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1. Introduction and problem statement 

 
The quantities (tX̂ 2) and P(t2), as state and associated covariance, respectively, are being sought 
below for the purposes indicated in Section 2. These two quantities may be sequentially obtained 
using the Lambert solution methodology via Step a through Step c in Section 3 (with an 
addendum instrumental to its numerical evaluation offered in Section 4) to, respectively, first 
determine the velocity estimate at detection, then via the methodology in Section 5 to obtain the 
velocity component covariance which accompanies it by using two Jacobian transformations, as 
indicated.  
An alternative approach that can be invoked is to apply the Marquardt (also known as the 
Levenberg-Marquardt) methodology of Sections 6 and 7 to obtain both the velocity estimate and 
its accompanying covariance at once. The Marquardt technique incurs a larger computational 
burden but provides a greater benefit by tolerating realistic antenna biases and provides corrected 
range as output even though the associated fence detection, in the case of NMD cues, doesn’t use 
LFM pulse pairs to infer the appropriate Doppler correction compensation.  
Indications from Section 8 are that J2 does not need to be accounted for in either the Lambert or 
Marquardt algorithm because the additional complexity incurred to do so is great yet the benefit 
is apparently rather small since the effect appears to be too small to warrant analysts being so 
exacting in this aspect. Both techniques are presented below for explicit calculation of the two 
quantities being sought: a refined velocity estimate and its accompanying covariance to be used 
within Track Initiation (TI) for the tracking filter. Presenting these two alternatives in  
juxtaposition facilitates comparisons of benefits reaped versus drawbacks incurred. 
Although many people may be familiar with the Lambert algorithm and the Lambert Theorem 
that spawned it from the historical literature [1], the specifics have now changed from being 
grounded in the following six familiar historical ephemeris parameters (defined in [16, p. 36]): 
1. Semi-major axis, 
2. Eccentricity, 
3. Inclination, 
4. Longitude of the ascending node, 
5. Argument of periapsis, 
6. Time of periapsis passage, 
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to just dealing with the velocities of direct relevance to the UEWR tracking as the bottom line. 
There is no longer a need to dwell on these orbital parameters per se or on universal variables 
[1], [3] since there are many other invariants in central force gravity fields that may be exploited 
and the relationship between instantaneous position and associated velocity of direct interest in 
UEWR TI suffices. 

2. How results are to be used in the MAS SRS for track initiation with NMD cue  
 
A Remote Sensor cue consists of an earlier ECI object state vector, (tX̂ 1), and some estimate of 
its observation error covariance, C(t1), after termination of powered (boost) flight (as passed to 
UEWR by BMC3 from either SBIRS or as a radar-to-radar hand-over).  
The Lambert algorithm exploits a property of an inverse squared central force gravity field by 
allowing direct calculation of an accurate value of the target velocity at radar detection. The 
Lambert-based computed target velocity can be used as a so-called “warm start” or a “hot start” 
to initialize the UEWR tracking filter with a value that is closer to the true value (thus expediting 
accurate target tracking by taking less time to converge merely because it starts out being closer 
to its goal). The following procedure shall use the solution methodology referred to as “solving 
the Lambert problem” (please see figure below) for the trajectory characterization of a ballistic 
object, as obtained from two indicated position observations and the elapsed time-of-flight 
between those observations: t2-t1 (as the three inputs) to obtain the velocity vT(t2) [as the output 

enabling specification of (tX̂ 2)= [pT(t2)  vT(t2)]T  to be used as the initial state to start the tracker] 
along with a much reduced accompanying covariance P(t2) as obtained from C(t2) and C(t1). 
After being directed to the expected location in space and after obtaining a successful detection 
and verify, the R-, U-, and V-measurements of that same object at a more recent time t2 allows 
an improved estimate of the object state and accompanying covariance to be computed according 
to the following sequence of steps: 

i) Convert R(t2), U(t2), and V(t2) into an ECI position estimate, p(t2), and an 
accompanying associated error covariance C(t2) corresponding to the detection time more recent than that 
of the original C(t1) associated with the cue [where these two covariances, so far, are just those associated 
with the position]. 

ii) From the value pT(t1) (extracted from the cue (tX̂ 1)= [pT(t1)  vT(t1)]T),  and from p(t2) of previous step and 
knowledge of the time elapsed between the two sightings (t2-t1), use the iterative Lambert algorithm 
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(described below in Sections 3 and 4) related to the underlying ballistic trajectory to compute an estimate 
of the velocity vT(t2) (and a refined estimate vT(t1) for use in the subsequent endpoint Jacobian evaluations 
of Section 5). 

iii) Compute the final tighter error covariance P(t2) for that object from the two constituents C(t1) and C(t2) 
(according to the Lambert procedure for covariances described below in Section 5). 

iv) Transform the resultant pair, (tX̂ 2) and P(t2), to the ENU frame to be used for track initiation as a tracking 
filter initialization 

 
The quantities (tX̂ 2) and P(t2) are to be obtained from the two separate Lambert related 
methodologies provided next in Sections 3 to 5. [Bold prose in this section denotes an 
addendum beyond what is in the current SRS.] 

3. SRS specification of the Lambert algorithm for the velocity estimates 
a. Specifying preliminary consolidating parameters before entering the actual algorithm: 
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Using the following further prescribed definitions for summarizing a collection of underlying 
pertinent parameters as being constant throughout the computation: 
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c. Beginning of Lambert Solution Main Iteration Loop (i = 0, 1, 2, …, 9) 
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Now the fundamental two successive approximation iteration equations to be solved (as 
presented in [2]) are: 
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where (from page  339 of  [3]), the following continued fraction must be evaluated (where again 
the number of continued fraction levels retained relates directly to the number of significant 
digits available in the final answer): 
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End of Lambert Solution Main Iteration Loop     
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The appropriate initial value of y used to start the above computations by looping between the 
two primary successive approximation iterations that together exhibit close to uniform 
convergence globally (in at most 9 iterations) without any singularities being present within this 
particular solution methodology is: 
After completing the indicated 9 iterations of the loop specified above signifying convergence 
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under all situations, the desired velocity at time t2 (from page 307 of 1987 Battin) is: 
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Although a coarse velocity estimate is included in the original NMD Cue, a refined estimate of 
the initial velocity at time t1 (from page 307 of [3]) may be calculated now as: 
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which is needed only for the Lambert-based evaluations of the accompanying covariance 
according to the procedure offered in the next section (and perhaps for improving the 
initialization of Marquardt, as discussed in Sections 6 and 7). 
An alternative solution strategy is offered in [1, Chapter 5] (still in print). Although the 
alternative approach is intuitive and physically based, it is less specific at certain critical points, 
than the one presented here based on Richard Battin’s (Charles Stark Draper Laboratory and 
MIT Aerospace Department) approach [2], [3]. For completeness, Stephen Nelson and Paul 
Zarchan (C. S. Draper Laboratory) have yet another more recent approach [4] to calculating the 
Lambert solution (also without accounting for presence of J2) as all three of these approaches 
ignore. The  approach of [4] is is also expressed directly in terms of position and velocity but, in 
general, requires a few more iterations than Battin’s approach does. Battin’s approach avoids 
historical singular situations that Gauss originally encountered in posing a solution and, 
moreover, Battin’s algorithm appears to be uniformly convergent (i.e., the same number of 
iterations suffice to converge) no matter what starting condition is utilized (as long as it is 
consistent with what is recommended to be used for an initial guess for particular types of orbits 
or trajectories, where attention is confined here to just those being elliptical, as is the case for 
ballistic missiles and satellites). 

4. Evaluating continued-fraction representation appearing in the Lambert algorithm 
 
For a useful interpretation of continued fractions as hidden linear recurrence relations, please see 
Sec. 2.2.2 of [6]. The main idea is summarized below. A continued fraction of the following 
form (encountered twice above in Section 3): 
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Rather than replace the two continued fraction expressions appearing in the main loop in Section 
3 above and risk interfering with expected visual cross-checks by reviewers to the original as 
presented in Battin’s work that wouldn’t expect the equivalence spelled out yet, detailing the 
equivalence was postponed until now to be provided here. Please realize that these continued 
fractions are just short hand representations for additional secondary sub-loops within the Main 
Iteration Loop that must be evaluated on every iteration of the Main Loop index i. There are two 
different continued fractions above so there are, correspondingly, two secondary sub-loop 
evaluations called for inclusion in the Main Loop above. 

5. SRS specification of the accompanying Lambert-based Covariance Calculation 
 
The necessary derivatives to be used in determining the accompanying comparatively tight 
velocity covariance are numerically evaluated at the resulting solution to the Lambert problem 
(offered immediately above). This procedure requires prior evaluation of the two intermediate 3 
x 3 transformation matrices that are to operate, respectively, on the two indicated position 
covariances on the right hand side below (denoted by the subscript p). This is done in order to 
obtain the desired tight final 3 x 3 velocity covariance result of primary interest here (denoted 
with subscript v), appearing on the left hand side below:  
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where in the above, the indicated transformations to be used for pre- and post-multiplying the 
respective cue and detection covariances are the following two (3 x 3) Jacobian gradient matrices 
(with specific entries defined explicitly below for explicit evaluation in this role): 
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Given a 6 x 1 state vector (P,V), the first and second derivatives of range with respect to time, 
rdot and racc, respectively, are computed as follows: 
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The above partial derivatives are analytically provided here since they must be explicitly 
evaluated numerically at the two time points indicated (at time t1 [cue] and at time t2 [det]) in 
order that the above two 3 x 3 T-transformations be completely specified. Brian O’Dea warns 
that the above acceleration terms are no longer needed for our usage for TI calculations. 
The above expressions for the derivatives appeared in IRAS and TD/SAT documentation and 
Kenneth Berkowitz (Raytheon) had previously encountered them in conjunction with the topic of 
motion compensation so they may already appear in the MAS SRS within the context of the 
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motion compensation topic. George Bohannon (XonTech) had indicated that over the years of 
conscientious XonTech revisions for various updates to TD/SAT and associated User Manuals, 
he believes that XonTech has weeded out and corrected all of the possible typos. I didn’t want to 
risk introducing any new typos here so this is a copy of XonTech’s original equations that are 
provided above. 
Excerpt from UEWR SSTB documentation: 
George Bohannon (XonTech) more recently uses slightly different notation for essentially the 
same description offered at the start of this Section 5 but still repeated here now for the reader’s 
convenience: 
“I wrote a section describing the use of the Lambert calculation for computing the covariance 
matrix for XonTech’s pulse integration algorithm in SSTB. (The algorithm is called MCPI.) … I 
think that the notation that I now use below for the derivatives is perhaps clearer than the earlier 
notation that you extracted from one of our viewgraphs [sic, XonTech provided them by my 
request]. 
The trajectory constraint is imposed using a Lambert trajectory calculation. The Lambert 
calculation produces a velocity vector at one point on a trajectory given the position at two points 
on the trajectory and the difference between the times at those two points. The computer code 
that is used was written by Shio Oikawa (XonTech), and described in [9]. The application in [9] 
is quite different from MCPI, however, in that track initiation is performed using a detection in a 
search fence, whereas the MCPI application is prior to detection. Thus, the accuracy of the 
position in the radar range window (search fence or otherwise) for MCPI is generally lower than 
in the TI application, hence the estimated velocity is less accurate. 
The Lambert method is also used for generating the covariance of the velocity estimate. These 
calculations are performed in ECI (Earth Centered Inertial) coordinates. To describe the 
covariance calculation, it is worthwhile expressing the Lambert calculation symbolically, as 
follows: 

rr
),,( )2()1( tPPLV ∆=  
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r
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The subscripts 1, 2, and 3 designate the Cartesian components (x, y, and z, respectively) of the 
vectors. Trajectory point 1 is taken to be at booster burnout or object deployment, whereas point 
2 is at the time of the potential radar detection. 
Two transformation matrices are defined as follows: 
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These derivatives are computed by one-sided finite-difference approximations. The velocity 
covariance is then 
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21)(
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where C1

(P) and C2
(P) are the position covariance matrices at points 1 and 2 on the trajectory, and 

the superscript T indicates the matrix transpose.” 
Notice that all the terms included in the indicated Jacobians (now denoted by M instead of T) 
still need to be spelled out for implementation (as done here above) so that they may be 
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explicitly evaluated at the two end points. In real-time code, TeK Associates suspects that there 
will be less time available to do numerical perturbations (as one-sided difference 
approximations) to evaluate the necessary derivatives as XonTech has done in prior non-real-
time simulations and still indicated here. That is what TeK Associates recommends changing 
above to instead just evaluate the stipulated derivatives (already spelled out analytically) at the 
two end points at cue and at detect. 
6. Discussion of how Marquardt Nonlinear Least Squares may be used to obtain both refined velocity 

estimates and accompanying covariance simultaneously 
 
Earlier demonstrations (see figure below depicting much smaller errors incurred by Marquardt 
than by Lambert for identical situation) of the benefits to NMD of using the Maquardt 
optimization technique included a demonstrated robustness to radar antenna biases (range: 
1σ = 10 m; σu, σv : 1σ = 100 µ sines ) that are otherwise unaccounted for but present 
nonetheless. More recent claims are that this Marquardt technique can also handle 
uncompensated Doppler measurements and automatically deduce corrected range without 
invoking LFM pulse pairs. This may be of interest since pulse pairs are not currently used with 
NMD cue detection; however, preliminary quantification demonstrates that ignoring range-
Doppler coupling for Lambert problem is negligible since target range is from the earth center in 
these computations.  
 

 
 
A drawback is that the well-known Marquardt optimization technique is generally a larger 
computational burden than otherwise encountered for Lambert-based solutions. (However, 
existing claims are that just using simple Lambert solution can’t provide Doppler-corrected range 
without further iterations, a type of increased computational burden in itself for a variation on the 
standard Lambert solution approach that would be a greater computational burden than presented 
above for the straight forward single-shot Lambert approach). One variation that has been 
recommended is to first use the simple Lambert approach to obtain initial results then use these 
as inputs for the Marquardt approach as a more robust refinement thus incurring fewer iterations 
than otherwise encountered with Marquardt because the starting values are closer to the final 
solution. This proposed usage would mitigate the CPU burden of the Marquardt approach. 
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Regarding Brian O’Dea’s claim in above concerning the benefits of using Marquardt in place of 
the Lambert algorithm and how its use ameliorates the deleterious effect of uncompensated 
range-Doppler coupling (so far, undocumented), Haywood Satz (Raytheon) reminded me that he 
and Duane Matthesien (Technia) looked into the order-of-magnitudes involved already. They 
had noticed that since the range-to-target used in the Lambert calculation is viewed from the 
center of the earth, the contribution due to the range-Doppler coupling effect with respect to the 
local radar is, perhaps, too small to care about. Please see quantification at the end of Section 8. 

7.  Specification of the Marquardt Algorithm (to eventually be pruned for the SRS)             
if use of Marquardt is in fact adopted by Raytheon 

 
Inputs to the Marquardt algorithm are: 
• Cue state vector of object and diagonal components of the accompanying cue covariance matrix; 
• RAE measurements of object obtained in the radar fence, their associated three standard deviations, and time of 

detection so that the total time interval from cue to detection is provided. 
 
Outputs of the Marquardt algorithm are: 
• Refined state vector estimate and accompanying covariance matrix at detection time; 
• The resulting 6x6 covariance matrix is, in general, fully populated (being devoid of pure zero elements). 
 
The model to be fitted by the nonlinear least squares Marquardt algorithm represents the object 
in a ballistic trajectory and its path over time is of the following form: 

fitted. be  toparametersunknown  identified    therepresents    where);(  aatyy =
The unknown parameter a can be treated as a vector having M components. The fitting of the 
unknown parameters are computationally deduced in prescribed successive stages using the 
iterative Marquardt optimization procedure, as described in the five steps further below. 
The scalar cost function to be minimized is of the following form to match an ideal ballistic 
template to the measured data by optimizing the parameters to obtain the best fit: 
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where N1=6 and N2=3 and y(ti; a) is a function that, for i=1, returns the parameters ‘a’ (being the 
state vector being estimated) propagated to the time t1 (the validity time of the state vector 
provided by the cue). For i=2, this function returns the parameters ‘a’ propagated to the time t2 
(the radar measured detection time) [which is converted to the measurement coordinate system 
(RAE) where the range R includes the effects of range-Doppler coupling. 
The UEWR-specific modifications to the otherwise standard Marquardt method detailed below 
are concisely summarized here now first: 
• Dimensioning of y is 6 x 2 (actually its 6 x N) but here N is always 2. 
• Providing a special routine “funcs” which returns the appropriate form of y [and it’s associated] sensitivity] 

“dyda” depending upon whether “funcs” is called at the object cue time or at the radar fence object detection 
time.  

• Modifying the routine MRQCOF to sum over j (as called for by the UEWR-revised cost function). As noted 
above, j runs to either N1 (=6) or N2 (=3). 

• Since the scalar chi-square cost function includes differences of angles, resulting angle had to be compensated 
to ensure that if the |angle difference| was greater than 180 to either add or subtract 360, as appropriate to bring 
it within the correct span. 
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• Including an additional special array TFOB (denoting pulse length * frequency divided by bandwidth or “Tau F 
over B”, as an obvious mnemonic notation) in the argument lists for existing MRQMIN and MRQCOF. This 
array is also passed to the routine “funcs”. 

• Modifying existing GAUSSJ0 to provide a return code that can be reflected back through the necessary 
argument lists and thus allow a more graceful robust response to possibly encountering a singular matrix. 

 
The gradient of this scalar cost function with respect to the unknown parameters a, which should 
theoretically be zero at the “best fit” minimum, has the following components: 
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Taking an additional partial derivative yields the following form for the Hessian: 
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Standard convention is to simplify the above and to eventually suppress any factors of 2 from 
appearing by utilizing the following two definitions for convenience: 

.
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Using the above definitions along with the optimistic standard approximation that sufficiently 
close to the goal of achieving the minimum (and if the cost function is sufficiently smooth), then 
the cost function may be validly approximated by a quadratic form as: 

and along with the fact that the cost function should be zero at this minimum, a quadratic form 
may be minimized by going from the current trial parameter acur to the minimizing value amin in a 
single leap or step of the form: 

),defined be  willmatrix  and  vector  ,constant    (where    
2
1  )( T2 Dd,aDaada **** γγ

T
+−≈Χ

[ ])(   221
min curcur aDaa Χ∆−⋅+= −

Now re-expressing this single step equation, using the definition of the alpha’s provided above, 
and defining the curvature matrix alpha as being one half of the Hessian, as  

yields the following equivalent formulation as a set of linear equations that are to be solved for 
the increments δa, which, when added to the current approximation of the parameter acur, 
provides the next approximation for anext as: 

,
2
1 D  α =
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the result is 
.a  a  a δ+←

However, without assuming a quadratic approximation near the optimum because of  possible 
pathologies in the surface of the scalar cost function, a more conservative pure steepest descent 
technique would require that the next step be down the gradient of the path of the following 
form: 

[ ],)((constant)    2
curcurnext aaa ∆Χ⋅−=

which is equivalent, in this simplified notation, to 
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, constant  a lβδ ×=l

and the Marquardt algorithm is just a computational method used to force balance by embracing 
both of the above two “optimistic” and “conservative” approaches to offset each other, 
respectively, to gain an advantage by speeding up the attaining of the solution without incurring 
problems from a perhaps unwarranted (and unsubstantiated) assumption [also inconvenient to 
substantiate] that near the optimum, for this particular cost function being utilized and this 
path under investigation and this underlying physical structure assumed of inverse square 
gravity (WGS-84), the cost function is essentially a quadratic form in this vicinity of the 
minimum. (That is, the cost function may have ridges or piecewise continuous jumps.) 
This joint Marquardt objective is accomplished in two ways by first using this 

, constant  a above   theof instead     
a
1a l

ll
l ll ββ

λ
δ ×=∂=

and by further defining auxiliary primed variable alpha’s as 
( ) ,for     and  ;1 knnknknnnn ≠≡′+≡′ ααλαα

which may both be summarized by solving for the required δal from the following replacement 
system of linear equations: 

. a 
1

l k

M

l
kl βδα =′∑

=

Notice that for the auxiliary variable lambda much larger than 1, the optimization step size is cut 
down and the primed alpha’s are diagonally dominant corresponding to an optimistic quadratic 
form methodology being invoked; while for lambda approaching zero, the pessimistic steepest 
descent methodology is invoked. This is the practical utility  offered by the Marquardt algorithm 
as the “best of both worlds”. 
Given an initial guess for the set of fitted parameters a, the Marquardt procedure proceeds 
according to the following five Steps: 
1. Compute the chi-squared variable (somewhat reminiscent of one from statistics): 

).(2 aΧ
2. Initially, use a small value for the step-size scaling parameter as, say, lambda = 0.001. 
3. Solve the following naturally arising linear equations: 

( ). evaluate and for      a 2
M

1
ki a  aa δδβδα +Χ=′∑
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ki

4. Proceed as follows: 

3. Step return to then and 10, offactor  aby  lambda  increase then ),(( If 22 a  a)  a ΧΧ ≥+ δ
5. Proceed as follows:  

a,  a  aa  a)  a δδ +←<+ solution   trial theupdate 10, offactor  aby  lambda  decrease then ),(( If 22 ΧΧ
and return to Step 3. 

The Marquardt algorithm is described in Section 15.5 of [7]. The corresponding Marquardt 
software code is in [8]. 
8. Evidence that use of J2 to account for Oblateness of earth in gravity model                   can be ignored 

by both algorithms for TI 
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Consideration of J2 is apparently unnecessary overkill in both Lambert and Marquardt for the 
UEWR application. Shio Oikawa (XonTech) comes to a similar conclusion (see figure below) in 
stating that his curves are almost the same whether or not he accounts for the presence of J2. 
Shio Oikawa’s description of what he did to obtain the reported results (in figure below): 
1. Propagated the Design-to trajectories to radar horizon break under J2 gravity field (assumed to be the real world 

trajectory); 
2. Noised up the initial BBO state (Booster Burn Out) to simulate the SBIRS measured position vector; 
3. Noised up the radar horizon break time target (RV) to simulate the radar measurement: (Time between BBO 

and RV radar horizon break time: flight time, was kept constant = FLT); 
4. Used the regular Lambert solution (Appendix I) to obtain BBO velocity which will get to the point obtained 

from Step #3; 
5. Propagated the state from Step #4 for FLT; 
6. Used the iteration method described below (FORTRAN code) until the error was less than 1m (if I remember 

correctly) at the radar horizon break  All of the cases converged in 2 ~ 5 iterations which is very fast; 
7. Compared (at radar horizon break time) the true velocity from procedure 1 to velocity obtained from Step #6 

and kept the statistics; 
8. Plotted the cumulative results. 
 

Please note that plot shows the results of fitting tank BBO and RV radar horizon break state vectors  (not RV 
deployment state to RV radar horizon break) using Lambert solution as an initial velocity vector and iterating 
until position error at the radar horizon break was less than a specified value. 

Shio Oikawa’s FORTRAN code for Step #4 above: 
FLT  = TINT - TSTRT         ! flight time (Tstart, Tintercept) 

100  CONTINUE 
C 
C     Compute the velocity required at current position 
C 

C        X: Current position, XT: intercept position 
C        VRS: Lambert velocity at X 
C 
CALL LAMBRT(GM,TOL,X,VRS,XT,VT,FLT,R1MAG,V1MAG,R2MAG,V2MAG 

**,,                          AANNGGDD,,FF,,GG,,FFDDOOTT,,GGDDOOTT,,II00,,MMAAXXIITTEERR,,IITTEERR,,IIEERRRR))  

IF (IERR .NE. 0) THEN 
WRITE(8,50) 
WRITE(8,*)’ No Lambert solution:  Run terminated’ 
END IF 

C 
C     Propagate the state to TINT under J2 gravity model 
C 

DO I = 1, 3 
XJ2(I) = X(I) 

VJ2(I) = VRS(I) 

VR(I)  = VRS(I) 

END DO 
200    T    = 0.0 
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IEND = 0 

ITER = ITER + 1 
 220    IF ((T + DT) .GE. FLT) THEN                                         
          IEND = 1                ! One more integration step  

DT  = FLT - T         
END IF 
T2   = T + DT                                                     
CALL RK(XJ2,VR,XB,GM,REQ,J2,DTV,DT,A,TA,N,I0,I0) !Prop under J2 
IF (IEND .EQ. 1) GO TO 240 
T = T2 
GO TO 220 

C 
C     Compare the final target position 
C 
 240    DO I = 1, 3 
          DIFP(I) = XT(I) - XJ2(I)  ! XT: true , XJ2 computed 
        END DO 
        DIFX = SQRT(DIFP(1)**2 + DIFP(2)**2 + DIFP(3)**2) 
 
        IF (DIFX .GT. TOLX) THEN   ! TOLX = 1 meter 
DO I = 1, 3 

XJ2(I) = X(I) 
VR(I)  = VJ2(I) + DIFP(I) / FLT ! Adjust initial velocity 
VJ2(I) = VR(I) 

END DO 
GO TO 200   ! Propagated position error > than tolerance 
END IF 
WRITE(9,30)FLT,DIFX,TOLX,ITER 
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Continuation of our observations regarding consequences of presence or absence of J2 
George Bohannon (XonTech) offers his perspective here: 
“I wrote a section describing the use of the Lambert calculation for computing the covariance 
matrix for our pulse integration algorithm in SSTB. (The algorithm is called MCPI.) Perhaps it is 
of some help. 
My experience has been that the Lambert method, as coded by Shio Oikawa, is very fast 
compared to Marquardt. This observation comes from my analysis of the estimation performance 
of the two methods for the MCPI application. However, since my goal [at the time did not 
include explicitly] comparing execution times, I don’t have timing numbers.  
The Lambert solution as implemented by Shio can be extended to include non-spherical earth 
and gravity models. Shio’s basic Lambert code assumes a point-source gravity model and 
spherical earth. This assumption may or may not be adequate for the hot-start application, 
depending on propagation time and bandwidth. However, Shio has also implemented an iterative 
technique for refining the solution to include the J2 contribution, which I suspect could also be 
used to include still higher order terms. Shio indicated that it typically converges to less than 1 
meter of position error in 5 iterations or fewer. There is also an iterative extension to the SSTB 
implementation to include non-spherical terms, but I have found it to be extremely slow. I’ve 
seen code for both extensions, and they are different, but I cannot say how they compare in terms 
of execution time; I haven’t actually tried using Shio’s extension. Of course, you also know 
about the Vinti method for including J2.” 
Resuming TeK Associates’ view of the issues associated with presence or absence of J2: 
Tek Associates is aware of the (late) John Vinti’s book [5] and viewed its associated 1993 TRW 
Fortran software that does account for J2 but at earlier joint meeting with XonTech and Raytheon 

 17 



in the summer of 1999, Fredrick Daum (Raytheon) revealed that such a detailed treatment would 
only change the final computed result by about 5 m/sec. Thus, this apparently changes the final 
answer by too small amount to really worry about for UEWR in Fred Daum’s opinion (which 
TeK Associates has also adopted). Shio Oikawa’s more recent simulations presented above have 
only confirmed this view. 
The much greater computational complexity incurred without significant benefits being apparent 
to UEWR drove me to embrace the simpler implementation (without J2 present). Vinti’s 
approach [5] is completely different from Battin’s [2], [3] or Bate and Mueller [1] and more 
complex. 
None of XonTech’s earlier PowerPoint presentations (by Shio Oikawa on 7-28-99 [9], by Teresa 
Caampued on10-15-99 [10], by Brian O’Dea and George Bohannon on 9-30-99 and 10-1-99 
[11]) utilized J2 for the Lambert or Marquardt computations even though they acknowledged 
familiarity with the existence of the Vinti results [5]. 
Neither the Fortran computer code (based on 1971 Bate and Mueller [1]) that Shio Oikawa sent 
(Appendix I) nor the version of the Lambert algorithm that is written up here in Section 3 for the 
SRS accounted for earth’s oblateness (by including J2) following the 1984 and 1987 prescription 
for it [2], [3] by Richard Battin include a consideration of J2. I hope that this current absence of 
J2 considerations in the Lambert algorithm for the SRS won’t be a problem for Raytheon. 
When and where J2 is apparently important is in the Lambert calculations for a planetary 
rendezvous, where the mission time is fairly long and these secondary considerations mount up 
(over time) to have a significant impact that can’t be ignored. For this, the use of [5] is necessary. 
There are other situations where inclusion of J2 is important such as in the tracking filter and in 
the BLS “batch” filter. Fred Daum (as well as all of the legacy SRS’s) have always advocated its 
use there. Raytheon historical literature quotes that in performing tracking, absence of the J2 term 
in the associated tracking model used by the tracking filter can lead to as much as 10 nm error in 
estimated impact point (after 30 minutes). We have been including J2 where we think it is really 
necessary for UEWR. 
Brian O’Dea’s original (9/8/00) description of Xontech’s particular customization, which 
TeK Associates used to provide the discussion of Marquardt in Sections 6 and 7: 
The chisq merit function is: 
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where n1=6 and n2=3. 
y(tI;a) is a function that for i=1 returns the parameters ‘a’ (the SV being estimated) propagated to 
the time t1 (the validity time of the cue provided SV). For i=2 this function returns the parameters 
‘a’ propagated to the time t2 (the measurement time) and converted to the measurement 
coordinate system (RAE in my case) where R includes the effects of range-Doppler coupling. 
Thus the modifications to the Marquardt method provided by numerical recipes were to: 
• Dimension ‘y’ 6 x 2 (actually 6 x n) but in practice ‘n’ is always 2. 
• Provide a routine ‘funcs’ which returns the appropriate form of ‘y’ and ‘dyda’ depending upon whether funcs is 

called at the cue time or the measurement time.  
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• Modify the routine MRQCOF to sum over j (as called for by the merit function). As noted above ‘j’ runs to 
either 6 or 3. 

• As the chisq merit function includes differences of angles I had to ensure that if the |angle difference| was 
greater than 180 to add or subtract 360 as appropriate. 

• Include an array TFOB (implying pulse length * frequency divided by bandwidth or ‘tau F over B’) in the 
argument lists for MRQMIN and MRQCOF. This array is passed to the routine ‘funcs’. 

 
I also modified GAUSSJ0 to provide a return code that could be carried back thru the necessary 
argument lists and thus allow a more graceful response to encountering a singular matrix.  
The only missing element is how to compute dyda at the two times. In the October [1999] 
presentation I provided the details about how I compute dyda at the cue provided SV validity 
time. Of course, my dyda was derived based on my propagation method (ECI) whereas I believe 
that the UEWR propagator will operate in ENU coordinates.  
TeK Associates recent (9/23/00) request to Brian O’Dea for more elaboration on specifics: 
Section 9 now more fairly depicts the situation…. I no longer believe that I will need more detail 
on the specifics of what is in the subroutines that you referred me to until a decision is made by 
the Raytheon/XonTech team to actually include Marquardt in the SRS. The ball is in their court 
now…. 
I do still need a little more explanation of how covariance is obtained or extracted from 
Marquardt and why cost function was customized in the manner indicated as a slight departure 
from the standard.  
Can you (please will you) shed a little more light on how you incorporate the gravity model into 
your use of Marquardt?  
Also, you seem to have said two different parameter “a’s” are possible outputs, depending on 
whether we want at cue or at detection. Please elaborate (or clarify) how that fits in (or departs 
from) the standard Marquardt methodology. 
Brian O’Dea’s more detailed views of this entire discussion (received on 9/26/00): 
Comments in no particular order.  
1. Regarding section 5: the partial derivatives that are analytically presented in that section have nothing to do 

with the transformation matrices Tc and Td. They should be removed from that section. [In each of your earlier 
drafts I was sure that your intent was to remove those partials and thus did not pipe up as strongly or as early as 
I should have.] Note however that the first of those two partial derivatives (partial of rdot function with respect 
to an ECI SV) is used by the Marquardt technique. The latter of those two partial derivatives (partial of racc 
function with respect to an ECI SV) is not used by the Marquardt technique but is used in Motion 
Compensation.  

2. You ask for an explanation of how covariance is extracted from Marquardt. Unfortunately I can not embellish 
upon the description provided in Numerical Recipes. NR defines the covariance as the inverse of the alpha 
matrix and then provides a subsequent section (14.5 in the 1990 FORTRAN Version[15]) that provides more 
details about calculating confidence intervals. [As an aside, I used the techniques in 14.5 to derive confidence 
intervals for use in Motion Compensation.]  

3. The cost function was customized as indicated in order to account for the multidimensional nature of the 
measurements (px, py, pz, vx, vy, vz and r, a, e). If you recall, the equations that NR provides that are related to 
‘y’ (e.g., 14.4.5) consist of only a single dimension. In hindsight (i.e., something I never did) I believe I could 
have further modified the chisq merit function to utilize full covariance matrices rather than just the diagonal 
elements.  

4. I reference the gravity model during propagation of the SV being estimated (i.e., the parameters of interest, ‘a’) 
to the times of the “measurements” (i.e., to the cue time and the detection time). Note that I use an Extended 
Trapezoidal Corrector for propagation. For this purpose (propagation) I use a gravity model than includes 8 
spherical and 8 tesseral terms. Actually the # of terms is specified by the user but I believe that in practice we 
run with 8,8. I also reference the gravity model for the purpose of computing the derivatives of the propagation 
function with respect to the parameters of interest. However, for the purpose of computing the aforementioned 
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derivatives, I make some simplifications: (1) I calculate the derivatives as though the propagation is performed 
using the simple Extended Euler technique. (2) I calculate the derivatives as though the Earth is a point source 
(no asymmetries). The presentation that George and I gave on 9/30 and 10/1 includes slides (Tracker, pages 12-
16 now offered below) that provide more details about the calculation of the derivatives.  

5. One can define the propagation and the calculation of the partial derivatives in such a manner as to place the 
parameters and associated covariance at any time of interest. When I first started working with the Marquardt 
method I defined the propagation and derivatives so that the parameters were estimated at the time of the first 
measurement. In general I’d then have to propagate those parameters (the estimated SV) and the accompanying 
covariance matrix to the time of the last measurement before use. For the Marquardt method that we 
implemented in the PAVE PAWS Mission Software (non bonded), I defined the propagation and derivatives so 
as to provide a SV and covariance valid at the time of the last measurement. Finally, note that I have compared 
the SV and covariance that one gets by estimating them at the time of the first measurement and then 
propagating them to the time of the last measurement with the SV and covariance that one gets by estimating 
them at the time of the last measurement and I’ve found them to be identical. 

Marquardt Method Review
Derivation of               (1 of 3)
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Marquardt Method Review
Derivation of             (3 of 3)

• Starting with the First Iteration
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TeK Associates further explanation of its prior view (9/26/00): 
Thanks. This was what I was looking for. I’ll append your response to my report (as I checked to 
see that it was acceptable to you). I could never paraphrase it as well as you conveyed it.  
Part of my problem was in not actually having attended the 30 Sept-1 Oct. 1999 video 
conference XonTech presentation because there wasn’t enough room here and I was asked to not 
go by Raytheon. Instead, I had to rely on the interpretation of these derivatives (some months 
later) from another local XonTech representative who was there but is usually less concerned 
about these specifics so unfortunately your material was filtered for me by the “wrong eyes” on 
these aspects. [Perhaps it was actually a benefit for me in disguise since I wasn’t lulled into 
complacency by pictures but still sought a written description rather than just a high level 
summary in PowerPoint or Adobe Acrobat slides.] 
TeK Associates didn’t know whether the acceleration partial was part of an unstated or implied 
“chain-rule” with other critical terms not yet being fully elaborated. The inverse square 
acceleration of gravity is present even during a potential target’s ballistic regime. Without further 
elaboration, we wouldn’t know the intent of the presence of these two types of terms: 
differentiation with respect to “rdot” and with respect to “racc”. As with most things, what is 
obvious to the person doing it is not obvious to others until it is explicitly stated or written to 
accompany it.  
We have numbers for the effect of Doppler Coupling compensation using standard 300 KHz 
detection waveform, a nominal carrier center frequency of 435 MHz for the LFM pulse, and an 
anticipated velocity error of 1 km/sec yielding 23 km range errors. It is stated on page 278 of 
[13] that for PAVE PAWS, the range-Doppler Coupling (RDC) coefficient is 36 secs. According 
to Fred Daum, UEWR RDC is typically 1 sec. (please see page 529 of [14]) so worse case range 
error would be 5 km for a 5 km/sec target and 7 km for a 7 km/sec target. After obtaining this 
error with respect to the local radar antenna, we claim that the result is very small as compared to 
the target range with respect to the center of the earth (that is used in the actual Lambert 
computations by adding the radius of the earth ~ 6378.1 km [equatorial]). It is even less of a 
worry if a proposed Doppler waveform is used. We also assume the tracking bandwidth to be 10 
MHz (as Tuley is and as has been proposed as a common upgrade for all of UEWR). 
9. Summary/Monday Morning Quarterbacking 
 

The write-up of Lambert in Section 3 is more like the usual style of an SRS except for the presence of two 
continued fractions. The use of continued fractions is just short-hand representation for a pair of linear finite 
recursion equations. 

These two continued fractions could have been replaced there with the equivalent two iteration equations at 
both locations in Section 3 where continued fractions occur (but this could possibly interfere with some system 
analyst cross-checking these results back to the original Battin 1984 paper [2] and 1987 textbook [3]) since 
Battin only uses the continued fraction representation there. Instead I gave how to evaluate continued fractions 
in Section 4 following the Lambert section. The two continued fractions are essentially two embedded sub-
loops nestled within the single Main Loop of the Lambert algorithm. 

My quandary was “should I be clearer for the manager/system analyst” (who wants to be able to easily cross-
check it) or should I be clearer for the programmer (who must implement it). I decided, that temporarily, I 
would cater to the former. Then let them tell me to change it for the latter (after they had checked it). 

The pages of derivatives appearing in my Section 5 on Lambert-based covariance evaluation are needed for 
calculating the Jacobian that is used to pre- and post-multiply other covariance matrices to obtain the final 
answer. These expressions for the derivatives appeared in IRAS and TD/SAT documentation and Ken 
Berkowitz (Raytheon) had encountered them in conjunction with motion compensation. George Bohannon 
(XonTech) had indicated that over the years of revision for various TD/SAT updates, he believes that they have 
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weeded out all of the typos. I didn’t want to risk introducing any new typos of my own here so I used 
XonTech’s original equations here. 

In talking to Brian O’Dea (XonTech), he strongly favored use of Marquardt over Lambert 

because it solved a host of other problems. Since Marquardt is a larger computational burden, I was worried 
about its use in real-time operational software. However, Lambert can be used to initialize Marquardt, and by 
starting closer to the eventual Marquardt solution thereby cut down on the number of iterations needed by 
Marquardt to converge to its solution. 

To date, I figured out the Lambert stuff myself and wrote it up as Sections 3 and 4 and explained how the 
continued fraction representation is computationally evaluated and what it means. I have received exemplary 
recent support from XonTech about the specifics of a Marquardt implementation by their referring me to 
Section 15.5 of [7] and having later received more detail from them on how XonTech customizes the cost 
function they use, which departs slightly from the standard one depicted in [7]. 

I have presented the case for using either the Lambert algorithm or the Marquardt algorithm or both in the role 
of specifying TI for NMD cue. The Raytheon/Xontech team needs to decide what it prefers to pursue in this 
real-time role to be reflected in the SRS. If the team decides to use Marquardt, then more detail needs to be 
supplied on it for the SRS. Perhaps there is no need to get ‘hot and bothered” about acknowledged deficiencies 
in the write-up of the Marquardt algorithm before we know for sure that it will be used in the SRS. Someone 
needs to decide whether UEWR MAS SRS will use Lambert algorithm, the Marquardt algorithm, or both 
together. 

Appendix I: XonTech’s Lambert algorithm FORTRAN code (based on [1]) 
According to Shio Oikawa, “In my analysis, I used the algorithm from R. Bate, D. Mueller, and 
J. White as Chapter 5 of [1] since it looked easier to implement at the time. As long as this 
(Lambert solution) uses the point mass (no J2), any valid method should give the same results.” 
&INPUT 
GM = 3986005.E8 

R1  = -2080537.353,-1331784.494,6039421.362, 
R2  = -1803306.13533542,-412620.944243097,6343961.79867607, 
DT = 138.8808 
TOL = 1.E-15 
MAXITER = 1000 
ISWT = 0 
TOL = 1.E-13 

&END 
C     ****************************************************************** 
SUBROUTINE LAMBRT(GM,TOL,R1,V1,R2,V2,DT,R1MAG,V1MAG,R2MAG,V2MAG 
*,                 ANGD,F,G,FDOT,GDOT,ISWT,MAXITER,ITER,IERR) 
IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION R1(3),V1(3),R2(3),V2(3) 
      PI = ACOS(-1.0)                  ! Value of Pi (= 3.1415...) 
      DR = 180.0 / PI                  ! Rad. to Deg. conversion factor 
IERR = 0 
IF (ISWT .EQ. 0) THEN 

R1MAG = SQRT(R1(1)**2 + R1(2)**2 + R1(3)**2) 
R2MAG = SQRT(R2(1)**2 + R2(2)**2 + R2(3)**2) 

DOTR  = R1(1) * R2(1) + R1(2) * R2(2) + R1(3) * R2(3) 
        ANGR  = ACOS(DOTR/(R1MAG*R2MAG))    ! Angle between two 
        ANGD  = ANGR * DR                   ! position vectors 
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ELSE 
ANGR  = ANGD / DR 

END IF 
      A    = SQRT(R1MAG * R2MAG * (1.0 + COS(ANGR))) 
      Z    = 0.00001 
      ITER = 0 

C 
C     Compute the value of C and S using the summation. 

C 
100  COLD  = 0.0 
DO I  = 1, 100 

UP  = (-Z)**(I-1) 
IDN = 2 * (I-1) + 2 

DN  =  FACT(IDN) 
CNEW = COLD + UP / DN 

IF (ABS(CNEW - COLD) .LE. TOL) GO TO 200 
COLD = CNEW 

END DO 
200 C = CNEW 

SOLD  = 0.0 
DO I  = 1, 100 

UP  = (-Z)**(I-1) 
IDN = 2 * (I-1) + 3 

DN  =  FACT(IDN) 
SNEW = SOLD + UP / DN 

IF (ABS(SNEW-SOLD) .LE. TOL) GO TO 210 
SOLD = SNEW 

END DO 
210 S = SNEW 

IF (C .LT. 0.0) GO TO 800 
Y = R1MAG + R2MAG - A * (1.0 - Z * S) / SQRT© 
IF (Y .LT. 0.0) GO TO 800 
X = SQRT(Y / C) 
F = X * X * X * S + A * SQRT(Y) - SQRT(GM) * DT 

CZOLD = 0.0 
DO I = 1, 100 

UP  = (-Z)**(I-1) 
IDN = 2 * I + 2 

DN =  FACT(IDN) 
CZNEW = CZOLD - FLOAT(I) * UP / DN 

IF (ABS(CZNEW-CZOLD) .LE. TOL) GO TO 220 
CZOLD = CZNEW 

END DO 
220 DCDZ = CZNEW 

SZOLD = 0.0 
DO I = 1, 100 

UP  = (-Z)**(I-1) 
IDN = 2 * I + 3 

DN =  FACT(IDN) 
SZNEW = SZOLD - FLOAT(I) * UP / DN 

IF (ABS(SZNEW-SZOLD) .LE. TOL) GO TO 230 
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SZOLD = SZNEW 
END DO 

230 DSDZ = SZNEW 
DYDZ = A * ((S + Z * DSDZ)/SQRT© + 0.5 * (1.0 - Z * S) 
*     * DCDZ / SQRT(C**3)) 
DXDZ = 0.5 * (DYDZ/SQRT(C*Y) - SQRT(Y/C**3) * DCDZ) 
DFDZ = 3.0 * X * X * DXDZ * S + X * X * X * DSDZ 
*     + 0.5 * A * DYDZ / SQRT(Y) 
ZNEW = Z - F / DFDZ 

ITER = ITER + 1 
IF (ABS(Z - ZNEW) .LE. TOL) GO TO 300 
IF (ITER .GT. MAXITER) THEN 

WRITE(*,*)’ Max. iteration exceeded’ 
WRITE(*,*)’ Z, ZNEW = ‘,Z,ZNEW 
GO TO 300 

END IF 
Z = ZNEW 
GO TO 100 

300 Z = ZNEW 
F = 1.0 - X * X * C / R1MAG 
G = DT  - X * X * X * S / SQRT(GM) 
FDOT = -SQRT(GM) * X * (1.0 - Z * S) / (R1MAG * R2MAG) 
GDOT = 1.0 - X * X * C / R2MAG 
IF (ISWT .EQ. 0) THEN 

DO I = 1, 3 
V1(I) = (R2(I) - F * R1(I)) / G 
V2(I) = (GDOT * R2(I) - R1(I)) / G 
END DO 
V1MAG = SQRT(V1(1)**2 + V1(2)**2 + V1(3)**2) 

V2MAG = SQRT(V2(1)**2 + V2(2)**2 + V2(3)**2) 
ELSE 

DOTP  = 2.0 * R1MAG * R2MAG * COS(ANGR) 
V1MAG = SQRT(R2MAG**2 - F * DOTP + F*F * R1MAG**2) / G 

V2MAG = SQRT(R1MAG**2 - GDOT * DOTP + GDOT*GDOT * R2MAG**2) / G 
END IF 
GO TO 900 

800 IERR = 1 
900 CONTINUE 
RETURN 

END 
 
C     ****************************************************************** 
FUNCTION FACT(I) 
IMPLICIT REAL*8(A-H,O-Z) 
VAL = 1.0 
DO ITER = 1, I 

VAL = VAL * FLOAT(ITER) 
END DO 
FACT = VAL 

RETURN 
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END 
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