -BH >0,

A “1 H2 -C H1 - B H2 <0,

Since Jury's stability test is satisfied if and only if the roots of the
characteristic equation are within the unit circle, we will concentrate all
our attention on the inequalities of the Jury test. As done in Section I:

C: Case 1,

e

h (H,, H,)

1 2 1722

>

1’ 2) 4 - 2B H, - 2 C Hl + A Hl H2 s

e

;) £2-BH, - CH +AH H ,

>

q (H, H)) S -BH, - CH +AH H .

Now let Hl = X, H, = oX, where X and o are real numbers to be determined

later.

For Jury's stability test to be satisfied it must be that

h (X, oX) = a AX> > 0,

h-2[Ba+ClX+AaX>>o0,

g (X, aX)



-90-

2 - [Ba+ClX+AaX >0,

p (X, aX)

q (X, 0X) = - [Ba+C] X+AaX <0 .

All of the above functions are parabolas.

From the condition that h (X, oX) = a A X2 > 0, it is seen that for this
inequality to hold for any X, it must be that o A > 0. The inequality

g (X, aX) < 0 holds only for X such that

Represent X as X = k Cgﬁiﬁg—g) + {1 -KX0 , 0 <k<1 .

Jury's conditions now become

2
Bao+C 2
h (o, k) = 220 k>0,
o1 -4 2Barcl® Bavc)? 2
g 1o, Aa Ao ’

2 2
p (o, k) =2 - LBoatCl o +_1£Lf%i512l K2 > o

1
|
=
+

q(ocsk)— A A o <0 .

Case 1: A#0,B=0,C#0

Proof:
Pick o = o = S Jury's conditions become
— 2
h (o, k) = 2%k" >0,
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— C2 2
g(oc,k)=4+——-—Aa(k -2%k) >0,
2
— C 2
p(a,k)=2+n(k -k) >0,
2
- C 2
q (a, k) = Zf&'(k - k) <0,
Let k = %; the above conditions become
2
C 1 1
b GEP =320,
2

2
1 1
PGEyP 1320,

2
N
1 Gr,3)=-5<0.

Since all the inequalities are satisfied for this choice of o and k, the

2
iterations converge for H., = Bet+2a s H, = BC +24C or, equivalently,
1 2 AC 2 4 A2
2 2
R = BC+2A~-2AC R.' = BC +2AC-4A
2 2 A€ > 72 2 ‘

4 A
Case 2: A#0,B#£0,C=0

Proof: By symmetry, if we had, instead, let Hy, = X, H

have obtained an expression identical to the one obtained for B = 0, C # O,

= o X, we would

This guarantees convergence just as it did in Case 1.
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Case 3: A#0,B#0, C#0.

Proof:

[B o + C[z

o
A o

e

Let U sy now U > O since A a > 0 .

The Jury stability conditions now become

2

h (a, k) =U k" >0,
2

g (a, k) =4 +U (k" -2%k) >0,
2

p (e, k) =24+ U (" -%k) >0,

q (@, k) = U (k% - k) <0 .

Wewant to manipulate o and k so that the above four inequalities are satisfied
and so that 0 < k < 1 and o is a real number. This last condition that o
be real is very important since complex convergence factors are not acceptable
to ADA. Considerable manipulation will be done to assure that all of the

above conditions are satisfied.

2
Adjust o so that U = 1BatCl

y =W > 0, where W will be taken large
enough to ensure that o is real., If U = W, then
2
[Ba+C] -
A W>0
or

B2 a2 +2BCa-+t C2 =WAuou,

which has the solution

wa-28cEViE A _suanc
y =
2 B
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Now ¢ is real only if the discriminant W2 A2 -4 WABGC > 0, Notice that

as a function of W, the function w2 A2 - 4 WABC will be positive for a
2

large enough W since the coefficient, A", of the squared power term is

positive. The situation may be graphically portraved as

A

A2W2 - 4ABCW

A4
=

Notice that it is of no concern that A B C > 0 or AB C < 0 ; for large

enough W, the function A2 W2 -4 ABCW?>O0 ; hence, o is real. Summarizing,

we pick W large enough so that the following inequality is satisfied

*
A2 W2 -4 ABCW>O0, let W be such a W,

v wa-23c-Vi2 a2 svtasnc
then o = — — 5 - » a real number, we will later

2 B
*
put the two more conditions on W .

Now we want to satisfy the four inequalities of the Jury stability test.

b

% . S
Notice that h (a , k) = W k2 > 0 is satisfied for all k, 0 < k < 1 ;

% %
similarly q (o , k) = Wc(k2 - k) <0 for all k, 0 <k < 1., We must now pick

* X % % %
k ,0<k <1sothatp (¢ , k) >0and g (0 , k) > 0.
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%2

* * % * *
In other words, we want to pick k , sothat g (¢ , k ) =44+ W (k" -2k ) >0

%9 * %*
- k) > 0. It is reemphasized that k must be

* % %

and p (a , k) =2+ W (k
*

within the prescribed region, O < k < 1. The above two inequalities yield

that we need

o2k -t anak? -k - A,
W W

Each of these inequalities can be represented as a parabola of the following

A
form

v
=

k) k)

To satisfy the inequalities, it is only necessary to choose 0 < k < k., (it

.

will be shown that 0 < k., < 1). For k2 -2k >~ é; , k.o =1 -1 /1 R
1 1 \/ *
W W
2 2_ v oL _ 1 _ 8
ko - k> - w =7 -\t '+ Here is where we obtain our other
*
conditions on W . The expression for kl and kl' must be real numbers, which

is assured if

* *
1 - ﬁ—'> 0 and 1 - §; > 0 , this dictates that W > 8 , W > 4, and,

%
W W 4B C
from before, we still require that W > - All these conditions together

B
4B Cy

%*
require that W > max (8, N
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Now we will establish the required properties of k. and kl'.

1
*
Since 1=1, W > 0, we have that
%
1- i; <1 ; now since W > max (8, 4 i C) R
W
0<1- ﬁ; ; the above two conditions imply that 0 < 1 - ﬁ; <1 or
W W
4 4
0 < 1l -—% <1 We can now say that 0 > - 1-—=>-1and
W W
1>1- 1 - é;->'0, which is what we set out to prove, Similarly, for kl',
W
0 < l—%<l
W
1 8 1
0> ==\/1-">-=
%
2 W 2
1 1 8
I1>>s-= 1 -=>0.
*
2 2 W

Now how do we know whether to pick 0 < k < kl or 0 <k <k, '"? We pick

1
"o 2 1 * . _1_6__ "o _ ',
k such that 0 < k < kl min (kl’ kl ). (Actually, for W » 3 s kl = kl ;
) y * % 4L B C 16 .. .
since we plck W such that W > max (8, —-ZT—O > 3 it will always happen

H___ \
that kl kl Y.

4 B C
A

3
In summary, for A # 0, B # 0, C # 0, take W > max (8, Y,

%* —\/*2 2 *
x W A-2BC- VW-A -4W ABC

o 5 , & real number, and any k

within the region 0 < k< %-- %- 1 - §;-; or, equivalently
W
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R2 = Hl - 1=k ( ) -1,
Aa
% B *
R,' =H, -1=qk C2EE_ 1,
2 2 k
Aw
1 1 8 ] oo
for any k such that 0 < k < 5"y 1l - = , then the four inequalities of

W
Jury's stability test, namely, h > 0, g > 0, p > O, ¢ < O, are satisfied and

the roots of the characteristic equation are within the unit circle so the

iterations converge. W
It is relatively easy to show that, for two D.E.'s, having
(1) A=0
(2)A¢OQB=O=C

are sufficient conditions to cause the iteration not to converge.

Theorem 2: Sufficient Condition for Iteration Failure of 2 D.E. Configuration

Proof: As before, since Jury's stability test is satisfied if and only if
the roots of the characteristic equation are within the unit circle, we will

concentrate all our attention on the inequalities of the Jury test.

The inequalities are:

>

AH H,>O0,

h (Hy, Hy) 1 B

i

g (H., H))

" 4L -2BH,-2CH +AH H, >0,

2 1 1 72
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>

p (H, H) S 2-BH - CH +AH H >0,

N A
q (Hl, H2) = - B HZ_ C Hl + A Hl H2 < 0.

Case 1: For A= 0, h (Hl, Hz) = 0 for all Hl’ H2 and hence can never satisfy

the strict inequality h (Hl, H2) > 0,
Case 2: A# 0, B=0, C= 0.

Now h (Hl, H,) = AH, H, and q (Hl, H2) = A Hl Hzo Since now h (Hl, H. ) =

172 2
A H1 H2 = q (Hl, Hz), it can never happen that, simultaneously, h (Hl, H2) >0

2

and q (Hl, HZ) < 0 be satisfied, since this would require that a number be
strictly greater than and less than zero simultaneously. Hence, Jury's

stability test can never be satisfied. =

Theorem 1 and 2 together show that, for a 2 D.E., configuration, to
have the steady-state initial value calculations fail to converge for any

R,' it is necessary and sufficient that A = 0, or A # O,

choice of RZ’ 2

B=0, C=0. (The condition A= 0, B =0, or C = 0 is equivalent to
having a loop gain of - 1 [i.e., unity positive feedback yielding an

effective type 1 or greater system somewhere within the whole system].)

We now want to establish that, for two D.E.'s, we can have the method

of obtaining the steady-state initial values by integration fail if

(1) A

]
o

]
(@]
i
(@]

(2) B
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Theorem 3: Sufficient Conditions for Integration Failure of 2 D.E.
Configuration

Proof: Consider the configuration

1 6 4
E2=Y—kSZ
k m
- 3 . 7= 3
Y‘1+sD1El’Z 1+sD2E2’

2
1 d10 + dlls + dlZS + ...

£
=g
0]
2]
o
=]
it

2
2 d20 + leS + d228

o
It

+ e

and the d are arbitrary real numbers.

ij's
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By calculation,

[l +m
1 - A+ s

k5 + s D2] [1 +s Dl]

U
B Dl + C D2 + s Dl D2]

3
E [

The denominator is the characteristic equation of the entire system. If
A = 0, this system is at least a type one system and could possibly be of
higher type depending on D1 and D2° If A =0, then in applying the method
of obtaining the steady-state initial values by integration, the inputs

U
are kept constant U (s) = —é%

_. [l+m3k5+sD2] [1+le]
Therefore, El(s) = 5

s” [B Dl + C D2 + s Dl D2]

and applying the Laplace transform final value theorem, lim el(t) = lim
el s=>0
s El(s) = @, This indicates that no matter how long the integration is

carried out the wvariable el(t) refuses to converge to a constant value.

;
[B + s DZJ [1+ s Dl]

A+ s [B Dl + C D2 + s Dl D2]

Now El(s) = U

Case 2: If B =0 = C, then

; (S)@s D2 [1 + s Dl]
1 = 2 *

A+ s Dl D2

The denominator has a missing power of s, and is therefore unstable., As
shown in Section IV, the method of determining initial conditions by

integration fails for unstable systems., “
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Based on the proofs that both the method of integration and the method
of iteration fail to converge if and only if we have systems that are
inherently of type n (n > 0), which were done for all one D.E. and 2 D.E.
linear systems, we now use a plausibility argument and conclude that the

same can be said for linear systems containing any number of D.E.'s.

When methods of obtaining steady-state initial conditions fail, it
should be looked upon as a blessing because, by our previous proofs, it
indicates that we have an inherent type n (n > 0) system. For a typen
(n > 0) system, the initial conditions on the integrators should all be
specified (an integrator never has a steady-state unless the input is

Zero) .

B. Detection of the Problem: An Application of Signal Flow-Graph
Techniques

Can we determine whether a linear system simulation is inherently a
type n (n > 0) system without having to first see that the method of
determining steady-state initial conditions fail? Yes, by appealing to
the techniques of signal flow-graph analysis (Kuo, 1967, p. 193)
one can quickly determine if the system is of type n (n > 0) merely by

considering the loop gains.

From Mason's general gain formula (Kuo, 1967, p. 193) one can obtain

the input-output relationship for a signal flow graph as simply

G_ A .
n_n _ output-node variable

A input-node variable

9]
I
jo 3 o |

gain of nth forward path,

1l

where G
n



-101-

A =1- (sum of all individual loop gains)
+ (sum of gain products of all possible combinations of two
nontouching loops)
- (sum of gain products of all possible combinations of three
nontouching loops) + ...,
An = value of A for that part of the signal flow graph not
touching the nth forward path. The A is called the signal

flow graph determinant.

Without calcilating G, the system under consideration is an inherent type
: g G, y y

n (n » 0) system if A = 0.
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Section VI: Conclusion

Three distinct approaches have been presented for obtaining the ADA
steady-state initial values. The choice as to which of these three
alternatives to use should be based on economics. For .a particular
simulation situation, one method may be much less expenéive than the others,
hence, one should choose the method that is the least costly for the

situation,

The general purpose simulation language ADA 1is designed to most
efficiently solve dynamic problems, problems involving integration. The
steady-state initial value problem is an algebraic problem and the steady-
state initial value calculation feature of ADA solves this algebraic
problem by iteration. Two new methods, based on the characteristic
equation of the system of iteration equations and a graphidal interpfetation
of Jury's stability test, were presented in this report for determining the
user specified convergence factors. Prior to this report, the approach
that had been taken was to try to force convergence by a motley assortment
of techniques based on experience and tinkering with what were believed to
be the "important" integrators in a simulation. By understanding the
undgrlying mathematics of the problem, specification of the convergence
factors, which was once done by art, can now be done by science. The
extension of the technique to more complicated systems both linear and

nonlinear was given in Section II:D.

In Section III, the state variable formulation of the steady-state

initial value problem was shown to be an algebraic problem. In Section IV,
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it was shown that this algebraic problem for linear systems and asymptotically

stable nonlinear systems may be solved by integration,

Another technique for solving systems of nonlinear equations and an
example of its application to a high dimensional problem were presented in

the Appendix,

Finally, three new theorems were presented to characterize a
simulation situation where both the methods of iteration and integration

fail to converge to steady-state initial values.

Concrete examples of how the various techniques are applied to actual
computer simulations are interspersed throughout this report in the belief

that they will facilitate the reading.

Although the three approaches to obtaining the steady-state initial
values, especially the method of choosing convergence factors, are slanted
toward the ADA user, the results of the analysis should be applicable to
any general purpose continuous simulation program since calculating the
steady-state initial values is a universal problem. The predecessor of
ADA, Dynasar, also incorporated a steady-state initial value iteration
routine, but the iteration equations were of a form different from ADA's.
However, the idea still applies; pick convergence acceleration factors to
force all the roots of the characteristic equation associated with the

system of difference equations to lie within the unit circle.
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Appendix: A Technique for Solving Nonlinear Algebraic Systems or
Demonstrating that no Solution Exists

The technique to be described is not very sophisticated and may best

be shown by demonstrating its use,

Consider the following nonlinear algebraic system of equations over

the complex field:

Solutions may be found easily by making the substitution Y = aX, where o

is some complex scalar. Substituting,we now have

oX™ - X" =3

X2 - az X2 = 2
. 2 3
or, equivalently, X~ = ?E—:_IT
22
(1 -a")

This leads to the equation 3 = = 2 s, Which has the solution
. (0 = 1) 2
(L -a")
5 2 9 ] 3 .
o = - 3 Now X~ = - g s OF X =47 . The two solutions for the above
2 2

system of nonlinear algebraic equations over the complex field are

3 3
X, Y) = (+ ] s =3 ——pF=) and (X, Y) = (- j
2V 2 2V 2 2V 2

If we were only interested in real solutions (i.e., considering the system of

s 3

nonlinear algebraic equations over the real field), no solutions exist for

this system,
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Example 12: Application of the Technique to Demonstrate the Inconsistency
of a Particular System of 10 Nonlinear Algebraic Equations in
12 Unknowns (High Dimensionality)

Consider the following nonlinear system of algebraic equations,

@ 3= £+ £,

@ 2= f118 = f1of00s

® -2 = - 81111822 T B11010f01 7 BaPinfir o 8aiPqfys
@ - L= eghyy t gy

() - 1/2 = - gpphy £y, 8120201 7 Byohiofyy + 8yl fys
(6) 0 = &yphyy + Byohy

@ -2 = - 811021500 ¥ 811000f01 7 8o1Monfin 8y Ry Eys
= 1= 8ahyg T By

~ 81oMo1f00 T B oty of01 F Eoh E s Byhysf g

@ 3/2

0= 812h21 + g22h22, It is assumed that this is a consistent system.

Additional equations can be derived from these 10 equations which

perhaps give more insight into the interrelationships that exist.

Conbining (&) and (8) yields g hy; + gyh)) = = 1= g)hy)) + gyt

which reduces to

817(Myp = hyy) =gy (b, - )
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Combining @ and yields nghll + g22h12 =0 = g12h21 + g22h22

which reduces to

<:> 819(hyy = hyp) = 8y, (hy, = hyy).

Now if 812 # 0, (h22 - hlz) # 0, and 811 # 0, (:) and (:) can be

combined to yield

(hll - by

(hyy = hyy) 8y

21 _
811

|

or

(:) 811827 = 8128,7° Notice that the equation (:) is only wvalid if
811 # 0, (h22 - hll) # 0, and 819 # 0. The conditions fo? which this

hypothesis holds true will now be investigated.

1f, contrary to the hypothesis of <:) s h22 - h12 = 0, then

@ 1- 811011 T 81ty

= (8) 1

81101 T 8yyhy,

0= 8;;(hy; ~ hyp)
From the above, either g1 = 0 or (hll - th) = 0,
Casel: h22 - h12 = 0 and hll - h12 = 0,

Substituting into (:) and <:> » we have that

1_ -
G) - 2 = 7 Bofygfan t 8oty - Eyohynf g Fogyohy fl,

and

" Bygfyifan T ByoNgntay T 8yohy Eiy — Byohyoflgs

N Jew
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which serve as a contradiction. Therefore, this case cannot happen.

Case. IT: h22 - h12 = 0 and 811 = 0.

From (:) , we have that 0 = g21(h22 - h12)° It is already assumed that

- = 1 i = ?
(h22 hlZ) 0, but a question that may now be asked is does 851 07

If 8y = 0, then (:) yields the desired contradiction since - 1 = gllhll

+ nghl2 =0+ 0 =0, Therefore, 891 # 0. By substituting into <:> s

we have that ng(hll - th) = 0; so either 819 = 0 or hll - th = 0.

Subcase IIa: h - h =0

29 12 s 817 = 0, and hl -h,. =0,

1 21

This contradicts @ and as in case I; so this cannot happen.

Subcase IIb: h - h =0

22 = "o = 0s 8,y =0, and g, = 0.

From <:> , we have that 0 = nghll + g22h12 =0 + g22h12; so either

8y = 0 or h12 = 0,

Subcase IIb-(i): h.. - h.. =0 0

22 " Pyp =05 8y = =0, and g,, = O.

s 812

Substituting into (:) s we have that

T L/2= - epghygfoy + B1ohyafay T Byohypfyy F 8yghyg £y =0+ 0+ 0+ 0 or
- 1/2 = 0; this is a contradiction so that this case cannot happen.
Subcase IIb-(ii): h22 - h12 = 0, 811 = 0, 81y = 0, and h12 = 0,

Since h22 = h12’ we have that h22 = 0,
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From s — 1 = glthl + g21h22 = 0+ 0 = 0; this is a contradiction so

this case cannot happen. Therefore, subcase IIb cannot happen so it is

impogsible that h22 - h12 = 0.
Now if 811 = 0, then by substituting in (::) we have that 891 (h22 -
hlz) = 0; so that either gy1 =0 or h22 - h12 = 0. %
Case I: gll = 0 and 8y = 0.
Fronl(::> , we have the necessary contradiction, - V7/2==0+0=-0+0

= 0; therefore, this case cannot happen.

Case II: = 0 and (h22 -h..) =0,

811 12

This is the same as case II in the above discussion and so yields a

contradiction. Therefore, it is impossible for 817 = 0.

Now if 81y = 0, from <::> s, we have that O = h

8yp(hyy = hyp)e

Case T: = 0 and 8yy = 0.

€12

From (::> , we have that - 1/2 =0+ 0+ 0 + 0 = 0, a contradiction. Therefore,

this case cannot happen.

Case II: = 0 and (h22 - h12) = 0,

812

From (::) , we have that O = =0 + g21h12; so either

815011 T 89Ps

or h12 = 0,
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Subcase Ila: Bip = o, h22 - h12 = 0, 8y = 0.
From (::) , we have that 0 = g22h12, so either 899 = 0 or h12 = 0.
Subcase IIa(i): g1y = 0s h22 - hyy =0, gy, =0, g,, = O,

Substituting into (::) » we have that 3/2 =0+ 0+ 0+ 0 = 0, a contradiction;

so subcase IIa(i) cannot happen.

Subcase IIa(ii): =0, h,, —h ., =0

29 12 > 851 = 0y h., = 0. It is enough

12 12

to contradict subcase I1b,
O.

Subcase IIb: =0, h -h ., =0,

22 12

From @ and , we have that - 1 = gllhll and - 1 = glthl' Since

Now the problem has

10 hip =

hyy # 05 gy9hyq = - 1= gyyhyy or by = hyy.

h - h = 0 and hll - h

22 12 = 03 this is the same as case I of the first

21

argument and hence yields a contradiction.

By the above three arguments, it is always true that gll # 0,

h22 - h12 # 0, and g9 # 0 and that (::> is walid.

Since (::) could have been derived from the ratio

g (h,, = h,,) g

111 = (h22 — hlZ) g v , it can be argued from symmetry that 891 # 0,
821 11~ 7217 B2

hll - h21 # 0, and 899 # 0,

It is restated for emphasis that all the arguments presented in the
above were made using the assumption that the system of equations is

consistent. It was then proved that 811 # 0, 891 # 0, 81y # 0, g99 # 0
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along with the fact that h # th and h #

11 22 hlZ'
Since any complex number can be expressed as the product of two
complex numbers, since 811 # 0, every other variable in the above system

can be represented as some complex constant multiplied by 811"

Let g12 = g gll’

831 = P Byg»
8o % ¢ By70
hyp = d 895
Bip = @ 8195
fpp = 3 By
oy = Kk 8195
f11 =™ 89>
f10 =™ 8190
21 7P 811>
fop = 4 8yp°

Then substituting this into the system of equations @ through yields:

ja
(0%
I

= (m + q)gll

no
li
£)
£L
1
=]
il
~
e
-
—

=— 1= [(il-i-'be]gi:L



-111~

@—l/2=[— adc1“+aep—cem+cdn]gil
O"[d+k]2 0 = ad + ke

@ = |a egll—;—} = a

@ - V7/2 = [- jq + kp ~ bkm + bjn]gil

-1

@

. 2 .
0=[aJ+ck]gll=>O=aJ+ck

(D) 8], @-3) =gib k- )= - ) =b & - o)

. 2
[§ + bklg],

[ - abq + akp + cjn - ckm]g:lal

(12) g2le @- 1) =gle k- e)=pe(@ -1 =b (- o)
®g2c=g2ab@c=ab
11 11

and a# 0, b#0, c#0,d~-3#0, k-e# 0.

Now @ implies ¢ = abj; and implies that j = :-:—1-(-. 4Substituting

for ¢ = ab in j = :—;h yields j = :-;& = :—z‘m{- = - bk, When this expression
for j is substituted in we have - 1 = [j + bk]gil = [~ bk + bk]gil = 0,

or - 1 = 0; this is a contradiction so the system of nonlinear equations

must be inconsistent,
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