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non-anticipatory functions by defining the Ito integral for

arbitrary non-anticipatory functions to be

b A . b
IO z(t,w)dp(t,w) = 1l.i.m. fo g, (trw)dB(T,0).

It is shown in Jazwinski (1970, pp. 929-100) and in

Varadhan (1968, pp..129-131) that the Ito integral of a

simple random process has the following properties:

(i)

(ii)

(iii)

(iv)

(v)

f: [£(t,w) + g(t,w)]dB(t,w) =

Iz f(t,w)dR (t,w) + f: g(t,w)d(t,w),

{f: f(t,w)aB(t,w) } o is a martingale

process,

{f: f(t,w)dB(t,w) }  p has sample functions that
are continuous with probability one,

E{f: f(t,w)dB(t,w)} = 0,

BIL(D [C f(r,0)as(t,w} -

(o [ guwasmw}’] =

min(t,s)
/

covariance matrix of {Bt}teT and Q is positive

& f(u,w)Q gT(u,w)du, where Q is the

definite.

The above properties are preserved when the domain

of the integral is extended to the wider class of arbitrary

non-anticipatory functions.
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Stochastic Integral Equations

Now that the Ito stochastic integral has been de-
fined for simple random processes and has been extended to
general random processes, random integral equations may now
be considered. In real variable theory, to every differen-
tial equation g% = f(x,t), with f£(x,t) continuous in x and t
and Lipschitz in x over the appropriate region and having an
initial condition x(to) = Xgr there corresponds an integral
equation x(t) = x, + f:o £(x(t) ,t)dt, where the solution of
the differential equation is the solution of the integral
equation. In working with systems driven by a Wiener
process, B(t,w), only the stochastic integral equation,
x(t,w) = x(ty,w) + f: f(x(s,w),s)ds +
(1) f:o o(x(s,w),s)dgk;:;)l Qiéh %(1,1) and g(+,*) continu-
ous in both arguments over the appropriate region and
Lipschitz in x, and o(+,*), £(*,*) measurable in x and t,
has meaning. An often encountered expression is dx(t,w) =
f(s(t),t)dt + o(x(t),t)dB(t,w) which is just notation to
represent the above defined integral equation and nothing
more. In eq.() , the first integral is just the ordinary

Lebesgue integral, but the second integral is the Ito

integral. It is seen that it would be impossible to define



189

the above stochastic integral equation without first having
the Ito integral defined. 1In order to establish results
concerning stochastic integral equations it is necessary to
use the properties of the Ito integral elaborated upon
earlier.

In analogy to the method of using Picard iteration
to establish the existence and uniqueness of a solution to
the deterministic differential equation or integral equation
(Goldberg, 1963, p. 266), Picard iteration will again be
used to establish the existence and uniqueness of a solution
to the stochastic integral equation, but the arguments are
complicated by the fact that the solution will be a random
process and convergence of the solution must be argued from
the standpoint of convergence with probability 1 for the
most powerful results.

The proof of the following theorem will be elabo-
rated on in detail since it involves many of the concepts
that have been defined so far and will serve to illustrate
the probabilistic techniques needed in studying random
processes and stochastic integrals from a rigorous point of

view.
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Theorem 3.4: If f(x) and o(x) are Lipschitz in x then the
integral equation x(t,w) - x(s,w) = j: f(x(u,w))du +

f: o(x(u,w))dB (u,w) has a unique glbbal solution x(t,w)
which is a Markov process having almost all sample functions
continuous and passing through any random initial point o,
where a is a random variable, a € L2(P), with distribution
independent of B(t,w) for all t, and this unique global
solution x(t,w) is an element of Lz(ﬂ X [Tl,TZ]) where

0 < Ty < Ty < o,

Elaborated Proof: (Modeled after sketch in Bucy, 1969,

p. 19.) Consider the time interval [0,T] where T is an
arbitrary fixed finite value. Consider the iteration equa-
-~ +tjion, which gives the result of the n-th iteration to be

x, (t,w) = a(w) + fz £(x,_7(s,w))ds + (I) fz o (%1 (s,0)dB(5,w)

for each fixed t ¢ [0,T] and where s = 0 for convenience.
Similarly, the result of the n--lSt iteration is

#n_l(t,w) = alw) + f; £(x,_5(s,w))ds +

(1) IE o (x5 (s,w))dB(s,w). Subtracting eq.2 from eq.]

yields

[x,(t,0) - x,_y(t,0)] = j; [£(x,_;(s,w)) - £(x;_5(s,w))]ds +
(1) fg [o(x,_(s,0)) = olx _,(s,w)]1dB(s,0)

which when squared on both sides yields
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t
(ot (&) = g (£,00)% = {]] [£(xy 1 (8,0)) = £(x,_p(s,0))1ds +
t

(1) [, [o(xq_1(8,)) = 0(x,_p(s,0))]dB(s,0)

Nig from the fact that (a + b)2 = |a + b|2, it follows that
2 t
Ixn(tlw) - xn_l(trw)l = {IO [f(xn_l(slw))
t
£(xy_p(s,0))1ds + (T) [ [o(xp_g(s,0)) -

c(xn_z(s,w))]dB(s,w)}2

t 2
<2|f) [E(xq g (s,0)) - £(xy_p(s,w))ds|” +

t 2
2 (D) [ lo(xp_j(s,0)) - o(x,_,(s,0))]dB(s,w) |

t t
<2 [ |Elxg(s0)) - £(x_,(s,0)|% ds - /s 12 as +

t 2
2[(1) [, lo(xyy(s,0)) - o (x,_5(s,w))1dB(s,w)|".

@€D) The above is obtained by an application of the in-
equality |a + b|2 < 2|a|2 + 2|b|2 which is a consequence of
the triangle inequality as is shown below. The fact that
la+b] < la] + [b] = (a+bh? < fal + [bhZ = [a]® +

2|la|l + |b| + |b|2 and the fact that 0 < (|a] - |b|)2 =

2

1al? - 2]a] « |b] + |b]2 2> 2]al|b] < |a]? + |b|” taken

together imply that |a + b|2 = |a|2 + 2|al * |b] + |b|2 <

2
|

A

1a]2 + |a]2 + |b|% + || or |a + b|? < 2]a|® + 2|p|2.

@ The above is obtained by an application of the

t 2 t 2
Cauchy-Schwarz inequality Ifo hg ds|” < fo |h|” ds -

(2 2 .
[  lg]® d@s with g = 1 and h = £(x _j(s,w)) - £(x, _5(s,w)).

0
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Since eq.3 holds and taking expected values on both sides
pifserves the inequality, it follows that
_ 2 =
Elxn(s,w) - xn_l(s,w)| < E 2t fo |f(xn_l(s,w)
2 _ t
£(xq_p(s,0)) " @s + B (D) [ [0xy_g(s,0)) =

o (x_o(s,w))1d8 (s,0) |°

t . 2
= 2t E fo I:_E(xn—l(s'm)) - f(xn_z(slw))l ds +

t | 2
IO Elo(xn_l(s,w)) - o(xn_z(s,w))l ds

t 2
= 2t fO E|f(x,_q(s,0)) - £(x,_,(s,0))|" ds +

t 2
[y Elo(xpog(ssw)) = olxy 5(s,0)) | ds.

©) The above is a result of using the Ito integral in
t t

that E| (I) IO h(s,w)ds(s,w)l2 = IO Elh(s,w)l2 ds is a

property of the Ito integral as demonstrated in- a previous-

section.

@ The above is obtained by applying Fubini's theorem
(Rudin, 1966, p. 1l40) and recognizing the fact that E[-] is
just an integral,

t 2
E fo |£(x,_1(s,0)) - £(x _,(s,0))|" ds
t 2
= fQ dp fo |£(x,_1(s,w)) - £(x,_,(s,w))]|" ds.
The assumption that the first integral exists resulting in
the function being absolutely integrable in one of the three

possible forms justifies the interchange of the order of
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Both f£(*) and ¢(+) satisfy a Lipschitz condition, so
3 My > 0 e3e [£(x) - £(y)]| < M; |x - y| and | My >0 +3-°
|lo(x) - oly)] <M, |x - y|. Now letting K = max (M, ,M,), it
is true that |£(x,_;(s,w)) - £(x,_5(s,0)) | < Klx _;(s,0) -
x _o(s,w)| and |o(xn_l(s,w)) - o(x,_5(s,0)) | < Rlx, _;(s,0) -
xn_z(s,w)l and that squaring both sides preserves the direc-

tion of the inequalities to yield

2
[ £(x,_(s,0)) - f(xn_z(S.w))I2 g Kzlxn_l(s,w) - x,_5(s,0) |
and
lo (%1 (s,0)) - o(xn_z(S.w))I2 < Kzlxn_l(s,w) = xn_z(s,w)lz.

Since 0 < a < b and P is a positive measure = 0 < fﬂ adP <
IQ bdP, taking expectations of both sides of the above
preserves the inequality to yield
2 2
0 < Elf(xn_l(s,w)) = f(xn_z(s,w))l <K Elxn_l(s,w) -
2
Xp o (8,0) |
and
0 < E|f(x_ _;(s,w) - £(x__,(s w))l2 < x? E|x__,(s,w) -
= n-11'7’ n-2'"7 = n-1'°7

2
X, ..o (s,0) |

integration.

t
fo @@ [, 1€ty (s,0)) - £xq_p(s,00) | as

t
IO ds fQ | £(x,_;(s,0)) - f(xn_z(s,w))Iz dp

[

r’.

2
) E|f(xy_1(s,w)) - £(x,_5(s,w))]|” ds.
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for each s ¢ [0,T]. Similarly, since 0 < ¢ <D

ft
0
respect to s yields

t
cds < !0 D ds, integrating both sides of the above with

t . 2 2 .t
fo Elf(xn_l(s,w)) - f(xn_z(s,w))] ds < K IO E|lx, _j(s,0) -
2
xn_z(s,w)l ds
and
t 2 2 .t
IO E|0(xn_l(s,w)) - ol(x,_,(s,w))|" ds < K IO E|x _q(s,0)
2
X, _o(s,uw)|" ds
for each fixed t ¢ [0,T].
The above results from using the Lipschitz hypoth-
esis and yields a bound for E|x (t,w) - xn_l(t,w)|2.
The expression for this bound is
E|x (t,0) - x__,(t )|2 < 2(t+1)K2 ft E|x_ _q(s,0) =
n't’ n-1'%s¥ = o n-1'5¢%
2
xn_z(s,w)| ds.
2
Using eq.5 to obtain a bound on E|xn_l(t,w) - xn_z(t,w)l
yields
E|x. _i(s,0) - x _,(s w)|2 < 2(t+l)K2 fs Elx_ _,(u,w) -
n—l ’ n"2 f 5 0 n_2 [
2
xn_3(u,w)| du.
So now the bound in eq.5 <can be rewritten as

E|x,(t,uw) - xn_l(t.w)l2

A

2 ,t 2 s
2(t+1)K fo ds 2(t+1)K fo E|x,_,(u,w) -
2
x_3(a,w)|" du.

t 2
- [2(t+1)K2]2 IO ds fi E|xn_2(u,w) - xn_3(u,w)| du.
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Proceeding to iterate the above expression n-1 times yields
2 2.n-
Elx (t,0) - xp_q(t,0) ]2 < 20+ K21V -
t s S s
1 n-2
IO ds IO dsy fo ds, ... fo E|x;(s,_q,0)
2
Xg(sp-y0) |7 a8y
for each fixed t € [0,T] where xo(t,w) = o(w), Vv t e [0,T].
Now from the property of supremums,
2 2
E|xl(sn_l,w) - xo(sn_l,w)| < 0<sup E|xl(u,w) - xo(u,w)l
sussp-1
for all s,y € [0,sn_2]. By another property of supremums,
the supremum of a quantity over a larger set is greater than

or equal to the supremum over the smaller set and since

[O,Sn_l] C [0,T] it is true that

2 2
sup Elxl(u,w) - xo(u,w)| < sup E|x1(u,w) - xo(u,w)l .
O<uss, . _q 0<u<T
The above two facts together imply that Vs _, € [0,sn_2]
2 2
Elxi(s__;,w) = x5(s__q,0) < su E|xq(u,w) - x,(u,w)
| %3 {51+ 0(8p_1/0) " £ O;uET | %9 (u, o (us0) |
(a finite constant). It therefore follows that

t s s S, _
IO ds IO ds; fol ds, ... fon 2 Elxy(s,_ ;W)
2 t s S
xo(sn_l,w)l ds _; < IO ds fO ds; fol ds, ...
s 2
fon‘z 02;2? E|xl(u,w) - xo(u,w)| ds _, =

2 .t s s
sup E|x; (u,0) - xq(u,0) | fo ds IO dsq fol ds, ...

A result from advanced calculus is that an expres-

sion for the (n-1)~fold iterated integral is
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n-2

t s s s t 5
a a 1as. ... [Pn=2g = (- {=w) gy,
fo £ fo °1 fo 2 fo ®n-1 fo (n=-2) 1 ;-

The expression on the right hand side is easily integrated

to yield
=1
t s s s t (t-u) £
a d lgs, ... [[n-2 4 = A=Y _dqu = —}—.
[o a8 [y dsy Jot dsy lo sn-1 = Jo o2yt T e
The bound in eq. 7 can now be extended to
2.n-1
[2(t+1)tK™]
e su Elxq(u,w) -
(n—l)! O;PE? | 1 !

8 2
E]xn(t,w) - xn_l(t,w)l <
xo(u,w)l2
for each fixed t ¢ [0,T]. It should be noted that for fixed
t e [0,T), |x,(t,w) - x,_7(t,w)| is a random variable and so
the bound that has been obtained is simply a bound on the

second moment of the difference of the random variables
xn(t,w) and xh_l(t,w).

 The bound in eq.8 and the fact that t e [0,T] so

t < T imply that, all the more,
2.,n=1
[2(T+1)TK" ] =
. u E|xq;(u,w) -
(n-l)l OSDET | l( ! )

9 2
E|lx(t,w) - x(t,w)|” <
2
xo(urw)l
for each fixed t € [0,T]. Rewriting the above for

x,_1(t,0) - x, 5(t,0), we have

2.n-2
_ 2 [2(T+1)TK" ]
2
su E|xq(u,w) - x,{(u,w
O;pgi I l( ;W) 0( ’ )I

for each fixed t € [0,T]. Now taking the supremum of the

left hand side of the above over t, 0 < t < T, where the
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right hand side is independent of t yields

10 2.n-2
2 [2(T+1)TK™]
su Elx (t,w) - x (t,w) <
o<ter % (& n-2 (&0} |° 2 (n-2) 1

2
su Elx, (u,w) - x,{(u,w) s
oLy Flr () - x|

This bound will be used in the next part of the proof.

In order to establish almost sure convergence of the

iteration scheme the following device can be used. Define

2
|x (t,w) - x_ . (t,w)|
R,(w) = sup n n-1

0<ELT 2

v
o

for each w ¢ . For each w ¢ O, Rn(w) will be an indication
of the non-closeness of xn(t,w) and xn_](t,w) over the whole
interval [0,T]. If sequences {En}:=1 and {N_ :=1, each con-
sisting of nonnegative terms exist 2+ ) €y <
[-9) n=1 +
21 N, < », and P{w||Ry(w)| > e } < N, ¥V ne I, then 3
n=

x(t,w) +2° x (t,w) converges to x(t,w) with probability 1
(Cramer and Ledbetter, 1966, p. 42, expression 3.5.5).

It will now be established that P{w||R (w)| > e } <N

+
Vn e I . From eq.3 it is true that for each fixed w € Q,
2
Ixn(t,w) - xn-l(t'w)l
2

&
< |y gy (s0w) -

t
£(xpp (s,0))1as]? + [(D) [ lo(xy_g(s,0)) -
o (x,_y(s,0))1d6 (s,m) |2,

and by taking the supremum on both sides
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2
|x (t,w) - xn_l(t,w)l :

() = 0<ter 2
o;ggm |f§ [fixn_l(s,w)) f(xn_z(s,w))]dsl +
OZEE? [0 [, lolxq_q(sow)) - cr(xn_z(s,w))]ds(s,w)l2
For any € > 0, since Rn(m) >0 it follows

for each w € Q.

that
Plu| R (w) | > e} = P{w|R (w) > €}

t
SuPT |f0 [£(x,_1(s,w)) - f(xn_z(s,w))]dsl
2
- o(x,_(s,w))]1dB(s,w) | > €}

P{uw|
0<t<
At zupn | (1) ft [o(x (s,w))
02teT 0 n-17f
® 2
P{uw| sup |[ [£(x,_q(s,0)) £(x,_5(s,w))lds|” > e }
0<t<T :
[ [ loley g (sh0)) -

+ P{w| sup
0<t<T ,

o(x,_,(s,w))1dB(s,w)|" > e/2}.

The above is obtained from the fact that given

&

A(w) < B(w) + C(w), for each w' € {w|A(w) > €} since € <
A(w') < B(w') + C(w') then ' e{w|B(w) + C(w) > e}; so
Now by the monotone

{w|a(w) > e} C{w|B(w) + C(w) > e}.
property of positive measures, P{w|A(w) > €} < P{w|B(w) +

C(w) > e}.

The above is obtained from the fact that
{w|c(w) < e/2} C {w|B(w)e/2} N{w|B(w) + C(w)e}, which is

®

seen by considering an arbitrary o' e{w|C(w) 2 e/2}
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It has now been established that
P{w{”gh(w)| > e} < Plu] OEEET If; [f(x _;(s,w)) -
£(x__,(s,w))lds| > e/2}+
P{w| sup | (1) ft [o(x _1(s,w))
o (x, 27s w))]ds(s w | > e/2}.
Now bounds will be established on both of the two distinct
terms on the right hand side of eq.]]
For the first term it is true that

P{uw| sup lf [£(x,_j(s,0)) - f(x—n_z(s,w))]ds|2 > ¢/2}

{w|B(w) < €/2}. Now B(w') < €/2 and C(u') < €/2 = B(w") +
C(w') < € so-w' e{w|B(w) + C(w) < €}. Since this was for
arbitrary w', containment is proved. Now observe that
{w|B(w) > €/2}° N {w|c(w) > €/2}° = {w|B(w) < e/2}N

{w]C(w) < e/2} C {0|Blw) + C(w) < e} = {w|B(w) + C(w) > 1€
and by taking complements on both sides {w|B(w) + C(w)

> e} C {w|B(w) > e/2} U {w|C(w) > e/2}. Now since

{w|B(w) > ¢/2} and {w|C(w) > €/2} are not known to be dis-
joint, it follows from the finite subadditivity of positive
measures that P{w|B(w) + C(w) > €} < P{w|B(w) > e/2} +

P{w|C(w) > e/2}.
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@D t _

= P{uw| oiggm lfo £(x,_q(s,0)) - £(x,_,(s,w))ds| > Ve/2}
P{w| su ft | £ - Ve,

< 0ét2¢ m (%1 (s,0)) - £(xy_5(s,0))|ds > Ve/2}
@ T

< Plo] [ [Eq_p(s0w)) - £0xy_p(s,0))[ds > Ve/2}

C:) The above is obtained since for any w for which
2(w) >b > 0 it is also true that +A(w) > vb > 0 and vice-
versa so {w||A(w)| > b} = {w||A(w)| > V/b} where b > 0.
The above is obtained since |f§ [£(x,_;(s,0))
f(xn_z(s,w))]ds|; fz |f(xn_l(s,w)) - f(xn_z(s,w))|ds and
consequintly UEEET |f§ [E(x _;(s,0)) - £(x _,(s,0)lds| <
oigET f |f(x 1(s,0)) - f(xn_z(s,w))|ds so for each
w' ef{w] sup If [£(x,_q(s,0)) - f(xn_z(s,w))]ds| > ve/2}
means that /e/2 < sup |ft [£(x,_;(s,0') -
0<t<T
£(x, . (s,w'))]ds| <:0:up j If(x -1(8, w')) -
f(x,.p(s,0")) ds so that w' e {w] 0sup f If(xn_l(s,w)) =
£(x,_5(s,0))|ds > ¢} and {u] o5 |ft [£ (%1 (5,0))
£(x,,(s,0))]ds| > e} C{u| sup=f | £ (%7 (5,0)) -
f(xn_z(s,m))lds > ¢}. Using A.C B —>P(A) < P(B), the
result follows.

@ The above is obtained since for |g| > 0 and [0,t]

[0,T] for all t e [0,T] ) [ lglas £ [ |glds and
[0,t] [0,T]
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T 2t
P{w|K fo |x,_;(s,0) - x _,(s,w)|ds > /e/2}

, T ==
= P{w||K IO |x,_;(s,0) - x _,(s,w)|ds| > Ye/2}

@ g 2
g Elfo K x,_;(s,0) - x,_,(s,w0)|ds|
- (V/e/2)2
BIT [ K2|%_q(8,0) - %, ,(s,w) |2 as]
0 n-118/ n-2'8:% S

ia

2 T e 2
= 2/e TK E IO |%,_7(s,0) - x _,(s,0)|" ds

consequently sup [ lglas < [ |glas.
0<t<T [0,t] [0,T]
~ . T
«X)) For arbitrary w' e{w| fo |£(x,_;(s,0)) -

. - T
£(x,_,(s,w))|ds > Ye/2} and since /e/2 < fo | £(x _1(s,0")) =
T
f(xn_z(s,w'))|ds < K IO |%,_q(s,0") - x,_,(s,0') |ds, so
1 T ; /— 3
w' e{w|K IO |x,_1(8,0) - x,_5(s,w)|ds > Ve/2}. Since
A'C B'Z) P(A') < P(B'), the result follows.
T
ad The above is obtained since 0 < K IO | %1 (s,0) -
T
xn_z(s,w)lds = |K fo |x,-1(s,w) - xn_z(s,w)ldsl.
QED The above is obtained by the use of the Chebyshev
. 2
inequality, PI|y| > A] < El%l_.
A
A The above is obtained by use of the Cauchy-Schwarz

T T T
inequality |f0 hg ds|2 < fo n? as IO g2 ds where

h = K|£(x,_j(s,0) - £(x,_,(s,0))| and g = 1.
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2 T ' 2
= 2/e TK fo E|x,_1(s,0) - x,_,(s,0)|" ds
) 2 T 2
= 2/e TK su E(x u, - X u,w ds
/e o 23y Blrama () = g (20|
2.2 2
= 2/e T°K 0sup E|xn 1(Erw) = x o (k0|7
So that a bound for the first term on the right hand side of

eq.11 1is

ﬂ
A

12 2
P{u| oSUP, |[  [£(x,_q(s,0)) - £(x,_5(s,0))]las|” > e }

N O

2/6 r2x? 0sup Elx _;(t,0) - x _2(t,w)|2.

For the seand term on the right hand side of eq J1
it is true that
P{uw| sup | (1) f [o(x,.q(s,0)) - c(xn_z(s,w))]de(s,w)l2 >

e/2}

oY) - The above is obtained by use of Fubini's theorem
which is justified by the absolute integrability of

t 2
E jO |x,_;(s,0) = x _,(s,0)|" &
) The above is obtained since for all s *3: 0 < s < t,

2
0 < Elx _j(s,0) - x _,(s,0)|" < 0sup E|x,_y(t,w) -
2 T -
X5 (t,w) | f E|lx,_1(s,0) - x,_5(s, w)l ds <
T

[ sup Elx -1 (t,w) - xn_z(t,w)l ds = T sup E|x,_q(t,0) -

0 og<t<T 0<t<T
() |2
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de t
= Plw| sup [(I) [ [o(x,_q(s,w)) -
0<t<T 0 B

o(x,_o(s,w))]1dB(s,w)]| > Ve/2}

a2

1

T
ﬁ L El(I} fo [o(xn_l(s,w)) - o(xn_z(s,w))]dB(S,w)|2
(Ve/2)

A

£
A

®

T 2 2
< 2/e fO E K |xn_l(s,w) - xn_z(s,w)l ds

T 2
2/¢€ fo Elo(x,_j(s,0)) = o(x,_,(s,w))|” ds

as The above is obtained by the same reasoning as in
@ .
a» The above is obtained since the stochastic integral

is a continuous martingale (Varadhan, 1968, p. 129) and, as

such, satisfies the continuous martingale inequality,

2
P{w| sup |n(t,w)| > 2} <X + E|n(T,0)|°, where n(t,n) is
0<t<T = 22
the martingale.
The above is obtained by the property of the Ito
integral used in Q) .
) The above is obtained since for each s e [0,t]C [0,T]

lo(x, 1 (s,w)) = a(x,_,(s,w)) 12 < Kzlxn_l(s,w) - X, o (s,w) |2,::>
Elo(x,_1(s,0)) = o(x _,(s,0)]° < K* E|x__;(s,0) -
xn_2(s,w)|2 for each s ¢ [0,t] C [0,T] =
T 2
[y Elotxy g (ss0)) = alxy_5(s,0)) | ds <

2 ,7T
K fO Elx,_q(s,0) - xn_z(s,w)l2 ds.
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é:;=2/e K2 IE sup Elxn_l(t,m) - xn_z(t,w)|2 ds
) 0<t<T 5
= 2/e K'T su Elx._,(t,w) - x__(t,w)| .
O;tgi I n-1 n-2 |

So that a bound for the second term on the right hand side
of eq.]] is
P{w| sup |(I) ft lo(x,_;1(s,w)) - o(x _2(S,w))]dB(S,w)|2 >
0<t<T 0 n n
€/2} < K'T sup E|xn_1(t,w) - xn_z(t,w)l .

0<t<T
Using eq.]3 and eq.]2 , the bound in eq.]] can be

extended to

4 2
P{w (w)| > €} < 2/e T(T+1)K E (t,w) -
| IR, () | < 2/ 02:2? | %1

2
xn_z(t,w)l 5
Now using the expression developed in anO , the bound in

eq.]4 can be extended to
2 2,n=2
Plof Ry (w)] > e} 27 T(repx® DXL -
2
su E|lxy(u,w) - x4(u,w)
O;ugT I 1= 0t l

for € > 0. 1In particular, for e = g, > 0, the above

expression becomes

2 2.n-2
Plo||R (w)]| > g4} < 2/¢ T (T+1) K2 [Z(T(:T;f!] .
su E{xq(u,w) - x5(u,w)|.
0;p§$ | 1 o |
And in particular, for €En = _—l—_f > 0, the above expression
(n-2)
" The above is obtained by the same reasoning as in

@ .



becomes
2 2_.n=-2
1 2 2 [2(T"+T)K"]
P{w w > =} < 2T(T+1)K" (n-2 : .
||Rn( ) | n—2)2 L YK ( ) m=2)1
su Elx, (u,w) - xXn(u,w)|.
Oépgi | Sk 0 |
In the above, the expression sup E|xj(u,w) -

5 0<u<T
xo(u,w)| is ever present. This expression will now be

investigated. From the fact that xo(t,w) = o (w) for
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t € [0,T] and several of the arguments used earlier in the

proof, it is true that
2 t
E|xq (t,0) - xo(t,0)|” = E| IO £(xy(s,0))ds +

t .
(1) fo o (xy(s,w))dB(s,w) + alw) - xo(t,w)l2

t t
B|f) £a(@))ds + () [ o(a(w)abls,w) + alw) - Al 2

A

t t
2E|j0 f(a(w))ds|2 + 2E (I) fo 0(a(w))d8(s,w)|2

fin

t t
2E[t /0 |f(a(w))|2 ds] + 2 fo Elc(a(w))|2 ds

. |
2t f, E|£(alw)|? ds + 2t Elo(alw)]?

2t E|f(a(w))|2 + 2t E]c(oc(w))l2

22 E|f(oz(w))|2 + 2T E|c(a(w))|2 < o

A

for each t € [0,T]. Therefore the
2 2 2
sup E[x,(u,w) - Xg (u,w) |© < 2T E|f(a(w)) ]| +
0<u<T -

2T E|o(a(w))|2 < », so sup E|x;(u,w) - xo(u,w)|2 is a
O<u<T

finite constant. Denote sup Elxl(u,w) - xo(u,w)l2 by K,

0<u<T
and [2(T2+T)K2] by K,, respectively, for a more compact

notation. The expression in eq.]é now becomes



17
plu| R (0) | > —2 -
(n-2)
the series }

n=3 (n-2)
p-series with p = 2.

Now, =

Also the series 2T(T+1)K2 .+ Ky ¥
n=3

2

——=1} < 2T(T+1)K

2
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n-2

(n-2)!

© (n=-2)2 K,

+
. Kl VnelI.

converges as a result of being a

n-2

(n-2)1

converges as

a result of the following application of the ratio test.

(n+l—2)2 K2n+l-2

(n+1-2) 1!

limsup _

(n-2) !

(i = lz) K

. n . n 2
1&& 2 2 =0 < 1.

B 1 -24+.22

n n

The fact that the ratio test yields a number less than 1

garantees that the series under examination converges

absolutely.

The convergence of the above two series having non-

negative terms and the expression in eq.]7

satisfy an

equivalent formulation of probability one convergence given

by Cramer and Leadbetter (1967, p. 42

expression 3.5.5),

that makes use of the Borel-Cantelli lemma to state that

there exists a random variable x(t,w) °+3- xn(t,w) + x(t,w)

as n + « with probability one.
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The uniqueness of the solution will now be estab-
lished. Suppose that there exists two solutions, x(t,w) and
y(t,w), of the stochastic integral equation on [0,T]. For

x(t,w) and y(t,w) to be solutions it must be true that

x(t,w) fz f(x(s,w))ds + (I) fz o(x(s,w))dB(s,w) + o(w) and
y(t,w) = jz f(y(t,w))ds + (I) fz oly(s,w))dg(s,w) + olw).
Define k(t) 4 E|x(t,0) - y(t,w)|2, which is a function of t.
For each t € [0,T], by repeating the steps in the derivation
of eq. 5 , it is true that 0 < E|x(t,w) - y(t,w)l2 <

2t f; K2E|x(s,w) - y(s,w)l2 ds + 2K° f; E|x(s,w) -

y(s,w)|2 ds = 2(t+1)K2 IZ E|x(s,0) - y(s,w)l2 ds <

t
2(T+1)K2 IO E|x(s,w) - y(s,w)l2 ds. Using the shorter

notation, we have that 0 < k(t)

A

2 (T+1) K> jz k(s)ds < =,

Now iterating once, we obtain 0

A

k(t) <

4

t t . s
2(T+1)K2 fo k(s)ds < 22 (1+1)? & fo fo k(w)du ds; there-

fore, by iterating n-times we have 0 < k(t) <

n n _2n ,t Sn-1 .t
2P (e+1) ™ k2P (£ or 0 L k(8) £
2.n-1 .t s s S
(21K 17T [ as [ dsy [t dsy ool [P 2 k(sy_1)ds,_q <
2. n-1 ,t s Y s .
2 (T+1)K ds ds ds, ... [ D2 gup k(u)ds._q-.
[2( ) ] IO fo 1 fO 2 IO O;ugi (u) n-1

As before, evaluating the iterated integral reduces the

above expression to
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2T (T+1) K21 sup e

0 < k(t) (n-1)1 0<u<T

Now since sup k(u) is finite because
0<u<T

E|x(t,w)|2 2E|u(w)|7 + 2 f; E|f(x(u,w))|2 du < « and

A

E|y(t,w)|2 < 2Ela(w)|2 + 2 f; E|f(y(u,w))|2 du < «, we have

that E|x(t,w) - y(t,w)l2 2E|x(t,w)|2 + 2E|y(t,w)|2 < o for

A

each t € [0,T]; therefore, sup |x(u,w) - y(u,w))l2 < o,
0<u<T

2.n-1
[2T (T+1)K"] sup ' .
(n-1); 0<u<T k(u) is valid for every

Now, 0 < k(t) <

+ . ) 1 v
nelI . The right hand side of the above expression goes to

zero. The convergence of the right hand side to zero can be

(27 (T+1) k2121

o-1) 1 is a convergent

o
seen from the fact that )
n=1

series converging to e2T(T+l)K2, and as such the nth term
goes to zero. Therefore 0 < k(t) < 0 or k(t) = 0 for each
t e [0,T] (i.e., 0 = E|x(t,w) - y(t,ou)l2 = fQ |x(t,w) -
y(t,w)|2 dP). Therefore, x(t,w) = y(t,w) a.e. [P] for all
t e [0,T].

By using the device of the R,'s, uniform convergence
was established. Because the Rn's satisfied the equivalent
formulation of probability one convergence, we have that

x, (t,0) » x(t,w), for some x(t,w), with probability onme.

These two facts together imply that x,(t,w) - x(t,w)
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uniformly with probability one. The solution of the itera-
tion equation x (t,w) = o(w) + fz £(x,_1(s,w))ds +

(1) fz c(xn_l(s,w)dB(s,w) is almost everywhere [P] con-
tinuous in t V n since the Ito integral is a.e. [P] con-
tinuous in t as shown in Doob (1953, p. 445). Since a
sequence of a.e. [P] continuous function converges uni-
formly almost everywhere to a continuous a.e. [P] function,
x(t,w) is continuous almost everywhere [P].

A proof of the Markov property of the solutions on
[0,T] is given in Jazwinski (1970, p. 110) . Actually, the
solution is a strong Markov process with homogeneous transi-
tion probabilities; the proof is in Varadhan (1968, p. 141).

Since T was arbitrary, the above theorem applies for
any finite T, so the existence of a global solution with the
above mentioned properties has been shown. This establishes
all the claims of the theorem.

The previous proof was for scalar random processes
and variables. This proof can be generalized to apply to
vector random processes and variables (the components being
random processes or random variables). In footnote @D, an
inequality for scalar martingale processes was used in estab-
lishing a bound. To generalize the proof to vector random

processes, a bound is needed for a vector of martingales.
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That the concept of an inequality for a vector of
martingales is reasonable can be seen from the following
derivation. There is a scalar martingale inequality. This

2} <

inequality is, for & > 0, P{w: sup |n(t,w)|
i > 0<t<T

= E|n(T,w) |”, where {n(t,w),{f +},t € T} is a martingale.
22 t

fiv

Applying this scalar martingale inequality to two martingale
processes n; (t,w) and n,(t,w), a vector matringale inequal-
ity will be derived for the 2-vector case which will be seen
to immediately generalize by executing analogous steps in
the proof for the m-vector case. For % > 0, applying the

scalar martingale inequality twice yields

P{w: sup |nj(t,w)| > 2/2} < 2 Elnl(T,m)l2
0<t<T 22 5
4
P{w: su n,(t,w > R/2} < E|ln,(T,w
o_ithiz')|=/ £ 37 Elnp(ta)|
Now let A = {w: sup |n;(t,w)| > 2/2}
,  osest =
and B = {w: sup |[ny(t,w)| > &/2};
0<t<T =
= &
then A = {w: sup |n1(t,w)| < 2/2}
0<t<T
and B® = {w: sup |n2(t,w)| < 2/2}.
Q;t;m

Claim: {w: su t + t, < %} 2
ai W OQFET [Inz( rw) | Inl( w) |1 }

{w: su n, (t,w)] < 2/2} N {w: sup |n,(t,w)| < 2/2}.
O;tzi | 1 I / p | 2 w) | /
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. = c c _ c . c
Proof: For arbitrary me A NB , =2 W eA and ¥ ¢ B

sup |n2(t,6)| < /2
0<t<T

@ sup |nl(t,6)| < /2
0<t<T
==

su n, (t,w)| + su n(t,w)| < /2 + /2 = %
OétET I 1 ’ I O;tET I 2 ] / /

Applying a property of supremums we have that

su [inj(t,w)]| + |n,(t,w)|{] < su n,{(t,w +
o;tg'rll'l |2’|=0<th|1(')|

sup |n2(t,5)| < %. Therefore, @ ¢ {w: sup [|nl(t,w)| +
<t<T <t<lT

[|nl(tlw)| + Inz(trw)l <

|n2(t,w)|] < %}, hence {w: sup
0<t<T
21} 2a°n 8°,

Taking complements of both sides of the above claim

and applying DeMorgan's law yields the following:

{w: sup [|ny(t,w)| + [ny(t,w) |1 2 2} C {w: sup Iny (£,0) | 2
0<t<T 0<t<T

2/2}  {w: sup |n,(t,w)| 2 &/2}.
0<t<T =

Since P is a positive measure, the monotone property of
positive measures and the subadditivity of positive measures

(A and B are not disjoint) imply that the following is true.

A

P{w: sup [|ny(t,w)| + |ny(t,w)|] 2 2} < P(A UB) < P(a) +
<t<T

0 <
=7 2 2
P(B) < %5 Elny (T,0) |% + %5 E|n, (T,w) | = %5 (E|nq (T,w) | +
2
E|n, (T,w)|%).

This result may be given a vector interpretation.

nl(t,w)
Let n(t,w) = .
n2(t,w)



Let ||A(t,w) ] & Ing (£,0) | + |ny(t,w) |

Cclaim: ||*||, as defined above, is a norm.

Proof:
)\xl

||| = | 1= Iaxg| + [axy] = [x] (x| +
AXq

|2 1) = x|« [lx[]," Ae

2) Hi+9||=||[xl]+-[le||=!|[xlyl}||=
X2 Y Xatyo

|x1 + Y1| + |xz + Y2| = |X1| + |Y1| + |xz| + |Y2| -

(xp] + Ix[) + Clyg] + lya2l) = [l [I¥]]-

3 1R = gl + Ixgl 20 &

Now, 0 = [IZ]] = lxy| + Ixg

0 < |xg] < Ixg| + Ixa] =0 x| =0 Dxy =0 =
0 < |x5] < 21| + |xp] =0 D%y =0 Dxy = 9;
1= 5 Dk = 6.

Xy = 6,

Therefore || - I, as defined, is a norm.

Also notice that Elnl(T,w)I2 + E|n2(T,w)|2 =
ny (T,w) T
E [ny(T,w),ny(T,w)] = E[A"(T,w)A(T,w)].
Ny (T,w)
The 2-vector result is the following inequality:

P{w: sup ||A(t,w)|] > 2} < & « E[H (T,w)#(T,w)]. This
0<t<T = = g2

212
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result immediately generalizes to the m-vector martingale
inequality.

2 .7
Plw: sup ||&(t,w)]|]| > 2} < (B) E[& (T,w)fi(T,w), where
0<t<T = 4

nl (t,w)
A D
|18t ,0) || = ] |ny(t,w)| and fi(t,w) = | n,(t,w)
j=1 :
nm(t,m)

This proof has shown how the techniques of measure
theory are useful in a thorough investigation of some of the
properties of stochastic integral equations. Even more of
the techniques of measure theory are employed in obtaining

useful results in the area of nonlinear filtering.
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CHAPTER 1V

A STOCHASTIC IDENTIFICATION AND MODELING PROBLEM

In a 1967 article, Mathematical Problems of Modeling

Stochastic Nonlinear Dynamic Systems, Section VIII: "Model-

ing the Real World," Mortensen has presented an example of a
deterministic linear system that is altered to take into
account the random forces in the environment by the addition
of noise terms to the deterministic model. Mortensen then
shows that the resulting stochastic differential equations
yield paradoxical results. Mortensen suggests that since
the ultimate objective of setting up a mathematical model is
to obtain a predicted output of the model that is an accep-
table approximation to the actually observed output of the
physical system one is attempting to model, the safest
approach is to "throw away the deterministic model and re-
model the whole problem, with the objective being to get the
statistics of the output of a Monte Carlo computer simula-
tion to agree with the statistics of the observed data from
the physical system."

It is with Mortensen's example and suggestion in

mind that this present research approach is taken.



425

REFERENCES

Anderson, B. D. 0., "A System Theory Criterion for Positive
Real Matrices," J.S.I.A.M. Control, Vol. 5, pp. 171-
182, May 1967.

Aoki, M., Optimization of Stochastic Systems, Academic
Press, New York, 1967.

Athans, M., and Falb, P., Optimal Control, McGraw-Hill Book
Co., Inc., New York, 1966.

Balakrishnan, A. V., "Matched Filters for Multiple Proc-
esses," I.R.E. Trans. on Information Theory,
Vol. IT-7, January 1961.

Bartle, R. G., The Elements of Integration, John Wiley &
Sons, Inc., New York, 1966.

Berberian, S., Measure and Integration, Publication of the
Dept. of Math., State University of Iowa, Iowa City,
Iowa, 1962.

Bucy, R. S., and Joseph, P. D., Filtering for Stochastic
Processes with Applications to Guidance, Inter-
science Publishers, A Division of John Wiley & Sons,
Inc., New York, 1968.

Churchill, R. V., Operational Mathematics, Second Edition,
McGraw-Hill Book Co., Inc., New York, 1958.

Cramer, C., and Jensen, D. "Fundamentals of Multivariate
Analysis Part I: Inference About Means," Journal
of Quality Technology, 1969.

Cramér, H., and Leadbetter, M. R., Stationary and Related
Stochastic Processes, John Wiley & Sons, Inc., New
York, 1967.




426

Davis, M. C., "Factoring the Spectral Matrix," I.E.E.E.
Trans. on Automatic Control, Vol. AC-12, pp. 296-
305, October 1963.

DeRusso, P, M., Roy, R. J., and Close, C, M., State Vari-
ables for Engineers, John Wiley & Sons, Inc., New
York, 1967.

Dettman, J. W., Applied Complex Variables, The Macmillan
Company, New York, 1965.

Doob, J. L., Stochastic Processes, John Wiley & Sons, Inc.,
New York, 1953.

Dynkin, E. B., Theory of Markov Processes, Translated by
D. E. Brown, Edited by T. Kovary, Prentice-Hall,
Inc., Englewood Cliffs, N.J., 1961.

Feller, W., An Introduction to Probability Theory and Its
Applications, Vol. II, John Wiley & Sons, Inc., New
York, 1966.

Frost, P. A., "Nonlinear Estimation in Continuous Time
Systems," Ph.D. Thesis, Standford University, 1968.

Gantmacher, F. R., The Theory of Matrices, Vol. 1, Chelsea
Publishing Co., New York, 1959.

Gilbert, E., "Controllability and Observability in Multi-
variable Control Systems," J.S.I.A.M. Control,
Ser. A., Vol. 2, No. 1, pp. 128-151, 1963.

Goldberg, R. R., Methods of Real Analysis, Blaisdell Pub-
lishing, Waltham, Mass., 1964.

Greever, J., Theory and Examples of Point-Set Topology,
Brooks/Cole Publishing Co., Belmont, California,
1967.

Gupta, S. C., Transform and State Variable Methods in Linear
Systems, John Wiley & Sons, Inc., New York, 1966.

Halmos, P. R., Measure Theory, D. Van Nostrand Company,
Inc., Princeton, N.J., 1950.




427

Ito, K., and McKean, H. P., Diffusion Processes and Their
Sample Paths, Academic Press, Inc., New York, 1965.

Jazwinski, A. H., Stochastic Processes and Filtering Theory,
Academic Press, New York, 1970.

Johnson, N., and Leone, F. C., Statistics and Experimental
Design, Vol. I, John Wiley & Sons, Inc., New York,
1964.

Kailath, T., "An Innovations Approach to Least-Squares
' Estimation Part I: Linear Filtering in Additive
White Noise," I.E.E.E. Trans. on Automatic Control,
Vol. AC-12, pp. 646-655, December 1968.

Kailath, T., and Frost, P., "An Innovations Approach to
Least-Squares Estimation Part II: Linear Smoothing
in Additive White Noise," I.E.E.E. Trans. on Auto-
matic Control, Vol. AC-12, pp. 655-660, December
1968.

Kalman, R. E., "Mathematical Description of Linear Systems,"
J.S.I.A.M. Control, Ser. A., Vol. 1, No. 2, 1963.

Kalman, R. E., "Irreducible Realizations and the Degree of a
Rational Matrix," J. Soc. Indust. Appl. Math.,
Vol. 13, No. 2, June 1965.

Karlin, S., A First Course in Stochastic Processes, Academic
Press, New York, 1966.

Khinchin, A. I., "Teoriya Korrelyatsii Statsionarykh
Sluchaynykh Protsessov" (Theory of Correlation of
Stationary Random Processes), Uspekhi Matem. Nauk,
No. 5, 1938.

Kras, G., and Potzl, H., "Limiting Conditions on the Corre-
lation Properties of Random Signals," I.R.E. Trans.
on Circuit Theory, Vol. CT-3, pp. 282-285, December
1956.

Kreyszig, E., Advanced Engineering Mathematics, John Wiley &
Sons, Inc., New York, 1962.




428

Kuo, B. C., Analysis and Synthesis of Sampled-Data Control
Systems, Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1963.

Kuo, B. C., Linear Networks and Systems, McGraw-Hill Book
Co., Inc., New York, 1967.

Laning, J. H., and Battin, R. H., Random Processes in Auto-
matic Control, McGraw-Hill Book Co., Inc., New York,
1956.

Lee, E. B., and Markus, L., Foundations of Optimal Control
Theory, John Wiley & Sons, Inc., New York, 1967.

Levin, M., "Generation of a Sampled Gaussian Time Series
Having a Specified Correlation Function," I.R.E.
Trans. on Information Theory, Vol. IT-2, pp. 545-
548, December 1960.

Loéve, M., Probability Theory, Third Edition, D. Van
Nostrand Company, Inc., Princeton, N.J., 1963.

Meditch, J. S., Stochastic Optimal Linear Estimation and
Control, McGraw—-Hill Book Co., Inc., New York, 1969.

Miller, R. S., Multidimensional Gaussian Distributions, John
Wiley & Sons, Inc., New York, 1964.

Mortensen, R. E., "Mathematical Problems of Modeling
Stochastic Nonlinear Dynamic Systems," N.A.S.A. Con-
tract Report, No. NA52-4553, T.R.W. Group, Redondo
Beach, California.

Munroe, M. E., Introduction to Measure and Integration,
Addison-Wesley Publishing Co., Inc., Reading, Mass.,
1959,

Newcomb, R. W., Linear Multiport Synthesis, McGraw-Hill Book
Co., Inc., New York, 1966.

O'Donnell, J. J., "Investigations of Problems in the Optimal
Control of Linear Multidimensional Systems," Ph.D.
Thesis, Carnegie Institute of Technology, Pitts-
burgh, Pa., 1963.



429

Papoulis, A., Probability, Random Variables, and Stochastic
Processes, McGraw-Hill Book Co., Inc., New York,
1965.

Parthasarathy, K. R., Probability Measures on Metric Spaces,
Academic Press, New York, 1967.

Parzen, E., Stochastic Processes, Holden-Day, Inc., San
Francisco, 1962.

Pervin, W. J., Foundations of General Topology, Academic
Press, New York, 1964.

Rozanov, Y. A., Stationary Random Processes, Translated by
A. Feinstein, Holden-Day, Inc., San Francisco, 1963.

Rudin, W., Real and Complex Analysis, McGraw-Hill Book Co.,
Inc., New York, 1966.

Saks, S., Theory of the Integral, Translated by L. C. Young,
G. E. Stechert & Co., New York, 1937.

Schwarz, R. J., and Friedland, B., Linear Systems, McGraw-
Hill Book Co., Inc., New York, 1965.

Solodovnikov, V. V., Introduction to the Statistical
Dynamics of Automatic Control Systems, Translation
Edited by J. B. Thomas and L. A. Zadeh, Dover
Publications, Inc., New York, 1960.

Varadhan, S. R. S., Stochastic Processes, Courant Institute
of Mathematical Sciences, New York University, 1968.

Walljasper, R. B., "The Investigations of Noise Covariance
and Its Effect on Optimal Linear Stochastic Control
Systems," Ph.D. Thesis, University of Iowa, Iowa
City, Iowa, 1970.

White, A. J., Real Analysis: An Introduction, Addison-
Wesley Publishing Company, Reading, Mass., 1968.




430

Wonham, W. M., "Random Differential Equations in Control
Theory," in.Probabalistic Methods in Applied
Mathematics, Edited by A. T. Bharucha- -Reid, Vol. 2,
Academic Press, New York, 1970.

Wozencraft, ,J. .M., and Jacebs, .I. M., Principles of Com-
munication Engineering, John Wiley & Sons, Inc.,
New York, .1965.

Wylie, C. R., Advanced Engineering Mathematics, Third Edi-
tion, McGraw-Hill Book €Ok Inc., New York, 1966.
Ho, and Moo -

Youla, D. C.,-"The Theory and De51gn of Multlple Channel
Matched Filters," Atlantic Res. Corp., Alexandria,
Va-r Juth25:~l959 A :

\w\.‘-.

Youla, D; Cf,‘"Qn thekEacth;zatlcn of Ratlonal Matrices,
I.R.E;, Trans. on Information Theory, Vol. IT-7,
pp. 172-189, July 1961.

L

TPy
T






e —————————=




