
FINAL

Considerations in whether to use Marquardt Nonlinear Least Squares versus Lambert
algorithm or both for NMD Cue Track Initiation (TI) calculations

Thomas H. Kerr III, Ph.D., Raytheon Consultant
TeK Associates
9 Meriam Street

Suite 7-R
Lexington, MA 02420-5312

Prepared for Raytheon Electronic Systems
528 Boston Post Road
Sudbury, MA 01776

Raytheon Contract Number A9HM-577955-F-830

28 September 2000

FINAL

Table of Contents
1. Introduction and problem statement
2. How results are to be used in the MAS SRS for track initiation with NMD cue
3. SRS specification of the Lambert algorithm for the velocity estimates
4. Evaluating the continued-fraction representation appearing in the Lambert algorithm
5. SRS specification of the accompanying Lambert-based covariance calculation
6. Discussion of how Marquardt nonlinear least squares may be used to obtain

both refined velocity estimates and accompanying covariance simultaneously
7. Specification of the Marquardt algorithm (to eventually be pruned for SRS) if

use of Marquardt is adopted
8. Evidence that use of J2 to account for oblateness of Earth in gravity model can

be ignored by both algorithms for TI
9. Summary/Monday Morning Quarterbacking

Appendix I: XonTech’s Lambert algorithm FORTRAN code (based on [1])

References
1. Introduction and problem statement

The quantities (tX̂ 2) and P(t2), as state and associated covariance, respectively, are being sought
below for the purposes indicated in Section 2. These two quantities may be sequentially obtained
using the Lambert solution methodology via Step a through Step c in Section 3 (with an
addendum instrumental to its numerical evaluation offered in Section 4) to, respectively, first
determine the velocity estimate at detection, then via the methodology in Section 5 to obtain the
velocity component covariance which accompanies it by using two Jacobian transformations, as
indicated.
An alternative approach that can be invoked is to apply the Marquardt (also known as the
Levenberg-Marquardt) methodology of Sections 6 and 7 to obtain both the velocity estimate and
its accompanying covariance at once. The Marquardt technique incurs a larger computational
burden but provides a greater benefit by tolerating realistic antenna biases and provides corrected
range as output even though the associated fence detection, in the case of NMD cues, doesn’t use
LFM pulse pairs to infer the appropriate Doppler correction compensation.
Indications from Section 8 are that J2 does not need to be accounted for in either the Lambert or
Marquardt algorithm because the additional complexity incurred to do so is great yet the benefit
is apparently rather small since the effect appears to be too small to warrant analysts being so
exacting in this aspect. Both techniques are presented below for explicit calculation of the two
quantities being sought: a refined velocity estimate and its accompanying covariance to be used
within Track Initiation (TI) for the tracking filter. Presenting these two alternatives in
juxtaposition facilitates comparisons of benefits reaped versus drawbacks incurred.
Although many people may be familiar with the Lambert algorithm and the Lambert Theorem
that spawned it from the historical literature [1], the specifics have now changed from being
grounded in the following six familiar historical ephemeris parameters (defined in [16, p. 36]):
1. Semi-major axis,
2. Eccentricity,
3. Inclination,
4. Longitude of the ascending node,
5. Argument of periapsis,
6. Time of periapsis passage,

 2

to just dealing with the velocities of direct relevance to the UEWR tracking as the bottom line.
There is no longer a need to dwell on these orbital parameters per se or on universal variables
[1], [3] since there are many other invariants in central force gravity fields that may be exploited
and the relationship between instantaneous position and associated velocity of direct interest in
UEWR TI suffices.

2. How results are to be used in the MAS SRS for track initiation with NMD cue

A Remote Sensor cue consists of an earlier ECI object state vector, (tX̂ 1), and some estimate of
its observation error covariance, C(t1), after termination of powered (boost) flight (as passed to
UEWR by BMC3 from either SBIRS or as a radar-to-radar hand-over).
The Lambert algorithm exploits a property of an inverse squared central force gravity field by
allowing direct calculation of an accurate value of the target velocity at radar detection. The
Lambert-based computed target velocity can be used as a so-called “warm start” or a “hot start”
to initialize the UEWR tracking filter with a value that is closer to the true value (thus expediting
accurate target tracking by taking less time to converge merely because it starts out being closer
to its goal). The following procedure shall use the solution methodology referred to as “solving
the Lambert problem” (please see figure below) for the trajectory characterization of a ballistic
object, as obtained from two indicated position observations and the elapsed time-of-flight
between those observations: t2-t1 (as the three inputs) to obtain the velocity vT(t2) [as the output

enabling specification of (tX̂ 2)= [pT(t2) vT(t2)]T to be used as the initial state to start the tracker]
along with a much reduced accompanying covariance P(t2) as obtained from C(t2) and C(t1).
After being directed to the expected location in space and after obtaining a successful detection
and verify, the R-, U-, and V-measurements of that same object at a more recent time t2 allows
an improved estimate of the object state and accompanying covariance to be computed according
to the following sequence of steps:

i) Convert R(t2), U(t2), and V(t2) into an ECI position estimate, p(t2), and an
accompanying associated error covariance C(t2) corresponding to the detection time more recent than that
of the original C(t1) associated with the cue [where these two covariances, so far, are just those associated
with the position].

ii) From the value pT(t1) (extracted from the cue (tX̂ 1)= [pT(t1) vT(t1)]T), and from p(t2) of previous step and
knowledge of the time elapsed between the two sightings (t2-t1), use the iterative Lambert algorithm

 3

(described below in Sections 3 and 4) related to the underlying ballistic trajectory to compute an estimate
of the velocity vT(t2) (and a refined estimate vT(t1) for use in the subsequent endpoint Jacobian evaluations
of Section 5).

iii) Compute the final tighter error covariance P(t2) for that object from the two constituents C(t1) and C(t2)
(according to the Lambert procedure for covariances described below in Section 5).

iv) Transform the resultant pair, (tX̂ 2) and P(t2), to the ENU frame to be used for track initiation as a tracking
filter initialization

The quantities (tX̂ 2) and P(t2) are to be obtained from the two separate Lambert related
methodologies provided next in Sections 3 to 5. [Bold prose in this section denotes an
addendum beyond what is in the current SRS.]

3. SRS specification of the Lambert algorithm for the velocity estimates
a. Specifying preliminary consolidating parameters before entering the actual algorithm:

()










 ⋅
≡++≡≡≡

21

21
121 p p

pp
p - p pp

 arccos ; p p
2
1 ; r ; r 22121 θs

l=ox

Using the following further prescribed definitions for summarizing a collection of underlying
pertinent parameters as being constant throughout the computation:

()
3

2121

2
12

2
1cosrr 2 r r

ttµ 8







 ++

−
≡

θ

m

c. Beginning of Lambert Solution Main Iteration Loop (i = 0, 1, 2, …, 9)

()2i

i

1 x 1

x
++

=η

The number of significant digits of the answer relates to continued fraction levels used.

()

()
()

()
()

()
()

... 1

 255
64

 1

 195
49

 1

 143
36

 1

 99
25

 1

 63
16

 1

 7
9

 5

1 3

1 x 1 8
)(i

+
+

+

+

+

+

++

+

++
=

η

η

η

η

η

η
η

ξ ix

(The continued fraction expression is representation that is explained further in Section 4.)

() ()
() ()[]

()
() ([]iii

i
2

iii

i
2

i
1 x 3 4x 2x 1

 - x m
 ;

 x 3 4x 2x 1
 3x 1 x

++++

+
=

++++
+++

=
ξ
ξ

ξ
ξ

l

l

l

l
hh)

 4

Now the fundamental two successive approximation iteration equations to be solved (as
presented in [2]) are:

0 - y - y - y 2
2

1i1
2

1i
3

1i =+++ hh
Since only the positive real root of the above equation for yi+1 is meaningful, attention is instead

redirected to the following alternative expression for the yi+1, where there is a need to first
evaluate

and
2
 1 -

y
m

2
 - 1 x 2

i

2

1 i
ll +

+





=+

() ()3
1

2

 1 4
 27

 B where
1 B 1 2

B u
h
h

+
=

++
=

[] 








+

+
+

+
=+ 2

1
1i K(u)u 2 1

B 1 2
3
 1

 y
h

where (from page 339 of [3]), the following continued fraction must be evaluated (where again
the number of continued fraction levels retained relates directly to the number of significant
digits available in the final answer):

()
()

()
()
()

... 1

u 891
208

 1

u 81
22

 1

u 9
2

 1

u 27
8

 1

u 27
4

 1

3
1

 K(u)

+
+

+

+

+

+

=

where the coefficients of the above continued fraction are defined to be
() (
() (3 4n 1 n 4 9

1 6n 2 3n 2 12 ++
++

=+nγ
)
)

and

End of Lambert Solution Main Iteration Loop

() (
() (1 4n 1 -4n 9

1 -6n 1 3n 2 2 +
+

=nγ
)
)

The appropriate initial value of y used to start the above computations by looping between the
two primary successive approximation iterations that together exhibit close to uniform
convergence globally (in at most 9 iterations) without any singularities being present within this
particular solution methodology is:
After completing the indicated 9 iterations of the loop specified above signifying convergence

()

()
()












≥
+

+

<
+

=

27
4 -

 1
 if 1

3
2

27
4 -

 1
 if 0

 y

3
1

2
1

3
1

2

o

h
h

h

h
h

 5

under all situations, the desired velocity at time t2 (from page 307 of 1987 Battin) is:

() ()











⋅+⋅= 2r1

1

2
2r2

m
2 j i i

r
r

y i i ix
a
µ v

12

where

and the unit vectors j1 and j2 are in the directions of the minimum energy velocity vectors at the
initial and terminal points. Let i1 and i2 be defined to make both i1, j1 and i2 , j2 be right handed
and orthogonal coordinate systems.

4
 r r

2
s a 21

m
21 rr −++

==

Although a coarse velocity estimate is included in the original NMD Cue, a refined estimate of
the initial velocity at time t1 (from page 307 of [3]) may be calculated now as:

() ()











⋅+⋅= 1r2

1

2
1r1

m
1 j i i

r
r

y i i ix -
a
µ v

21

which is needed only for the Lambert-based evaluations of the accompanying covariance
according to the procedure offered in the next section (and perhaps for improving the
initialization of Marquardt, as discussed in Sections 6 and 7).
An alternative solution strategy is offered in [1, Chapter 5] (still in print). Although the
alternative approach is intuitive and physically based, it is less specific at certain critical points,
than the one presented here based on Richard Battin’s (Charles Stark Draper Laboratory and
MIT Aerospace Department) approach [2], [3]. For completeness, Stephen Nelson and Paul
Zarchan (C. S. Draper Laboratory) have yet another more recent approach [4] to calculating the
Lambert solution (also without accounting for presence of J2) as all three of these approaches
ignore. The approach of [4] is is also expressed directly in terms of position and velocity but, in
general, requires a few more iterations than Battin’s approach does. Battin’s approach avoids
historical singular situations that Gauss originally encountered in posing a solution and,
moreover, Battin’s algorithm appears to be uniformly convergent (i.e., the same number of
iterations suffice to converge) no matter what starting condition is utilized (as long as it is
consistent with what is recommended to be used for an initial guess for particular types of orbits
or trajectories, where attention is confined here to just those being elliptical, as is the case for
ballistic missiles and satellites).

4. Evaluating continued-fraction representation appearing in the Lambert algorithm

For a useful interpretation of continued fractions as hidden linear recurrence relations, please see
Sec. 2.2.2 of [6]. The main idea is summarized below. A continued fraction of the following
form (encountered twice above in Section 3):

n

n

on

a
b

a

b
a

b
af

++
+

+=

L2

2
1

1

represents an equivalent recurrence in terms of two families (p and q for numerator and
denominator) so that the general “nth convergent” above can be equivalently obtained from
where pn and qn in the above final expression are obtained from the following two linear
recurrence relations:

,
n

n
n q

p
f =

6

11121 and with starting baapappbpap ooonnnnn +==+= −−

and
. and 1 with starting 1111 aqqqbqaq onnnnn ==+= −−

Rather than replace the two continued fraction expressions appearing in the main loop in Section
3 above and risk interfering with expected visual cross-checks by reviewers to the original as
presented in Battin’s work that wouldn’t expect the equivalence spelled out yet, detailing the
equivalence was postponed until now to be provided here. Please realize that these continued
fractions are just short hand representations for additional secondary sub-loops within the Main
Iteration Loop that must be evaluated on every iteration of the Main Loop index i. There are two
different continued fractions above so there are, correspondingly, two secondary sub-loop
evaluations called for inclusion in the Main Loop above.

5. SRS specification of the accompanying Lambert-based Covariance Calculation

The necessary derivatives to be used in determining the accompanying comparatively tight
velocity covariance are numerically evaluated at the resulting solution to the Lambert problem
(offered immediately above). This procedure requires prior evaluation of the two intermediate 3
x 3 transformation matrices that are to operate, respectively, on the two indicated position
covariances on the right hand side below (denoted by the subscript p). This is done in order to
obtain the desired tight final 3 x 3 velocity covariance result of primary interest here (denoted
with subscript v), appearing on the left hand side below:

covarianceposition ECI)(detection Fence

covarianceposition ECI Cue
(det)

)cue(

)det()cue()det(
V

=

=

+=

P

P

T
DPD

T
CPC

C

C
where

TCTTCTC

where in the above, the indicated transformations to be used for pre- and post-multiplying the
respective cue and detection covariances are the following two (3 x 3) Jacobian gradient matrices
(with specific entries defined explicitly below for explicit evaluation in this role):

),,(/),,(

),,(/),,(
)()()()()()(

)()()()()()(

det
z

det
y

det
x

det
z

det
y

det
xD

cue
z

cue
y

cue
x

det
z

det
y

det
xC

PPPdVVVdT

PPPdVVVdT

=

=

Given a 6 x 1 state vector (P,V), the first and second derivatives of range with respect to time,
rdot and racc, respectively, are computed as follows:

rdot LOS V
rng

ER

=
•

racc DV V LOS A
rng

LOS V LOS DV
rng

ER ER ER

=
• + •

−
• × •

3

where

 7

LOS P PS
PS Position of Site in ECI
rng LOS
V Earth lative Velocity Vector
DV V VS
VS Velocity of Site in ECI

A A
w V
w V

A Gravitational Acceleration Vector
w Earth rotation rate radians

ER

ER
G

y

x

G

= −
=
≡

≡
= −

≡

= +
+
−

=
=

_ _ _ _
| |

_ Re _ _

_ _ _ _
*
*

_ _
_ _ (/ sec

0

)
The uncertainties in rdot and racc are then computed as follows:

σ
∂
∂

∂
∂

σ
∂
∂

∂
∂

rdot sqrt rdot
PV

R rdot
PV

racc sqrt racc
PV

R racc
PV

i i

T

i i

T

=






 × ×









=






 × ×









()

()

where ∂
∂

x
yi






 represents the Jacobean of x with respect to the elements yi and R is the ECI state

vector covariance matrix.

∂
∂
rdot
PV

rdot P PS
rng

V w P
rng

w P PS
rng

x x x y y

1
2







 = − ×

−
+

+ ×
−

× −()y

∂
∂
rdot
PV

rdot
P PS

rng
V w P

rng
w P PS

rng
y y y x x x

2
2







 = − ×

−
+

− ×
−

× −()

∂
∂
rdot
PV

rdot P PS
rng

V
rng

z z

3
2







 = − ×

−
+ z

∂
∂
rdot
PV

P PS
rng

x x

4







 =

−

∂
∂
rdot
PV

P PS
rng

y y

5







 =

−

 8

∂
∂
rdot
PV

P PS
rng

z z

6







 =

−

()

() ()

() ()()[]

∂
∂
racc
PV rng

w V VS A P PS U
P

U P
P

P PS
U P P

P
P PS U P P

P

DV V LOS A PS P
rng

rng
V w P w P PS LOS DV V LOS V VS

V LOS LOS DV P PS
rng

y y x
ER

x x
x

y y
x y

z z
z x

ER ER
x x

x y y y
ER

x x

ER x x

1
3

2

5

5 5

3

3

1 3

3 3

1

3







 = × − × − + + − ×

−
+

× ×







 +

− ×
× × ×

+ − ×
× × ×

+

• + • × −
−

× + × − × − × • + • × −

• × • ×
− × −

(()

)

() ()

()

() ()

−

5









() ()

[]

∂
∂
racc
PV rng

A P PS U P P
P

P PS
U P P

P
U
P

P PS U P P
P

U
P

DV V LOS A PS P
rng

rng
V LOS DV V LOS V VS

V LOS LOS DV

y
ER

x x
x z

y y
y z

z z
z z

ER ER
z z

z
ER

z z

ER

3

5

5 3 5 3

3

3

1

3

3 3

1







 = ×

+ − ×
× × ×







 +

− ×
× × ×

−








 + − ×

× × ×
−































+

• + • × −
−

× × • + • × − −

• × •

()

() ()

()

() ()
×

− × −







3
5

P PS
rng

z z

() ()∂
∂
racc
PV

V w P V VS w P PS
rng

P PS LOS DV V LOS

rng
x y x x y y x x

ER

4
3







 =

+ × + − − × −
−

− × • + •()

() ()∂
∂
racc
PV

V w P V VS w P PS
rng

P PS LOS DV V LOS

rng
y x y y x x y y

ER

5
3







 =

− × + − + × −
−

− × • + •()

() ()∂
∂
racc
PV

V V VS
rng

P PS LOS DV V LOS

rng
z z z z z

ER

6
3







 =

+ −
−

− × • + •

The above partial derivatives are analytically provided here since they must be explicitly
evaluated numerically at the two time points indicated (at time t1 [cue] and at time t2 [det]) in
order that the above two 3 x 3 T-transformations be completely specified. Brian O’Dea warns
that the above acceleration terms are no longer needed for our usage for TI calculations.
The above expressions for the derivatives appeared in IRAS and TD/SAT documentation and
Kenneth Berkowitz (Raytheon) had previously encountered them in conjunction with the topic of
motion compensation so they may already appear in the MAS SRS within the context of the

 9

motion compensation topic. George Bohannon (XonTech) had indicated that over the years of
conscientious XonTech revisions for various updates to TD/SAT and associated User Manuals,
he believes that XonTech has weeded out and corrected all of the possible typos. I didn’t want to
risk introducing any new typos here so this is a copy of XonTech’s original equations that are
provided above.
Excerpt from UEWR SSTB documentation:
George Bohannon (XonTech) more recently uses slightly different notation for essentially the
same description offered at the start of this Section 5 but still repeated here now for the reader’s
convenience:
“I wrote a section describing the use of the Lambert calculation for computing the covariance
matrix for XonTech’s pulse integration algorithm in SSTB. (The algorithm is called MCPI.) … I
think that the notation that I now use below for the derivatives is perhaps clearer than the earlier
notation that you extracted from one of our viewgraphs [sic, XonTech provided them by my
request].
The trajectory constraint is imposed using a Lambert trajectory calculation. The Lambert
calculation produces a velocity vector at one point on a trajectory given the position at two points
on the trajectory and the difference between the times at those two points. The computer code
that is used was written by Shio Oikawa (XonTech), and described in [9]. The application in [9]
is quite different from MCPI, however, in that track initiation is performed using a detection in a
search fence, whereas the MCPI application is prior to detection. Thus, the accuracy of the
position in the radar range window (search fence or otherwise) for MCPI is generally lower than
in the TI application, hence the estimated velocity is less accurate.
The Lambert method is also used for generating the covariance of the velocity estimate. These
calculations are performed in ECI (Earth Centered Inertial) coordinates. To describe the
covariance calculation, it is worthwhile expressing the Lambert calculation symbolically, as
follows:

rr
),,()2()1(tPPLV ∆=

where
r

ty vectorECI velociVVVV ==),,(321
r

21),,()(
3

)(
2

)(
1

)(, , ion vectorsECI positiPPPP iiii ===
s poen the twoTime betwet int=∆

The subscripts 1, 2, and 3 designate the Cartesian components (x, y, and z, respectively) of the
vectors. Trajectory point 1 is taken to be at booster burnout or object deployment, whereas point
2 is at the time of the potential radar detection.
Two transformation matrices are defined as follows:

rr

)(

)2()1(
)(

,

),,(
i

k

ji
kj P

tPPL
M

∂

∆∂
=

These derivatives are computed by one-sided finite-difference approximations. The velocity
covariance is then

() () () ()TPTPV MCMMCMC 2)(
2

21)(
1

1)(+=
where C1

(P) and C2
(P) are the position covariance matrices at points 1 and 2 on the trajectory, and

the superscript T indicates the matrix transpose.”
Notice that all the terms included in the indicated Jacobians (now denoted by M instead of T)
still need to be spelled out for implementation (as done here above) so that they may be

 10

explicitly evaluated at the two end points. In real-time code, TeK Associates suspects that there
will be less time available to do numerical perturbations (as one-sided difference
approximations) to evaluate the necessary derivatives as XonTech has done in prior non-real-
time simulations and still indicated here. That is what TeK Associates recommends changing
above to instead just evaluate the stipulated derivatives (already spelled out analytically) at the
two end points at cue and at detect.
6. Discussion of how Marquardt Nonlinear Least Squares may be used to obtain both refined velocity

estimates and accompanying covariance simultaneously

Earlier demonstrations (see figure below depicting much smaller errors incurred by Marquardt
than by Lambert for identical situation) of the benefits to NMD of using the Maquardt
optimization technique included a demonstrated robustness to radar antenna biases (range:
1σ = 10 m; σu, σv : 1σ = 100 µ sines) that are otherwise unaccounted for but present
nonetheless. More recent claims are that this Marquardt technique can also handle
uncompensated Doppler measurements and automatically deduce corrected range without
invoking LFM pulse pairs. This may be of interest since pulse pairs are not currently used with
NMD cue detection; however, preliminary quantification demonstrates that ignoring range-
Doppler coupling for Lambert problem is negligible since target range is from the earth center in
these computations.

A drawback is that the well-known Marquardt optimization technique is generally a larger
computational burden than otherwise encountered for Lambert-based solutions. (However,
existing claims are that just using simple Lambert solution can’t provide Doppler-corrected range
without further iterations, a type of increased computational burden in itself for a variation on the
standard Lambert solution approach that would be a greater computational burden than presented
above for the straight forward single-shot Lambert approach). One variation that has been
recommended is to first use the simple Lambert approach to obtain initial results then use these
as inputs for the Marquardt approach as a more robust refinement thus incurring fewer iterations
than otherwise encountered with Marquardt because the starting values are closer to the final
solution. This proposed usage would mitigate the CPU burden of the Marquardt approach.

 11

Regarding Brian O’Dea’s claim in above concerning the benefits of using Marquardt in place of
the Lambert algorithm and how its use ameliorates the deleterious effect of uncompensated
range-Doppler coupling (so far, undocumented), Haywood Satz (Raytheon) reminded me that he
and Duane Matthesien (Technia) looked into the order-of-magnitudes involved already. They
had noticed that since the range-to-target used in the Lambert calculation is viewed from the
center of the earth, the contribution due to the range-Doppler coupling effect with respect to the
local radar is, perhaps, too small to care about. Please see quantification at the end of Section 8.

7. Specification of the Marquardt Algorithm (to eventually be pruned for the SRS)
if use of Marquardt is in fact adopted by Raytheon

Inputs to the Marquardt algorithm are:
• Cue state vector of object and diagonal components of the accompanying cue covariance matrix;
• RAE measurements of object obtained in the radar fence, their associated three standard deviations, and time of

detection so that the total time interval from cue to detection is provided.

Outputs of the Marquardt algorithm are:
• Refined state vector estimate and accompanying covariance matrix at detection time;
• The resulting 6x6 covariance matrix is, in general, fully populated (being devoid of pure zero elements).

The model to be fitted by the nonlinear least squares Marquardt algorithm represents the object
in a ballistic trajectory and its path over time is of the following form:

fitted. be toparametersunknown identified therepresents where);(aatyy =
The unknown parameter a can be treated as a vector having M components. The fitting of the
unknown parameters are computationally deduced in prescribed successive stages using the
iterative Marquardt optimization procedure, as described in the five steps further below.
The scalar cost function to be minimized is of the following form to match an ideal ballistic
template to the measured data by optimizing the parameters to obtain the best fit:

() ∑ ∑
= = 










 −
=Χ

2

1 1

2

,

,2);(

i

N

j ji

ijji
i tyy

σ

a
a

where N1=6 and N2=3 and y(ti; a) is a function that, for i=1, returns the parameters ‘a’ (being the
state vector being estimated) propagated to the time t1 (the validity time of the state vector
provided by the cue). For i=2, this function returns the parameters ‘a’ propagated to the time t2
(the radar measured detection time) [which is converted to the measurement coordinate system
(RAE) where the range R includes the effects of range-Doppler coupling.
The UEWR-specific modifications to the otherwise standard Marquardt method detailed below
are concisely summarized here now first:
• Dimensioning of y is 6 x 2 (actually its 6 x N) but here N is always 2.
• Providing a special routine “funcs” which returns the appropriate form of y [and it’s associated] sensitivity]

“dyda” depending upon whether “funcs” is called at the object cue time or at the radar fence object detection
time.

• Modifying the routine MRQCOF to sum over j (as called for by the UEWR-revised cost function). As noted
above, j runs to either N1 (=6) or N2 (=3).

• Since the scalar chi-square cost function includes differences of angles, resulting angle had to be compensated
to ensure that if the |angle difference| was greater than 180 to either add or subtract 360, as appropriate to bring
it within the correct span.

 12

• Including an additional special array TFOB (denoting pulse length * frequency divided by bandwidth or “Tau F
over B”, as an obvious mnemonic notation) in the argument lists for existing MRQMIN and MRQCOF. This
array is also passed to the routine “funcs”.

• Modifying existing GAUSSJ0 to provide a return code that can be reflected back through the necessary
argument lists and thus allow a more graceful robust response to possibly encountering a singular matrix.

The gradient of this scalar cost function with respect to the unknown parameters a, which should
theoretically be zero at the “best fit” minimum, has the following components:

[]
M , ,2 ,1for

a
);(

);(

 2
a k

2

1

N

1

,

k

2 i

K=
∂

∂−
−=

∂
Χ∂ ∑ ∑

= =

k
tytyy ij

i j

ijji aa
2
ji,σ

Taking an additional partial derivative yields the following form for the Hessian:

[]












∂∂

∂
−−

∂

∂

∂

∂
=

∂∂
Χ∂ ∑∑

= = kl

2

,
lk

2

1
2

ji,1lk

22

aa
);(

);(
a

);(
a

);(
 1 2

aa
a

a
aa ij

ijji
ijij

i

N

j

ty
tyy

tytyi

σ

Standard convention is to simplify the above and to eventually suppress any factors of 2 from
appearing by utilizing the following two definitions for convenience:

.
aa2

1 ;
a2

1
lk

22

k

22

∂∂
Χ∂

≡
∂

Χ∂
−≡ klk αβ

Using the above definitions along with the optimistic standard approximation that sufficiently
close to the goal of achieving the minimum (and if the cost function is sufficiently smooth), then
the cost function may be validly approximated by a quadratic form as:

and along with the fact that the cost function should be zero at this minimum, a quadratic form
may be minimized by going from the current trial parameter acur to the minimizing value amin in a
single leap or step of the form:

),defined be willmatrix and vector ,constant (where
2
1)(T2 Dd,aDaada **** γγ

T
+−≈Χ

[])(221
min curcur aDaa Χ∆−⋅+= −

Now re-expressing this single step equation, using the definition of the alpha’s provided above,
and defining the curvature matrix alpha as being one half of the Hessian, as

yields the following equivalent formulation as a set of linear equations that are to be solved for
the increments δa, which, when added to the current approximation of the parameter acur,
provides the next approximation for anext as:

,
2
1 D α =

∑
=

==
M

l
kkl k

1
l M ,2, 1, for a Kβδα

the result is
.a a a δ+←

However, without assuming a quadratic approximation near the optimum because of possible
pathologies in the surface of the scalar cost function, a more conservative pure steepest descent
technique would require that the next step be down the gradient of the path of the following
form:

[],)((constant) 2
curcurnext aaa ∆Χ⋅−=

which is equivalent, in this simplified notation, to

 13

, constant a lβδ ×=l

and the Marquardt algorithm is just a computational method used to force balance by embracing
both of the above two “optimistic” and “conservative” approaches to offset each other,
respectively, to gain an advantage by speeding up the attaining of the solution without incurring
problems from a perhaps unwarranted (and unsubstantiated) assumption [also inconvenient to
substantiate] that near the optimum, for this particular cost function being utilized and this
path under investigation and this underlying physical structure assumed of inverse square
gravity (WGS-84), the cost function is essentially a quadratic form in this vicinity of the
minimum. (That is, the cost function may have ridges or piecewise continuous jumps.)
This joint Marquardt objective is accomplished in two ways by first using this

, constant a above theof instead
a
1a l

ll
l ll ββ

λ
δ ×=∂=

and by further defining auxiliary primed variable alpha’s as
() ,for and ;1 knnknknnnn ≠≡′+≡′ ααλαα

which may both be summarized by solving for the required δal from the following replacement
system of linear equations:

. a
1

l k

M

l
kl βδα =′∑

=

Notice that for the auxiliary variable lambda much larger than 1, the optimization step size is cut
down and the primed alpha’s are diagonally dominant corresponding to an optimistic quadratic
form methodology being invoked; while for lambda approaching zero, the pessimistic steepest
descent methodology is invoked. This is the practical utility offered by the Marquardt algorithm
as the “best of both worlds”.
Given an initial guess for the set of fitted parameters a, the Marquardt procedure proceeds
according to the following five Steps:
1. Compute the chi-squared variable (somewhat reminiscent of one from statistics):

).(2 aΧ
2. Initially, use a small value for the step-size scaling parameter as, say, lambda = 0.001.
3. Solve the following naturally arising linear equations:

(). evaluate and for a 2
M

1
ki a aa δδβδα +Χ=′∑

=i
ki

4. Proceed as follows:

3. Step return to then and 10, offactor aby lambda increase then),((If 22 a a) a ΧΧ ≥+ δ
5. Proceed as follows:

a, a aa a) a δδ +←<+ solution trial theupdate 10, offactor aby lambda decrease then),((If 22 ΧΧ
and return to Step 3.

The Marquardt algorithm is described in Section 15.5 of [7]. The corresponding Marquardt
software code is in [8].
8. Evidence that use of J2 to account for Oblateness of earth in gravity model can be ignored

by both algorithms for TI

 14

Consideration of J2 is apparently unnecessary overkill in both Lambert and Marquardt for the
UEWR application. Shio Oikawa (XonTech) comes to a similar conclusion (see figure below) in
stating that his curves are almost the same whether or not he accounts for the presence of J2.
Shio Oikawa’s description of what he did to obtain the reported results (in figure below):
1. Propagated the Design-to trajectories to radar horizon break under J2 gravity field (assumed to be the real world

trajectory);
2. Noised up the initial BBO state (Booster Burn Out) to simulate the SBIRS measured position vector;
3. Noised up the radar horizon break time target (RV) to simulate the radar measurement: (Time between BBO

and RV radar horizon break time: flight time, was kept constant = FLT);
4. Used the regular Lambert solution (Appendix I) to obtain BBO velocity which will get to the point obtained

from Step #3;
5. Propagated the state from Step #4 for FLT;
6. Used the iteration method described below (FORTRAN code) until the error was less than 1m (if I remember

correctly) at the radar horizon break All of the cases converged in 2 ~ 5 iterations which is very fast;
7. Compared (at radar horizon break time) the true velocity from procedure 1 to velocity obtained from Step #6

and kept the statistics;
8. Plotted the cumulative results.

Please note that plot shows the results of fitting tank BBO and RV radar horizon break state vectors (not RV
deployment state to RV radar horizon break) using Lambert solution as an initial velocity vector and iterating
until position error at the radar horizon break was less than a specified value.

Shio Oikawa’s FORTRAN code for Step #4 above:
FLT = TINT - TSTRT ! flight time (Tstart, Tintercept)

100 CONTINUE
C
C Compute the velocity required at current position
C

C X: Current position, XT: intercept position
C VRS: Lambert velocity at X
C
CALL LAMBRT(GM,TOL,X,VRS,XT,VT,FLT,R1MAG,V1MAG,R2MAG,V2MAG

**,, AANNGGDD,,FF,,GG,,FFDDOOTT,,GGDDOOTT,,II00,,MMAAXXIITTEERR,,IITTEERR,,IIEERRRR))

IF (IERR .NE. 0) THEN
WRITE(8,50)
WRITE(8,*)’ No Lambert solution: Run terminated’
END IF

C
C Propagate the state to TINT under J2 gravity model
C

DO I = 1, 3
XJ2(I) = X(I)

VJ2(I) = VRS(I)

VR(I) = VRS(I)

END DO
200 T = 0.0

 15

IEND = 0

ITER = ITER + 1
 220 IF ((T + DT) .GE. FLT) THEN
 IEND = 1 ! One more integration step

DT = FLT - T
END IF
T2 = T + DT
CALL RK(XJ2,VR,XB,GM,REQ,J2,DTV,DT,A,TA,N,I0,I0) !Prop under J2
IF (IEND .EQ. 1) GO TO 240
T = T2
GO TO 220

C
C Compare the final target position
C
 240 DO I = 1, 3
 DIFP(I) = XT(I) - XJ2(I) ! XT: true , XJ2 computed
 END DO
 DIFX = SQRT(DIFP(1)**2 + DIFP(2)**2 + DIFP(3)**2)

 IF (DIFX .GT. TOLX) THEN ! TOLX = 1 meter
DO I = 1, 3

XJ2(I) = X(I)
VR(I) = VJ2(I) + DIFP(I) / FLT ! Adjust initial velocity
VJ2(I) = VR(I)

END DO
GO TO 200 ! Propagated position error > than tolerance
END IF
WRITE(9,30)FLT,DIFX,TOLX,ITER

 16

Continuation of our observations regarding consequences of presence or absence of J2
George Bohannon (XonTech) offers his perspective here:
“I wrote a section describing the use of the Lambert calculation for computing the covariance
matrix for our pulse integration algorithm in SSTB. (The algorithm is called MCPI.) Perhaps it is
of some help.
My experience has been that the Lambert method, as coded by Shio Oikawa, is very fast
compared to Marquardt. This observation comes from my analysis of the estimation performance
of the two methods for the MCPI application. However, since my goal [at the time did not
include explicitly] comparing execution times, I don’t have timing numbers.
The Lambert solution as implemented by Shio can be extended to include non-spherical earth
and gravity models. Shio’s basic Lambert code assumes a point-source gravity model and
spherical earth. This assumption may or may not be adequate for the hot-start application,
depending on propagation time and bandwidth. However, Shio has also implemented an iterative
technique for refining the solution to include the J2 contribution, which I suspect could also be
used to include still higher order terms. Shio indicated that it typically converges to less than 1
meter of position error in 5 iterations or fewer. There is also an iterative extension to the SSTB
implementation to include non-spherical terms, but I have found it to be extremely slow. I’ve
seen code for both extensions, and they are different, but I cannot say how they compare in terms
of execution time; I haven’t actually tried using Shio’s extension. Of course, you also know
about the Vinti method for including J2.”
Resuming TeK Associates’ view of the issues associated with presence or absence of J2:
Tek Associates is aware of the (late) John Vinti’s book [5] and viewed its associated 1993 TRW
Fortran software that does account for J2 but at earlier joint meeting with XonTech and Raytheon

 17

in the summer of 1999, Fredrick Daum (Raytheon) revealed that such a detailed treatment would
only change the final computed result by about 5 m/sec. Thus, this apparently changes the final
answer by too small amount to really worry about for UEWR in Fred Daum’s opinion (which
TeK Associates has also adopted). Shio Oikawa’s more recent simulations presented above have
only confirmed this view.
The much greater computational complexity incurred without significant benefits being apparent
to UEWR drove me to embrace the simpler implementation (without J2 present). Vinti’s
approach [5] is completely different from Battin’s [2], [3] or Bate and Mueller [1] and more
complex.
None of XonTech’s earlier PowerPoint presentations (by Shio Oikawa on 7-28-99 [9], by Teresa
Caampued on10-15-99 [10], by Brian O’Dea and George Bohannon on 9-30-99 and 10-1-99
[11]) utilized J2 for the Lambert or Marquardt computations even though they acknowledged
familiarity with the existence of the Vinti results [5].
Neither the Fortran computer code (based on 1971 Bate and Mueller [1]) that Shio Oikawa sent
(Appendix I) nor the version of the Lambert algorithm that is written up here in Section 3 for the
SRS accounted for earth’s oblateness (by including J2) following the 1984 and 1987 prescription
for it [2], [3] by Richard Battin include a consideration of J2. I hope that this current absence of
J2 considerations in the Lambert algorithm for the SRS won’t be a problem for Raytheon.
When and where J2 is apparently important is in the Lambert calculations for a planetary
rendezvous, where the mission time is fairly long and these secondary considerations mount up
(over time) to have a significant impact that can’t be ignored. For this, the use of [5] is necessary.
There are other situations where inclusion of J2 is important such as in the tracking filter and in
the BLS “batch” filter. Fred Daum (as well as all of the legacy SRS’s) have always advocated its
use there. Raytheon historical literature quotes that in performing tracking, absence of the J2 term
in the associated tracking model used by the tracking filter can lead to as much as 10 nm error in
estimated impact point (after 30 minutes). We have been including J2 where we think it is really
necessary for UEWR.
Brian O’Dea’s original (9/8/00) description of Xontech’s particular customization, which
TeK Associates used to provide the discussion of Marquardt in Sections 6 and 7:
The chisq merit function is:

() ()
∑ ∑= = 










 −
=

2

1 1
,

,2 ;
i

n

j
ji

ijjii atyy
a

σ
χ

where n1=6 and n2=3.
y(tI;a) is a function that for i=1 returns the parameters ‘a’ (the SV being estimated) propagated to
the time t1 (the validity time of the cue provided SV). For i=2 this function returns the parameters
‘a’ propagated to the time t2 (the measurement time) and converted to the measurement
coordinate system (RAE in my case) where R includes the effects of range-Doppler coupling.
Thus the modifications to the Marquardt method provided by numerical recipes were to:
• Dimension ‘y’ 6 x 2 (actually 6 x n) but in practice ‘n’ is always 2.
• Provide a routine ‘funcs’ which returns the appropriate form of ‘y’ and ‘dyda’ depending upon whether funcs is

called at the cue time or the measurement time.

 18

• Modify the routine MRQCOF to sum over j (as called for by the merit function). As noted above ‘j’ runs to
either 6 or 3.

• As the chisq merit function includes differences of angles I had to ensure that if the |angle difference| was
greater than 180 to add or subtract 360 as appropriate.

• Include an array TFOB (implying pulse length * frequency divided by bandwidth or ‘tau F over B’) in the
argument lists for MRQMIN and MRQCOF. This array is passed to the routine ‘funcs’.

I also modified GAUSSJ0 to provide a return code that could be carried back thru the necessary
argument lists and thus allow a more graceful response to encountering a singular matrix.
The only missing element is how to compute dyda at the two times. In the October [1999]
presentation I provided the details about how I compute dyda at the cue provided SV validity
time. Of course, my dyda was derived based on my propagation method (ECI) whereas I believe
that the UEWR propagator will operate in ENU coordinates.
TeK Associates recent (9/23/00) request to Brian O’Dea for more elaboration on specifics:
Section 9 now more fairly depicts the situation…. I no longer believe that I will need more detail
on the specifics of what is in the subroutines that you referred me to until a decision is made by
the Raytheon/XonTech team to actually include Marquardt in the SRS. The ball is in their court
now….
I do still need a little more explanation of how covariance is obtained or extracted from
Marquardt and why cost function was customized in the manner indicated as a slight departure
from the standard.
Can you (please will you) shed a little more light on how you incorporate the gravity model into
your use of Marquardt?
Also, you seem to have said two different parameter “a’s” are possible outputs, depending on
whether we want at cue or at detection. Please elaborate (or clarify) how that fits in (or departs
from) the standard Marquardt methodology.
Brian O’Dea’s more detailed views of this entire discussion (received on 9/26/00):
Comments in no particular order.
1. Regarding section 5: the partial derivatives that are analytically presented in that section have nothing to do

with the transformation matrices Tc and Td. They should be removed from that section. [In each of your earlier
drafts I was sure that your intent was to remove those partials and thus did not pipe up as strongly or as early as
I should have.] Note however that the first of those two partial derivatives (partial of rdot function with respect
to an ECI SV) is used by the Marquardt technique. The latter of those two partial derivatives (partial of racc
function with respect to an ECI SV) is not used by the Marquardt technique but is used in Motion
Compensation.

2. You ask for an explanation of how covariance is extracted from Marquardt. Unfortunately I can not embellish
upon the description provided in Numerical Recipes. NR defines the covariance as the inverse of the alpha
matrix and then provides a subsequent section (14.5 in the 1990 FORTRAN Version[15]) that provides more
details about calculating confidence intervals. [As an aside, I used the techniques in 14.5 to derive confidence
intervals for use in Motion Compensation.]

3. The cost function was customized as indicated in order to account for the multidimensional nature of the
measurements (px, py, pz, vx, vy, vz and r, a, e). If you recall, the equations that NR provides that are related to
‘y’ (e.g., 14.4.5) consist of only a single dimension. In hindsight (i.e., something I never did) I believe I could
have further modified the chisq merit function to utilize full covariance matrices rather than just the diagonal
elements.

4. I reference the gravity model during propagation of the SV being estimated (i.e., the parameters of interest, ‘a’)
to the times of the “measurements” (i.e., to the cue time and the detection time). Note that I use an Extended
Trapezoidal Corrector for propagation. For this purpose (propagation) I use a gravity model than includes 8
spherical and 8 tesseral terms. Actually the # of terms is specified by the user but I believe that in practice we
run with 8,8. I also reference the gravity model for the purpose of computing the derivatives of the propagation
function with respect to the parameters of interest. However, for the purpose of computing the aforementioned

 19

derivatives, I make some simplifications: (1) I calculate the derivatives as though the propagation is performed
using the simple Extended Euler technique. (2) I calculate the derivatives as though the Earth is a point source
(no asymmetries). The presentation that George and I gave on 9/30 and 10/1 includes slides (Tracker, pages 12-
16 now offered below) that provide more details about the calculation of the derivatives.

5. One can define the propagation and the calculation of the partial derivatives in such a manner as to place the
parameters and associated covariance at any time of interest. When I first started working with the Marquardt
method I defined the propagation and derivatives so that the parameters were estimated at the time of the first
measurement. In general I’d then have to propagate those parameters (the estimated SV) and the accompanying
covariance matrix to the time of the last measurement before use. For the Marquardt method that we
implemented in the PAVE PAWS Mission Software (non bonded), I defined the propagation and derivatives so
as to provide a SV and covariance valid at the time of the last measurement. Finally, note that I have compared
the SV and covariance that one gets by estimating them at the time of the first measurement and then
propagating them to the time of the last measurement with the SV and covariance that one gets by estimating
them at the time of the last measurement and I’ve found them to be identical.

Marquardt Method Review
Derivation of (1 of 3)

• Definitions

• Therefore

()

()nznynxn

zyx

PPPP
n
tt

PPPP

,,,

2
0,

2
0,

2
0,

3

0

,,

2
3

≡

≡∆

++=

r

v

() 3

1

1
1

3

1

1
2

11

,

2
),(

−

−
−

−

−
−−

∆+=≈

∆
+∆+=≈

n

n
nn

n

n
nnn

P

PtVVSVtV

P

PtVtPPSVtP

v

v
vv

v

v
vvr

µ

µ

() (){ }SVtVSVtPSVtECI ,,,),(=

()
k

i

sv
svtECI

∂
∂ ,

()



























=
∂

∂

0,

,

0,

,

0,

,

0,

,

0,

,

0,

,

0,

,

,

z

nz

x

nz

z

ny

x

ny

z

nx

y

nx

x

nx

k

i

V
V

P
V

V
P

P
P

V
P

P
P

P
P

SV
SVtECI

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

L

M

L

L

 20

21

Marquardt Method Review
Derivation of (3 of 3)

• Starting with the First Iteration

()
k

i

sv
svtECI

∂
∂ ,

























































−∆









 −
∆









 −
∆










 −
∆










−∆









 −
∆










 −
∆









 −
∆










−∆

∆









−

∆
+









 −∆









 −∆

∆








 −∆










−

∆
+









 −∆

∆








 −∆









 −∆










−

∆
+

=



























100
3133

010
3313

001
3331

00
31

2
1

3
2

3
2

00
3

2
31

2
1

3
2

00
3

2
3

2
31

2
1

5

0

2

0,
3

0

5

0

0,0,

5

0

0,0,

5

0

0,0,

5

0

2

0,

3

0

5

0

0,0,

5

0

0,0,
5

0

0,0,

5

0

2

0,
3

0

5

0

2

0,
3

0

2

5

0

0,0,

2

5

0

0,0,

2

5

0

0,0,

2

5

0

2

0,

3

0

2

5

0

0,0,

2

5

0

0,0,

2

5

0

0,0,

2

5

0

2

0,
3

0

2

0,

1,

0,

1,

0,

1,

0,

1,

0,

1,

0,

1,

0,

1,

P
P

P
t

P
PP

t
P

PP
t

P
PP

t
P
P

P
t

P
PP

t

P
PP

t
P

PP
t

P
P

P
t

t
P
P

P
t

P
PPt

P
PPt

t
P

PPt
P
P

P
t

P
PPt

t
P

PPt
P

PPt
P
P

P
t

V
V

P
V

V
P

P
P

V
P

P
P

P
P

zyzxz

zyyxy

zxyxx

zyzxz

zyyxy

zxyxx

z

z

x

z

z

y

x

y

z

x

y

x

x

x

vvvv

vvvv

vvvv

vvvv

vvvv

vvvv

L

M

L

L

µµµ

µµµ

µµµ

µµµ

µµµ

µµµ

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

Marquardt Method Review
Derivation of (2 of 3)

• Derivatives are Computed Iteratively
() ()













∆
+∆+=

−

−
−− 3

1

1,

0,

2

1,
0,

1,
0,0,

,

2
n

ni

j
ni

j
ni

jj

ni

P

P
P

tV
P

tP
PP

P
v∂

∂µ
∂

∂
∂

∂
∂
∂

5

1

0,

1
11,

3

1

0,1,
3

1

1,

0,

3
/

−

−
−−

−

−

−

−










•

−=














n

j

n
nni

n

jni

n

ni

j P

P
PPP

P

PP

P

P
P v

v
v

vv
∂
∂

∂∂

∂
∂

() ()












∆
+∆+=

−

−
−− 3

1

1,

0,

2

1,
0,

1,
0,0,

,

2
n

ni

j
ni

j
ni

jj

ni

P

P
V

tV
V

tP
VV

P
v∂

∂µ
∂

∂
∂

∂
∂
∂

5

1

0,

1
11,

3

1

0,1,
3

1

1,

0,

3
/

−

−
−−

−

−

−

−










•

−=














n

j

n
nni

n

jni

n

ni

j P

V
PPP

P

VP

P

P
V v

v
v

vv
∂
∂

∂∂

∂
∂

() 3

1

1

0,
1,

0,0,

,

−

−
− ∆+=

n

n

j
ni

jj

ni

P

P
P

tV
PP

V
v

v

∂
∂

µ
∂

∂
∂
∂

3

1

1

0,0,

1,

0,

,

−

−− ∆+=
n

n

jj

ni

j

ni

P

P
V

t
V
V

V
V

v

v

∂
∂

µ
∂
∂

∂
∂

],,[, zyxji ∈

()
k

i

sv
svtECI

∂
∂ ,

TeK Associates further explanation of its prior view (9/26/00):
Thanks. This was what I was looking for. I’ll append your response to my report (as I checked to
see that it was acceptable to you). I could never paraphrase it as well as you conveyed it.
Part of my problem was in not actually having attended the 30 Sept-1 Oct. 1999 video
conference XonTech presentation because there wasn’t enough room here and I was asked to not
go by Raytheon. Instead, I had to rely on the interpretation of these derivatives (some months
later) from another local XonTech representative who was there but is usually less concerned
about these specifics so unfortunately your material was filtered for me by the “wrong eyes” on
these aspects. [Perhaps it was actually a benefit for me in disguise since I wasn’t lulled into
complacency by pictures but still sought a written description rather than just a high level
summary in PowerPoint or Adobe Acrobat slides.]
TeK Associates didn’t know whether the acceleration partial was part of an unstated or implied
“chain-rule” with other critical terms not yet being fully elaborated. The inverse square
acceleration of gravity is present even during a potential target’s ballistic regime. Without further
elaboration, we wouldn’t know the intent of the presence of these two types of terms:
differentiation with respect to “rdot” and with respect to “racc”. As with most things, what is
obvious to the person doing it is not obvious to others until it is explicitly stated or written to
accompany it.
We have numbers for the effect of Doppler Coupling compensation using standard 300 KHz
detection waveform, a nominal carrier center frequency of 435 MHz for the LFM pulse, and an
anticipated velocity error of 1 km/sec yielding 23 km range errors. It is stated on page 278 of
[13] that for PAVE PAWS, the range-Doppler Coupling (RDC) coefficient is 36 secs. According
to Fred Daum, UEWR RDC is typically 1 sec. (please see page 529 of [14]) so worse case range
error would be 5 km for a 5 km/sec target and 7 km for a 7 km/sec target. After obtaining this
error with respect to the local radar antenna, we claim that the result is very small as compared to
the target range with respect to the center of the earth (that is used in the actual Lambert
computations by adding the radius of the earth ~ 6378.1 km [equatorial]). It is even less of a
worry if a proposed Doppler waveform is used. We also assume the tracking bandwidth to be 10
MHz (as Tuley is and as has been proposed as a common upgrade for all of UEWR).
9. Summary/Monday Morning Quarterbacking

The write-up of Lambert in Section 3 is more like the usual style of an SRS except for the presence of two
continued fractions. The use of continued fractions is just short-hand representation for a pair of linear finite
recursion equations.

These two continued fractions could have been replaced there with the equivalent two iteration equations at
both locations in Section 3 where continued fractions occur (but this could possibly interfere with some system
analyst cross-checking these results back to the original Battin 1984 paper [2] and 1987 textbook [3]) since
Battin only uses the continued fraction representation there. Instead I gave how to evaluate continued fractions
in Section 4 following the Lambert section. The two continued fractions are essentially two embedded sub-
loops nestled within the single Main Loop of the Lambert algorithm.

My quandary was “should I be clearer for the manager/system analyst” (who wants to be able to easily cross-
check it) or should I be clearer for the programmer (who must implement it). I decided, that temporarily, I
would cater to the former. Then let them tell me to change it for the latter (after they had checked it).

The pages of derivatives appearing in my Section 5 on Lambert-based covariance evaluation are needed for
calculating the Jacobian that is used to pre- and post-multiply other covariance matrices to obtain the final
answer. These expressions for the derivatives appeared in IRAS and TD/SAT documentation and Ken
Berkowitz (Raytheon) had encountered them in conjunction with motion compensation. George Bohannon
(XonTech) had indicated that over the years of revision for various TD/SAT updates, he believes that they have

 22

weeded out all of the typos. I didn’t want to risk introducing any new typos of my own here so I used
XonTech’s original equations here.

In talking to Brian O’Dea (XonTech), he strongly favored use of Marquardt over Lambert

because it solved a host of other problems. Since Marquardt is a larger computational burden, I was worried
about its use in real-time operational software. However, Lambert can be used to initialize Marquardt, and by
starting closer to the eventual Marquardt solution thereby cut down on the number of iterations needed by
Marquardt to converge to its solution.

To date, I figured out the Lambert stuff myself and wrote it up as Sections 3 and 4 and explained how the
continued fraction representation is computationally evaluated and what it means. I have received exemplary
recent support from XonTech about the specifics of a Marquardt implementation by their referring me to
Section 15.5 of [7] and having later received more detail from them on how XonTech customizes the cost
function they use, which departs slightly from the standard one depicted in [7].

I have presented the case for using either the Lambert algorithm or the Marquardt algorithm or both in the role
of specifying TI for NMD cue. The Raytheon/Xontech team needs to decide what it prefers to pursue in this
real-time role to be reflected in the SRS. If the team decides to use Marquardt, then more detail needs to be
supplied on it for the SRS. Perhaps there is no need to get ‘hot and bothered” about acknowledged deficiencies
in the write-up of the Marquardt algorithm before we know for sure that it will be used in the SRS. Someone
needs to decide whether UEWR MAS SRS will use Lambert algorithm, the Marquardt algorithm, or both
together.

Appendix I: XonTech’s Lambert algorithm FORTRAN code (based on [1])
According to Shio Oikawa, “In my analysis, I used the algorithm from R. Bate, D. Mueller, and
J. White as Chapter 5 of [1] since it looked easier to implement at the time. As long as this
(Lambert solution) uses the point mass (no J2), any valid method should give the same results.”
&INPUT
GM = 3986005.E8

R1 = -2080537.353,-1331784.494,6039421.362,
R2 = -1803306.13533542,-412620.944243097,6343961.79867607,
DT = 138.8808
TOL = 1.E-15
MAXITER = 1000
ISWT = 0
TOL = 1.E-13

&END
C **
SUBROUTINE LAMBRT(GM,TOL,R1,V1,R2,V2,DT,R1MAG,V1MAG,R2MAG,V2MAG
*, ANGD,F,G,FDOT,GDOT,ISWT,MAXITER,ITER,IERR)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION R1(3),V1(3),R2(3),V2(3)
 PI = ACOS(-1.0) ! Value of Pi (= 3.1415...)
 DR = 180.0 / PI ! Rad. to Deg. conversion factor
IERR = 0
IF (ISWT .EQ. 0) THEN

R1MAG = SQRT(R1(1)**2 + R1(2)**2 + R1(3)**2)
R2MAG = SQRT(R2(1)**2 + R2(2)**2 + R2(3)**2)

DOTR = R1(1) * R2(1) + R1(2) * R2(2) + R1(3) * R2(3)
 ANGR = ACOS(DOTR/(R1MAG*R2MAG)) ! Angle between two
 ANGD = ANGR * DR ! position vectors

 23

ELSE
ANGR = ANGD / DR

END IF
 A = SQRT(R1MAG * R2MAG * (1.0 + COS(ANGR)))
 Z = 0.00001
 ITER = 0

C
C Compute the value of C and S using the summation.

C
100 COLD = 0.0
DO I = 1, 100

UP = (-Z)**(I-1)
IDN = 2 * (I-1) + 2

DN = FACT(IDN)
CNEW = COLD + UP / DN

IF (ABS(CNEW - COLD) .LE. TOL) GO TO 200
COLD = CNEW

END DO
200 C = CNEW

SOLD = 0.0
DO I = 1, 100

UP = (-Z)**(I-1)
IDN = 2 * (I-1) + 3

DN = FACT(IDN)
SNEW = SOLD + UP / DN

IF (ABS(SNEW-SOLD) .LE. TOL) GO TO 210
SOLD = SNEW

END DO
210 S = SNEW

IF (C .LT. 0.0) GO TO 800
Y = R1MAG + R2MAG - A * (1.0 - Z * S) / SQRT©
IF (Y .LT. 0.0) GO TO 800
X = SQRT(Y / C)
F = X * X * X * S + A * SQRT(Y) - SQRT(GM) * DT

CZOLD = 0.0
DO I = 1, 100

UP = (-Z)**(I-1)
IDN = 2 * I + 2

DN = FACT(IDN)
CZNEW = CZOLD - FLOAT(I) * UP / DN

IF (ABS(CZNEW-CZOLD) .LE. TOL) GO TO 220
CZOLD = CZNEW

END DO
220 DCDZ = CZNEW

SZOLD = 0.0
DO I = 1, 100

UP = (-Z)**(I-1)
IDN = 2 * I + 3

DN = FACT(IDN)
SZNEW = SZOLD - FLOAT(I) * UP / DN

IF (ABS(SZNEW-SZOLD) .LE. TOL) GO TO 230

 24

SZOLD = SZNEW
END DO

230 DSDZ = SZNEW
DYDZ = A * ((S + Z * DSDZ)/SQRT© + 0.5 * (1.0 - Z * S)
* * DCDZ / SQRT(C**3))
DXDZ = 0.5 * (DYDZ/SQRT(C*Y) - SQRT(Y/C**3) * DCDZ)
DFDZ = 3.0 * X * X * DXDZ * S + X * X * X * DSDZ
* + 0.5 * A * DYDZ / SQRT(Y)
ZNEW = Z - F / DFDZ

ITER = ITER + 1
IF (ABS(Z - ZNEW) .LE. TOL) GO TO 300
IF (ITER .GT. MAXITER) THEN

WRITE(*,*)’ Max. iteration exceeded’
WRITE(*,*)’ Z, ZNEW = ‘,Z,ZNEW
GO TO 300

END IF
Z = ZNEW
GO TO 100

300 Z = ZNEW
F = 1.0 - X * X * C / R1MAG
G = DT - X * X * X * S / SQRT(GM)
FDOT = -SQRT(GM) * X * (1.0 - Z * S) / (R1MAG * R2MAG)
GDOT = 1.0 - X * X * C / R2MAG
IF (ISWT .EQ. 0) THEN

DO I = 1, 3
V1(I) = (R2(I) - F * R1(I)) / G
V2(I) = (GDOT * R2(I) - R1(I)) / G
END DO
V1MAG = SQRT(V1(1)**2 + V1(2)**2 + V1(3)**2)

V2MAG = SQRT(V2(1)**2 + V2(2)**2 + V2(3)**2)
ELSE

DOTP = 2.0 * R1MAG * R2MAG * COS(ANGR)
V1MAG = SQRT(R2MAG**2 - F * DOTP + F*F * R1MAG**2) / G

V2MAG = SQRT(R1MAG**2 - GDOT * DOTP + GDOT*GDOT * R2MAG**2) / G
END IF
GO TO 900

800 IERR = 1
900 CONTINUE
RETURN

END

C **
FUNCTION FACT(I)
IMPLICIT REAL*8(A-H,O-Z)
VAL = 1.0
DO ITER = 1, I

VAL = VAL * FLOAT(ITER)
END DO
FACT = VAL

RETURN

 25

END

References
1. Bate, R. R.,, Mueller, D. D., White, J. E., Fundamentals of Astrodynamics, Dover Publications, NY, 1971.
2. Battin, R. H., Vaughan, R. M., “An Elegant Lambert Algorithm,” AIAA Journal of Guidance, Control, and

Dynamics, Vol. 7, No. 6., pp. 662-670, Dec. 1984.
3. Battin, R. H., An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series, NY.
4. Nelson, S. L., Zarchan, P., “Alternative Approach to the Solution of Lambert’s Problem,” AIAA Journal of

Guidance, Control, and Dynamics, Vol. 7, No. 6., pp. 662-670, Dec. 1984.
5. Vinti, J. P., Orbital and Celestial Mechanics, Academic Press, NY, 1993.
6. Green, D. H., and Knuth, D. E., Mathematics for the Analysis of Algorithms, 2nd Ed.,Birkhauser, Boston, MA,

1982.
7. Press, W. H., Teukolsky, S. A., et al, Numerical Recipes in Fortran: The Art of Scientific Computing, 2nd

Edition, Cambridge University Press, NY, 1992.
8. Vettering, W. T., Teukolsky, S. A., et al, Numerical Recipes: Example Book [FORTRAN], 2nd Edition,

Cambridge University Press, NY, 1992.
9. Oikawa, S., “Radar Track Filter Initialization Study”, XonTech, July 28, 1999 (PowerPoint Presentation).
10. Caampued, T., “TD/SAT Cued Search ‘Hot-Start’ Options,” XonTech, 15 Oct. 1999 (PowerPoint Presentation).
11. O’Dea, B., “TD/SAT Modeling and Algorithms Discussion: Tracker,” Xontech, 30 Sept.- 1 Oct. 1999 (Adobe

Arobat Presentation).
12. Bohannon, G., “TD/SAT Modeling and Algorithms Discussion: Test Driver,” Xontech, 30 Sept.- 1 Oct. 1999

(Adobe Arobat Presentation).
13. Daum, F. E., Fitzgerald, R. J., “Decoupled Kalman Filters for Phased Array Radar Tracking,” IEEE

Transactions on Automatic Control, Vol. AC-28, No. 3, pp. 264-283, March 1983.
14. Fitzgerald, R. J., “Effects of Range-Doppler Coupling on Chirp Radar Tracking Accuracy,” IEEE Transactions

on Aerospace and Electronic Systems, Vol. AES-10, No. 4, pp. 528-532, July 1974.
15. Press, W. H., Teukolsky, S. A., et al, Numerical Recipes in Fortran 90: The Art of Parallel Scientific

Computing, Vol. 2, 2nd Edition, Cambridge University Press, NY, 1999.
16. Brown, C. D., Spacecraft Mission Design, AIAA Education Series, NY, 1992.

Distribution: K. Berkowitz R. Blanton F. Daum
 A. Entsminger R. Hettich D. Lawrence D. Matthieson
 T. Parsons T. Pham R. Reed D. Rypysc
 V. Ruggeri H. Satz R. Seed S. Sparagna
 S. Sillers F. Steudel M. Weisman

 26

	1.Introduction and problem statement
	2.How results are to be used in the MAS SRS for track initiation with NMD cue
	3.SRS specification of the Lambert algorithm for the velocity estimates
	a. Specifying preliminary consolidating parameters before entering the actual algorithm:
	End of Lambert Solution Main Iteration Loop
	
	4.Evaluating continued-fraction representation appearing in the Lambert algorithm
	5.SRS specification of the accompanying Lambert-based Covariance Calculation

	Excerpt from UEWR SSTB documentation:
	6.Discussion of how Marquardt Nonlinear Least Squares may be used to obtain b

	Refined state vector estimate and accompanying covariance matrix at detection time;
	
	8.Evidence that use of J2 to account for Oblateness of earth in gravity model can be ignored by both algorithms for TI

	Shio Oikawa’s description of what he did to obtai
	Shio Oikawa’s FORTRAN code for Step #4 above:
	100 CONTINUE
	IF (IERR .NE. 0) THEN

	C
	DO I = 1, 3
	VJ2(I) = VRS(I)
	VR(I) = VRS(I)
	END DO
	IEND = 0
	ITER = ITER + 1

	C
	XJ2(I) = X(I)
	END DO

	Continuation of our observations regarding consequences of presence or absence of J2

	George Bohannon (XonTech) offers his perspective here:
	Resuming TeK Associates’ view of the issues assoc
	Tek Associates is aware of the \(late\) John V�
	
	TeK Associates recent \(9/23/00\) request to B�
	Brian O’Dea’s more detailed views of this entire
	TeK Associates further explanation of its prior view (9/26/00):

	Appendix I: XonTech’s Lambert algorithm FORTRAN c
	GM = 3986005.E8
	SUBROUTINE LAMBRT(GM,TOL,R1,V1,R2,V2,DT,R1MAG,V1MAG,R2MAG,V2MAG
	IMPLICIT REAL*8(A-H,O-Z)
	DIMENSION R1(3),V1(3),R2(3),V2(3)
	IF (ISWT .EQ. 0) THEN
	R1MAG = SQRT(R1(1)**2 + R1(2)**2 + R1(3)**2)
	R2MAG = SQRT(R2(1)**2 + R2(2)**2 + R2(3)**2)
	DOTR = R1(1) * R2(1) + R1(2) * R2(2) + R1(3) * R2(3)

	ELSE
	ANGR = ANGD / DR

	END IF
	C
	C

	DO I = 1, 100
	UP = (-Z)**(I-1)
	IDN = 2 * (I-1) + 2
	CNEW = COLD + UP / DN

	END DO
	200 C = CNEW

	SOLD = 0.0
	UP = (-Z)**(I-1)
	IDN = 2 * (I-1) + 3
	SNEW = SOLD + UP / DN

	END DO
	210 S = SNEW

	IF (C .LT. 0.0) GO TO 800
	IF (Y .LT. 0.0) GO TO 800
	F = X * X * X * S + A * SQRT(Y) - SQRT(GM) * DT
	UP = (-Z)**(I-1)
	IDN = 2 * I + 2
	CZNEW = CZOLD - FLOAT(I) * UP / DN

	END DO
	220 DCDZ = CZNEW

	SZOLD = 0.0
	UP = (-Z)**(I-1)
	IDN = 2 * I + 3
	SZNEW = SZOLD - FLOAT(I) * UP / DN

	END DO
	230 DSDZ = SZNEW

	DYDZ = A * \(\(S + Z * DSDZ\)/SQRT© + 0.5 * �
	DXDZ = 0.5 * (DYDZ/SQRT(C*Y) - SQRT(Y/C**3) * DCDZ)
	DFDZ = 3.0 * X * X * DXDZ * S + X * X * X * DSDZ
	ZNEW = Z - F / DFDZ
	END IF
	300 Z = ZNEW

	F = 1.0 - X * X * C / R1MAG
	FDOT = -SQRT(GM) * X * (1.0 - Z * S) / (R1MAG * R2MAG)
	GDOT = 1.0 - X * X * C / R2MAG
	IF (ISWT .EQ. 0) THEN
	DO I = 1, 3
	V2MAG = SQRT(V2(1)**2 + V2(2)**2 + V2(3)**2)

	ELSE
	DOTP = 2.0 * R1MAG * R2MAG * COS(ANGR)
	V1MAG = SQRT(R2MAG**2 - F * DOTP + F*F * R1MAG**2) / G

	END IF
	GO TO 900
	800 IERR = 1

	RETURN
	END

	FUNCTION FACT(I)
	IMPLICIT REAL*8(A-H,O-Z)
	VAL = 1.0
	VAL = VAL * FLOAT(ITER)

	END DO
	FACT = VAL

	References

