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1 Notation and Motivation
For a time-invariant linear continuous-time state-variable representation in terms
of the matrix triple (A4, B, C) as

dx
o= Az(t) + B u(t) (1)

y(t) = C (1), (2)
with corresponding system transfer function matrix

H(s)=C (sI-A)™" B, (3)

the equivalent discrete-time reformulation in terms of the matrix triple (L, M, N) is

| y(k) = N a(k), (5)
with corresponding system transfer function matrix
H(z) =N (I - L)' M, (6)

where s in Eq. 3 is the Laplace transform variable and z in Eq. 6 is the Z-transform
variable and use of z(-) in Eqgs. 1, 2, 4, and 5 is just notation for the system state
variables with u(-) as the input and y(-) as the measured output.
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An initial investigation of posing the continuous-time problem as an ezact formu-
lation in discrete-time proceeds as follows. The form of the solution to the differential
equation of Eq. 1 is:

z(t) = A z(s) + /: ef‘(t"T) Bu(r)dr. (7

In particular, for the upper and lower limits of the above integral being

= (k + 1) A, (8)
s=kA, (9)

with
A = constant incremental step — size , (10)

the solution of Eq. 7 corresponds to the following recursive iteration in discrete-time:

(k+1) A
z(k+1) = [eAA] z(k) + A eA*A=7) Bu(r)dr, (11)

which, under the further assumption that u(r) is essentially constant ' over the time-
step from any kA to any other (k + 1)A, yields:

(k+1) A
ok +1) = [e*2] a(k) + [/ A+ a-7) Bdr] (k) . (12)
kA
Upon making the change of variable
r=17"+kA (13)

and substituting into the integral in Eq. 12, yields:

| z(k+1) = [er?] x(k)+[/erAAe~AT' dr’] B u(k)

= [e*?] a(k) + [e*2] [/OA e A7 dT’] B u(k). (14)

The expression in Eq. 14 is the most general form of the discrete-time formulation that
corresponds ezactly to the continuous-time formulation of Eq. 7 except for the minor
error incurred in assuming u(7) to be essentially constant over each small step-size A,
thus allowing it to be taken outside of the integral. In the case where the continuous-
time input u(t) is independent, white, Gaussian process noise of continuous-time

1This assumption is sometimes enforced through use of a zero-order hold on the input u(t).



covariance intensity level, (), to have ezact adherence without any approximation
incurred, the discrete-time formulation should be

a(k+1) = [e4] a(k) +w'(k), (15)

where _
u'(k) = zero — mean Gaussian white noise , (16)

having discrete-time covariance intensity level [15, p. 270]:

Qs = E [uW(k)(w(j))7] = 4 [/OA 4T BQB e dr| A 8y, (17)

where the above Kronecker delta is defined as

.= |1 k=] (18
ki = i 0, otherwise. )

The above @4 in Eq. 17 is the appropriate discrete-time process noise covariance level
to use to have eract agreement between the discrete-time mechanization of Eq. 15
and the continuous-time formulation of Egs. 1 or 7. A well-known approximation for
Q. (due to Kalman) which is sometimes used is to take

Q=4Q; (19)

however, the deleterious effect of invoking this approximation is uncalibrated and it
can easily be seen to be an obviously unsatisfactory representation of off-diagonal
terms. The effects due to incorrect off-diagonal cross-correlation terms can be signif-
icant for many applications.

2 Transition Matrix Calculation

For linear systems of the following form:
i(t) = A:(t)a(t) | (20)

calculate the appropriate transition matrix ®,(t) (when applicable, can use matrix
exponential or Pade approximate approach if you so desire for greater accuracy):

1. Case 1: Find the appropriate transition matrix for the following time-invariant
system:

(30N
[
01 5

A] = ’ (21)

|
LITY)
e

for time step A = 0.405.



2. Case 2: Find the appropriate transition matrix for the following time-invariant

system:
1 1 17
3 3 3
- 1 1 _1
A2 - -3 3 3 ’ (22)
1 _1 1
3 3 3

for time step A = 0.405.

3. Case 3: Find the appropriate transition matrix ®(¢,s) 2 for the following time-
varying linear system:

—1+ a(cost)? 1 —asintcost
As(t) = ) (23)
—1 —asintcost —1+ a(sint)?

with the parameter ¢ = 1.5. Calculate what the corresponding transition matrix
is at time=10 (units).

2.1 ANSWERS:

Certain matrices known as “idempotent” matrices have the unusual property that
when multiplied times itself again yields itself as the result:

AA=A. (24)

The non-trivial system matrices of Test Cases 1 and 2 exhibit this property. The
present application in software verification is a neat application of idempotent ma-
trices being used to construct test matrices for verifying the transition matrix algo-
rithmic implementations that are used for computer computation of ef*. The utility
of these test matrices is that the resulting analytically derived expression for ef* is
conveniently in closed-form for F = A. Hence the output performance of a general
ef* subroutine implementation can ultimately be gauged by how close it comes to
achieving the known ideal exact solution.

Using the representation of a matrix exponential, defined in terms of its Taylor
series, but evaluated with an idempotent matrix A having the property of Eq. 24
being substituted along with time-step A; the matrix Taylor series expansion of e44

2Satisfying the equation %d)(t,s) = A(t)®(t,s) with boundary condition ®(s,s) = I,xn (an
identity matrix).



now yields

AN oo AF Ak
€ - k=OFA

= T+4A+ 8N+ £A% 4.

= I+AG+5+45+) (25)

3

= T+AQ1+4+4 +4 +---1)

= I+ A(e? -1),

as explained in [1, Sec. IV]. Thus, the closed-form exact expression for the transition
matrix corresponding to idempotent system matrices is as depicted in the last line
of Eq. 25 as a finite two step operation involving just a scalar muitiplication of a
matrix and a single matrix addition (as compared to an infinite series that must
be truncated in the case of standard software implementations for the case of more
general matrices).

For clarity, motivation is now offered for how these idempotent matrices were
obtained. Consider the problem of seeking to solve the following algebraic equation
for z(n x 1), given y(m x 1) and C(m x n):

y=Cz. (26)

Assuming that the rank of C is the same as the rank of the augmented matriz [Cly],
it is reasonably well-known (see {2, Appendix A, Section A.1] and [11, p. 417]) that
a solution to Eq. 26 is of the form

z=Cly+ (I, - C'C)w (27)

for arbitrary w and that the term within parenthesis in Eq. 27 is idempotent (where
C' in Eq. 27 is the Moore-Penrose pseudoinverse [13]). In forming two counterexam-

ples in {2], [7], the following two matrices and their respective pseudoinverses were
obtained (as derived in [2]):

12 f_ 11 2]
= ) = — {
@ [2 4] I 25[2 4| (28)
and L1
Cz=|110|; C=| 3 0 0 (29)
110 b -1



Therefore via Eq. 27, the following two matric

A & (I-cloy)
1o}
T o 1] =
4 _2
- |5 ]
L 5 5
and A
A, £ (I-ClCy)
(100 -3
= 01 04— %
(0 0 1 :
1 _1 1
3 3 3
— 1 1 _1
- i 3 ?}’
L 3 "3 3

es are idempotent

1 211 2

2 412 4 (30)
11 1 21
0 0f|1 10

i -1 110 (31)

both of which check as being idempotent by satisfying Eq. 24 as an identity. In

considering the step-size to use in the evaluation

of the final line of Eq. 25, convenience

in using just a scalar multiplying factor of one half times the matrix in Eq. 25 would

dictate using

A = 0.405 (32)
since from Burlington’s mathematical tables [12]
(€8 —1) = (e**® — 1) = (1.50 — 1) = 0.50. (33)
Therefore, the two evaluations corresponding to invoking Eq. 25 are:
1. Case 1 Answer:
1 4 _2
(34)
_ 1.40 —-0.20
1 -020 1.10
2. Case 2 Answer:
1 1.166 —0.166 0.166
et =T 4 542 = —0.166 1.166 —0.166 |. (35)
0.166 —0.166 1.166 |



3. Case 3 Answer: As can be analytically confirmed to satisfy the canonical
equation repeated in the footnote on page 4, the closed-form expression for the
corresponding transition matrix is:

[ elaNtcost e tsint ]
®(t,0) = .
| —ele=Vtgint e tcost
(36)
[ (05 Vteast e7tsint ]
| —e(5-Utsint et cost J
so for ¢t = 10, the requested result is
e®cos (10) e 1%sin (10)
©(10,0) =
| —€®sin (10) e~ cos (10)
(37)

[ —124.5293 —2.4699 x 10~°

80.7399 —3.8094 x 1073

The results of Eq. 34 and 35 are the now known closed-form solutions to an e42
evaluation of the matrices of Eqs. 21 and 22, respectively, with A = 0.405 and Eq. 37
offers the corresponding transition matrix spanning a time interval from ¢ = 0 to
t = 10 units.

The transition matrix calculation for numerically converting the continuous-time
n-state model description to discrete-time, has historically adaptively tailored the
number of terms retained in the defining Taylor series (first two lines of Eq. 25) by
using either too coarse a norm (see [16]) or an invalid norm [1, pp. 938-939]. A tighter
bound for this purpose has been derived from considerations of both column-sum and
row-sum norms in (23] and, additionally, it is prudent to also set an upper limit on
the total number of terms from the Taylor series expansion allowed to be used in
calculating the transition matrix so that the computation can’t run away (otherwise
it could incur numerous OVERFLOW’s due to the effect of accumulated roundoff).

3 Exact Calculation of Discrete-Time Process (Plant)
Noise Covariance Intensity Matrix

For time-invariant linear systems, the discrete-time equivalent of continuous-time
white noise is well known to satisfy an equation of the following form for the associated



covariance intensity matrix:
Ao | [P —air T —AT7 AT A,
Qdi-—_e"/o e 7 B; Q; B e Tdr|et o, (38)

where A; = A,; = 0.405 (units). Please evaluate the above matrix expression for
Qi (important for accurate Monte-Carlo simulations) for the same parameters as in
Cases 1 and 2 in Section 2 above but, respectively, with By = Iox2 and Q1 = Iz2x for
Case 1 and with B, = 343 and @, = I343 for Case 2 (so that appropriate dimensions
will be conformable under the indicated standard matrix multiplications).

3.1 ANSWERS:

Using the result of Eq. 25 for idempotent matrices within the more general expression
of Egs. 17 or 38, allows this expression for the required discrete-time process noise
covariance to be evaluated analytically in closed-form as:

Qa = [I+A@*-1) /A [+ A(e™ = 1)] BQBT [I + AT(e™™ — 1)] dr [1+ AT(c* - 1))

0

= :I + A(e® — 1)]

1+ A7(e* - 1)

= [I-}-A(eA—l)] ,

/0 : [BQBT + (ABQBT + BQBTAT)(e™™ — 1) + ABQBT AT (7% — 2¢™" +1)] dr

3 1 _ _
[BQBTA + (ABQBT + BQBTAT)(1 - e™® — A) + ABQBTAT(=5 — ¢™ 4274 + A)]

2
[I + AT(e® - 1)] .

This is a new result 3 that is also useful as a confirming check for software implemen-
tations of Eq. 17.

1. Case 1 Answer:
0.5793 —0.0755

Qd1=[~0.0755 0.5793 | ° (40)

3Along a different line, something similar to Eq. 39 can be computed for numerically evaluating
Q4 for any constant matrix A, not just for idempotent matrices, by (1) expanding e~ 47 into its matrix
Taylor series, (2) by performing the indicated multiplications of the two series within the integrand,
(3) by subsequently performing term-by-term integration, and then (4) by retaining enough terms
of the final series to be used to provide sufficient accuracy in actual numerical calculations.

(39)



2. Case 2 Answer:

—0.0730  0.4780 -—-0.0730
0.0730 —-0.0730  0.4780

Qa2 = (41)

0.4780 —-0.0730 0.0730 J

4 Differential Equation: Time-Varying Parame-
ters

For the linear system of the form

—1+ a(cost)? 1 —asintcost }
(1) = [ z(t) (42)

| =1 —asintcost ~1 + a(sint)? |
with the parameter a = 1.5 and initial condition z(0) = [5, 15]7, calculate the solution
z(10) at time=10 (units).
4.1 ANSWER:

From the transition matrix obtained in Case 3 of Section 2, the answer here is:

e® cos (10) e %sin (10) 5
z(10) = ¢(10,0)z(0) = [ 15 ]
| —€sin (10) e™'°cos (10)

[ __ -5
) 194.5293 —2.4699 x 10 [5] )
80.7399 —3.8094 x 10-5 | L 19
_ [ —622.6469
= | 403.6989

ADDITIONAL INSIGHTS FROM THIS TIME-VARYING SYSTEM:
In analogy to what is done for time-invariant linear systems, the forming of a
so-called characteristic equation corresponding to the time-varying system matrix of

10



Eq. 42 can be attempted and would be of the form:

(A +1) — a(cost)? —1+ asintcost
0 = det|A]— A3(t)| = det
1+ asintcost (A+1)— a(sint)?

= (A+1)> —af(cost)® + (sin?)?J(A +1)
(44)
+a%(cost)?(sint)? — [~1 + a®(cos t)*(sint)?]
= A+1)2—a(A+1)+1
= M+(2-a)A+(2-4a),

which has so-called eigenvalues that are constant as the solution to the above quadratic
equation as

+
a—2—+Va* -4

A= 5 , (45)
so these constant eigenvalues are complex numbers having negative real parts for
-2<a<?2, (46)

but the solution of Eq. 36 is observed to be an unstable unbounded growing expo-
nential for
l<a<?2, (47)

and in particular for ¢ = 1.5. This easily verifiable behavior contradicts some (widely
propagated) notions by many control theorists of an earlier era that time-varying
eigenvalues (sic), if all confined to the left half plane and by not moving around too
much, correspond to a stable system. This example has eigenvalues that are constant
in the left half plane (so can’t move around too much or at all even) yet is blatantly
unstable thus exposing the earlier notion as a folk theorem without substantiation.

5 Kalman Filter and Predecessor Monte-Carlo
Simulator: Stationary Time-Invariant Systems

5.1 Overview of the structure of Kalman filtering

A Kalman filter (see Fig. 1) is an efficient and convenient computational scheme for
providing the optimal estimate of the system state and an associated measure of the
goodness of that estimate (the variance or covariance). In order to implement a KF,
the actual continuous-time system must be adequately characterized by a linear (or
linearized) ordinary differential equation model represented in state space at time ¢ in

11



terms of a vector z(t), and having associated initial conditions specified, and availing
sensor output measurements z(t) (functions of the state plus additive measurement
noise). It is mandatory that the KF itself actually contain within it an analytical
mathematical model of the system and sensors in order to perform its computations
(designated as a model-based estimator), and it must possess a statistical character-
ization of the covariance intensity level of the additive white Gaussian measurement
and process noises present as well to enable an implementation.

Before the KF code can be validated as performing properly, or in case of known
errors, before the source can be pin-pointed, first the inputs to the KF must be vali-
dated as being exactly what was intended. To this end, we first turn our attention to
validating the Monte-Carlo simulator. A state-variable based Monte-Carlo simulator,
of the form depicted in Fig. 2, should be developed/supplied to support testing the
performance and adequacy of KF trackers. '

5.2 Four test cases for validating simulator and filter

The overall structure of the simulator is depicted in Fig. 2. Using the input
parameters of Test Case 1, as depicted in Table 1, the intermediate outputs provided
by the software implementation should be verified to be correct. The specific features
of the software implementation that can be confirmed using Test Case 1 are detailed
in the second column from the left in Table 2.

Using the parameters of Test Case 2, as depicted in Table 1. The specific features
of a software implementation that can be confirmed using Test Case 2 are detailed
in the third column from the left in Table 2. Test Case 2 has an easy to determine
closed-form expression for the transition matrix, for @, for the steady-state Lyapunov
equation, and for the ideal output power spectrum.

The specific features of the software implementation that can be confirmed using
Test Case 3 are detailed in the fourth column from the left in Table 2. Actual ex-
tremely regular essentially deterministic sample functions obtained for the underlying
known unstable system can conveniently be used to check at a high level that the out-
put is exactly correct. Besides confirming the outputs of the simulator with an easily
recognizable expected answer (as contrasted to Test Cases 1, 2, and 4, which provide
random noise corrupted sample functions that can be confirmed at the aggregate level
only from statistical properties that are a byproduct of downstream KF tracking or
spectral estimation), this Test Case 3 also allows a programmer to calibrate (and
correct) their plot routines and his scale conversion for output plots, if necessary.

Using the parameters of Test Case 4, as depicted in Table 1, the intermediate out-
puts provided by a software implementation can be verified to be correct. The specific
features of a software implementation that can be confirmed using Test Case 4 are
detailed in the fifth column from the left in Table 2. The main purpose of this last test
case is to be able to handle the situation of providing prescribed multi-input/multi-

12
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Table 1: Summary of Parameters of Test Case Models Used in Validation Tests of
Primary Software Modules

STANDARDIZATION OF MODEL CASES FOR SIMULATION TESTING

Case Test Case Test Case Test Case Test Case
No. 1 2 3 y
Step Size 0.405 0.5 0.5 ]
DEL (A)
System s -1/3 -5 -11 ro 11
Matrix A '.-1/3 /3 -1/3 [ J L J —
1/3 -1/3 6 0 0 0
Transition 1.166 -0.166  0.1661|[-0.0664 -0.1447 1 0.5 .34-30.22 -0.7
Matrix -0.168  1.166 -0.166
eFb 0.166 -0.166 1.16 0.8685  0.6574 0 1 0.65 0.5
as calculated as calculated as calculated as entered
NDIM NDIM =« 3 NDIM = 2 NDIM = 2 NDIM = 2
MDIM MDIM = 2 MDIM = 2 MDIM = 2 MDIM = 2
Process Noise continuous time version | continuous time continuous Discrete time
Covariance 1 0 0 version time version version
Intensity Matrix 0 1 0 i 0 [10" 0 [1 0
Q o 0 1 0 1 0 10°* 0 1
Observation 1 0 o] 1 o] [1 o] [1 0
Matrix C 0 1 0 0 1 0 1 0 1
Measurement -
Noise Covariance 1 0] [1 0] [10" 0 ] [‘0 0 ]
Intensity Matrix 0 1 0 1 0o 10" 0 107
R
Initial mean [o 0 o}T [o o]T [10 u]T [o o]T
Yo
initial 6 2z 7 ) o7 e ¢ 3 ' o
Covariance ‘ 2 8 BJ l_O 1_] 0 10- 'J l_O IJ
Po L1 3 12
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Table 2: Simulator Testability Coverage Matrix

| FUNCTION [ CASE1]CASE 2 | CASE 3 | CASE 4 |
Transition Matrix Computation: Pade RV; N
(Ward’s Algorithm)
Transition Matrix Computation: Pade Vv
(Kleinman’s Algorithm)
Q4 Computation: Discrete-Time V4

Equivalent of Continuous-Time White Noise
Steady-State Computation of Initial
Condition Mean

Steady-State Computation of Initial
Condition Covariance

(Lyapunov Equation Solution)

Verification of SVD-based Positive
Definiteness Test for Nondiagonal Matrices
Verification of Abbreviated Positive
Definiteness Test for Diagonal Matrices
Checked Process Noise Calculations

as Output from Random Number Generator
Checked Measurement Noise Calculations
as Output from Random Number Generator
Checked Recursive Calculation of all
Constituent Components of Entire Random
Process Over Several Iterations

Checked Proper Handling of PRN Seed
Verification of Stable Sample Functions
Indicative of Stationary Process

< & S <

< N N NS
< Y & <

<

<<
<

Verification of Unstable Sample Functions V4 Vv
Indicative of Nonstationary Process
Obvious Aggregate High Level At-A-Glance Vv

Confirmation From Output that all
Functions Work Properly in Concert

Confirmation of Identical Results When Vv Vv Vv
Complex Version of Software Enabled
Eventual Confirmation of Proper Sample Vv Vv

Function Statistics from Downstream
Spectral Estimation Software Module Outputs

15
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Figure 3: ANSWER for Test Case 3: DEGENERATE TEST CASE (with all noises
present but cranked down to be miniscule) OF LINEAR RAMP OF KNOWN SLOPE
AND INTERCEPT YIELDING CONFIRMING OUTPUT

Table 3: Standard Kalman Filter Implementation/Mechanization Equations

PROPAGATE STEP

l

UPDATE STEP

]

COVARIANCE Pylimy = 20k = DP_ gy #T (k= 1) 4 Q| Py = 1= KxCplPypy g 11 = K4 JT + Ky RKT
FILTER GAIN Ki = Paes Tk Pu e 2T 4 I3
FILTER

Ry lk—1 = 2(K Xk = D% 1y

Riik = kgr—1 + K2k — Ckypy )
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output (MIMO) complex random process output with specified cross-correlation be-
tween output channels. This was needed in [8] in verifying the performance of alterna-
tive Maximum Entropy spectral estimators down-stream of the simulator (operating
on its outputs), which, like a KF, deal only with first and second order statistics.
The correct answer for 2-channel spectral estimation should appear as in Fig. 3. Cer-
tain modern tracking radars use coherent phase processing, also known as coherent
integration (where both magnitude and phase are accounted for in the summation
of signal returns but where the distinction arises of having to keep track of real and
imaginary components, instead of merely needing to keep track of magnitude alone,
as conventional radars do), which jointly treats Primary Polarization (PP) returns
in conjunction with Orthogonal Polarization (OP) returns and utilizes the additional
target information provided from the cross-correlation of these two separate channels
across adjacent range gates for particular target signatures.

An overview of the comnlete software tect coverace offered here throue

A VALY ML vAAT LALLL IV SV GL T WO VUVLLIagT viiva vl u.|.11U .l

use of analytic closed-form “Test Cases of known solution” is provided in Table 2.
The utility of this coverage is discussed above. All items indicated in Table 2 should
be successfully confirmed in descending order.

From the right column and last line of Table 3, observe that immediately following
the Kalman gain, K}, there is a driving term in the update form of the estimator
portion of a Kalman filter known as the Kalman filter residual, (z; — CrZijk-1)-
In verifying and debugging an actual Kalman filter software implementation, these
residuals are monitored and used as a gauge-of-goodness and indicate good tracking
performance when they become “small.” The idea being that the measurements z;
match the model representation CyZ -1 fairly closely when the residuals are “small.”
However, since residuals are never identically zero, the question is “how small is small
enough” *? Residuals will almost always initially decrease as the initial transient
settles out. Additionally, “small residuals” are necessary but not sufficient indicators
of good Kalman filter performance and similar statements can be made for having
statistically white residuals (for instance, see [20], [21] ® which offer an example of
a Kalman filter exhibiting white residuals despite known use of an incorrect system
model but which also incurs an anomalous bias as the clue that something is wrong).
When possible, as with all simulations, one should juxtapose the time evolution of any
critical system states along side their Kalman filter estimates to see how closely the
estimates are following the actual quantities of interest as a more encompassing gauge
of proper Kalman filter performance. The only problem sometimes encountered in
certain sensitive applications is that actual estimates may be classified while residuals
may be unclassified, in which case attention centers on the residuals in unclassified
presentations as a default in justifying good filter performance. For actual real system
data, the true system state uncontaminated by measurement noise is seldom available

lartion
ACL LI VO

s€

s

“See [22] for an appealing explicit statistical test on the residuals using Chi-square statistics with
appropriately specified degrees-of-freedom for an assortment of likely test conditions that can occur.
SResiduals are also sometimes called innovations.
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so use of residuals must suffice in this situation also.

Restating for emphasis, the modern simulator design, discussed in this section,
was pursued so that only a fairly exact mechanization would be used so that the
input to the KF is precisely known. This was sought as a reliable testbed that avoids
use of uncalibrated approximations in order to avoid confusing artifacts of simulator
approximations with possible cross-channel feedthrough (that multichannel spectral
estimation implementations are also known to frequently exhibit as a weakness or
vulnerability) and which can adversely affect KF testing as well for the same reasons
of uncalibrated cross-correlations being present.

By using these or similar examples, certain qualitative and quantitative aspects
of the software implementation can be checked for conformance to anticipated be-
havior as an intermediate benchmark, prior to modular replacement of the various
higher-order matrices appropriate to the particular application. This procedure is less
expensive in CPU time expenditure during the software debug and checkout phase
than using the generally higher n-dimensional matrices of the intended application
since the computational burden is generally at least a cubic polynomial in n during
the required solution of a Matrix Riccati equation for the associated covariances.

6 Lyapunov Equation Solution

Solve both of the following algebraic matrix equations

T
Py = e Py [e2] +Qu, (48)
and
0=A4P2+P2AI+Q, (49)
for P, and P,, respectively, where
0.094 0.016
Qu= , (50)
0.016 0.634
and
1 0
Q= ) (51)
0 1
where, in the above,
-5 -1
A4 = ) (52)
6 0

and A = 0.5 (units).

19



6.1 ANSWERS:

Expanding out the symmetric matrix equations of concern to result in merely linear
algebraic equations that are easily solved to yield:

!- 9 A u "0.9819
b= S (53)
—0.0819 1.08
where
B (3e=3 — 3e~2) (673 — e~2t) |
ettt = : , (54
(__66—3t + 66—22) (__26—31! + 36-—2t)
and therefore '
(3e~% — 3e1) ("3 — 1) —0.0664  —0.1447
eA40.5 — — ,
(—=6e™% +6e71)  (=2e~% +3e71) 0.8685 0.6574
J ' (55)
an
0.116 —0.083
—0.083 1.11

7 Riccati Equation Solution: Steady-State

Solve for the steady-state solution of the Riccati equation before and after a measure-
ment update as, respectively, the matrices P and P occurring within the covariance
propagate step and update step as

P = ®4(I — KsC5)PoT + B;QsBT , (57)
and ) X
P =(I-KsCs)P, (58)
where the corresponding Kalman gain is
Ks = PCT [CPCT + R] ™ . (59)
The particular parameter values to be used for the system matrix Aj is
LT %2 -
=01 T |, (60)
0 0 1 |




A5T)

(corresponding to As = I3, where &5 = ¢ , the control gain matrix Bjs is

- % -
Bs=|Z |, (61)
| T ]
and the observation matrix Cj is
Cs=[100], (62)
with process noise covariance intensity
Qs = (2.764620)* = 7.64620 , (63)

and measurement noise covariance intensity
Rs =16, (64)

where, in the above, T = 2 (units) is the fixed time-step (between consecutive discrete
measurements).

7.1 ANSWER:

As laid out in [10] after laboring through a lot of algebra and parameter scaling,
we have to solve an associated biquartic equation [10, Eq. A9] as an intermediate
calculation. In order to make this challenge somewhat easier, instead of first specifying
Qs and Rs in Egs. 63 and 64 arbitrarily beforehand, the new contribution provided in
[9] and recounted in abbreviated form here, is to use a trick of convenience by finding
the value that makes the following associated biquartic © easy to solve for S:

S4 - 654105 -6(1+2r)S+(1+3r*)=0. (65)
The trick is to force a convenient answer, as say,
S=6 (66)

to be a solution of Eq. 65 [10, Eq. A9] by choosing the value of r (appearing in Eq.
65) for convenience. This proper value of r can be selected by first performing the

6Recall that while quadratic equations are easy to solve, general cubics and quartics/biquartics
are extremely challenging and messy in general.
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following division exercise:

S3 4105 +(54 — 12r?) remainder : +325 — 69r?
S—6 /5t —65% 41082  —6(1+2r%)S +(1+ 3r2)
St 653
1052 —6(1 +2r%)S
105 —60S5
(54 — 12r%)S +(1 4+ 3r?)
(54— 12r2)S  —6(54 — 12r?)
1+ 3r? + 324 — 72r?
(67)
So § =6 is a root of Eq. 65 7 if the remainder in the above is zero as
325 — 69r% = 0 (68)
or
325 325
2 _— — ==
el Ty = 2.17028 . (69)
Now from the equation following Eq. 15 in [10], we have that
s 12¢/R
\/Q_T3 . (70)
From Eq. 70 above,
12v/Rs
217028 = 1r = ——rnr 71
7028=r JOTs’ (71)
we can now take
T=2 (72)
and
\v R5 = (73)

so that rearranging Eq. 71 with these two assignments of Eqs. 72 and 73 yields

6
Qs = = 2.764620
Qs =3 17028(8 = 9.17028

(74)

or, referring back, yields the following two specifications of Eqs. 63 and 64 that are
necessary to be pinned-down for a well-posed KF. According to [10, prior to Fig.

7 Arbitrary solutions of Eq. 65 can’t be forced (as in seeking to make S = 2 be a solution) because
the remainder term will correspond to an “imaginary” value for r, which needs to be a real variable

to be viable in this application.
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1], the dimensionless quantity r defined in Eq. 70 can be interpreted as a type of
noise-to-signal ratio.

Now, following the procedure of [10] as explicitly laid out in [9] for this particular
-example, the 3 x 3 steady-state covariance prior to one of the periodic measurement
updates is

~

P = 263.79805 108.5650

57.6117

and the 3 x 3 steady-state covariance immediately after one of the periodic measure-
ment updates is

504.6652  349.3374  126.1666
; (75)

) 15.5083 10.7345 3.8771
P = 29.4118 23.9143 |, (76)
27.0392
8 Riccati Equation Solution: Time-Varying
Solve the associated continuous-time Riccati equation
P(t) = AsP(t) + P(t)Al — P(t)C3 Rg'CeP(t) + BeQeBg (77)

corresponding to the following state variable model of the system (i.e., specify what
the solution for P(t) is at t=8 units):

0 1
i [ o) | = i) | T]1]“w®> (78)
0 0
with statistics or associated expectations being

pe=[ § |5 Fo= ot = § 5 | Bl = ate )

The continuous-time measurement structure or outputs of the measurement sensors
are correspondingly defined as:

otz )[). o

with associated statistics

PRl = 4] se-m,
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where in the above, u;, vy, and v, are zero-mean, independent, white Gaussian noises
that are all uncorrelated with the Gaussian random vector initial condition z(0).
In terms of fairly familiar standard notation for linear systems described by state
variables, the following matrices suffice to summarize the parameter values to be
encountered in the system of interest in this section:

Ae=[8 H ;Be=[?] L Ge=[0 2] ; Po=[(2) g] ;o (60)
Qu=has R | 4] =0 =] 0] (81)

8.1 ANSWER:

The covariance of estimation error of the continuous-time Kalman filter is the solution
of the following continuous-time Riccati equation:

%P(t)=[8 é]P(t)—{—P(t){(l) g] _ P(t)[g}[ﬁ;][wll’(tﬂ[g (1)]

with initial condition P(0) = [3 g] ,

(82)
for Ny = 8. This is a nonlinear matrix Riccati equation of dimension n = 2, whose
solution can be obtained by the standard device of solving a related linear problem
of twice the dimension, 2n, formed as

d A(t) :  B(t)QBT(1)

ZT(t) =

o T(¢), (83)

CTH)RIC(t) —AT(¢)

with initial condition T'(0) = I;,x2,. In order to relate the differing solutions of Egs.
82 and 83, T'(t) is partitioned as
ro

Ill(t) : llg(t) |
T(t) = : (84)

Ta(t) :  Toft) J
from which a solution of the original covariance equation can be obtained [14, Eq.

184, p. 43] as:

P(t) = (Tu(t)Po + Th2())(Tna (8) Po + Taa(1)) ™ 2 Ty (1)T7 (). (85)
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For the parameters of the present example, the differential equations of Eq. 83 for
the time evolution of the matrix T'(t) becomes:

[ 1 5 0 0]
d 0 : 0 1
.(ET(t)-_— T(t) (86)
0 : 0 0
0 o : -1 ]

with T'(0) = I4x4, where for convenience in notation within the above and in what is

to follow take
26 8

o= —

No
and where the matrix on the right hand side of the differential equation is defined to
be the matrix B in what follows. The solution to Eq. 86 can be obtained by first
finding £L~1{(sI — B)™!}, where s is the Laplace transform variable.

(87)

It is easily demonstrated by hand calculations for the relatively sparse matrix B,
that:

-1 1 -1 1 5
s s2—a?  §2(s2-a?) s(s?-a?)
. _ 0 szjaz 5(52_.10,2) 52_1(,(2
(sI — B)™1 = adj(sI — B) _ (88)
det(s/ — B) 0 0 1 0
10 2% e i

Using partial fraction expansions and appropriately inverse Laplace transforming

Eq. 88 yields:
T(t) = e_BtT(O) = L Y(sI — B)"'}

1 alsinhat : a % — a 3sinhat —a~? 4+ a ?%coshat

-

-2

0 cosh ot © a?—a%coshat a~1sinh at

0 a sinh at : ~a~ lsinh ot cosh at

i (89)"
which also satisfies the initial condition T(0) = I4x4 as a check. Now according to
Eq. 85 (and Eq. 184 on p. 43 of [14]),

F](t) = T]l(t)PO + T]g(t), FQ(t) == Tzl(t)Po + ng(t) ' (90)
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and, therefore,

2+ a7 ?t—a3sinhat : 2a 'sinhat+ a~2coshat —a~2
I(t) = » (91)
| o ?—a"%coshat : 2 cosh at + o~ !sinh at
[ 1 : 0 ]
]‘z(t)z ) (92)
—a~'sinhat | 2asinhat + cosh at

from which we can finally reconstruct the sought for covariance of estimation error
as:

P(t) =T:(t)l7'(t) , (93)
which for A = 8 yields s g
2 - = - =
o = AR 1 (94)

in the above Egs. 91 and 92 in 93 to result in
P(t) =T:()I7'(1)

1

[(3+2t)sinht+(2+t)cosht QSinht—}-cosht—l]

~ 2sinhttcosht
2sinht + cosht — 1 2cosht 4+ sinht
(95)
which at t = 8 is
7.0000 0.9998
P(8) = { ] (96)
0.9998 1.0000

Notice that p1;(t) in Eq. 95 is increasing with time ¢ because the state 2,(t) is not
observable from the measurements (since the observability grammian is only 1 rather

than 2).

9 Pseudo-Inverse

Find the Moore-Penrose pseudo-inverse (of minimum norm) corresponding to the
following matrices:

1. Case 1:

Py

il
— s
— e N
OO e

} ) (97)
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2. Case 2:

1 2
] . (98)

9.1 ANSWERS:

As calculated explicitly in [7, App. C], the Moore-Penrose pseudo-inverse (of mini-
mum norm) corresponding to the matrices of Egs. 97 and 98 are:

1. Case 1:

_1 1 1
3 2 2
2 1 _1
L 3 2 2
2. Case 2:
1 1 2
P} = 55 . (100)
2 4

10 Optimization: Finite Time Horizon

1. Case 1: For the scalar linear system
z(t) =u(t), for0 <t <1, (101)
with initial condition
z(0) = 3, (102)
where u(t) is the deterministic control to be specified.

1

MINIMIZE the scalar quadratic cost function : J[u] = [z(1)]* + « / [u()]? dt,
0
(103)

for fixed scalar
a=10. (104)

Synthesize the optimum controller as a feedback control. What is the minimum
cost for the optimal control? Remember that we are only interested in a finite
horizon solution up to time=1 (unit).

2. Case 2: For the linear system of the form

1]

2(8) + [ ) ] ut), for0<¢<T,  (105)

8
—_
o~
—r
il
[
!
SIS

o=
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with initial condition 2(0) = [0,0])7, find the deterministic control u(t) that
transfers the system of Eq. 105 to the specified final state

z(T) = z; (known) (106)

and
Minimizes the scalar quadratic cost function : Clu / [u(¢)]?* dt.  (107)

Let T=5 (units) and z; = [10,2]7 in the above. A feedback solution is not
required here. What is the magnitude of the optimum control at time t=2
(units)?

10.1 ANSWERS:

1. To handle a general linear system with quadratic cost function to be minimized
over a finite-time horizon and with a convex function of the final time state as a
term in the cost function, application of the Pontryagin mazimum principle to
the original problem reduces to the solution of the following two point boundary
value problem (entirely described by the following four equations):

*=0-2"+1 é 1 n*z—};-n*, (108)
n"=z-0-9"-0=0, (109)
7"(1) = -1-2"(1), (110)

z*(0) = 3. (111)

Since a feedback control is desired, assume that the desired control is a time-
varying matrix times the fedback state z(¢), as:

u™(t) = E*(t)z" (1), (112)
where
E*(t) = U™ (t)BT(t)E(t) . (113)
So for the present scalar problem, the matrices in the above matrix equation
reduce to :
e*(t) = = 1-e(t), (114)

where e(t) is the solution of the following (now scalar) Riccati equation:

1
ét)=0-0-e~e-0—e-1-—-1-e=—~—¢?, (115)

(64 (07
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with final condition
e(l) = —1. (116)

The solution to this Riccati equation can be simply found by separation of
variables here as:

-1 de 1 n
[ 5=-z[ (117)
1 -1 1 1
- ——t
ele > l; (118)
1 1
—+1 ——[1 =1 (119)
1 1 1 1
- = —1——+—1t=—(°'Jr )+ —t (120)
e o [0 [e] o

BT )

Since a+1 > 1 because a > 0 (Eq. 104), the denominator in the above Riccati
equation solution of Eq. 121 could only be zero if t = a+ 1; however, as already
mentioned a +1 > 1 and in the entire problem we are only considering time
over the finite time horizon of 0 < ¢ < 1. Therefore, now unraveling, the desired
solution for the optimum time-varying feedback gain e*(2) is:

1 1

C(t):-&-l-e(t)=m, (122)
and the optimum feedback control is
x*
* — * *® t —

and the resulting state-variable trajectory is described by the solution of the
following equation:

*

T

The differential equation of Eq. 124 can be solved via separation of variables
also as:
et dz* t dt -
_ _ 12
./:; z* /ot——(a—i-l)’ (125)
z* [t — (a+ 1) (a+1)—t¢
— = h——>=lh|—"——1, 126
1113 n]—(a—{-l)l @t 1) (126)
z* 1
exp [ln —3—] = exp{ln {1 “g l)t]} , (127)
1
Y= — t| .
z 3[1 @t 1) ] (128)
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x(t)
u*(t)

X*(t)=u(t)

Figure 5: Feedback implementation of the optimal control solution for Case 1

From the above Eqgs. 123 and 128, it may be concluded that the optimal control
is:

* 2 (1) 3[(a+1)—1) -3
w(t) t—(a+1) (a+1)[t—(a+1)] (a+1) (129)
and the square of the above optimal control is:
[w ()] = ) Y 0.07438 , (130)

(@+1)2  (11)2

which, when substituted back into the original cost function to be minimized,
yields the minimum cost to be:

Jw] = )+ /Ola[u‘“(t)]zdt (131)
[ 1 12 p 9
= 9_1—(01“)] +/0a(a+l)2dt (132)
[ o 1?2 Yo 9
= 9_a+1] T T erpety (133)
[« 90
= 9_a+1]=ﬁ»: 8.1818 where a = 10 > 0 . (134)

This completes the problem of Case 1.

2. The system of Eq. 105 is a linear system of the form of

z(t) = Fz(t) + bu(?) , (135)
with . )

P { ’ ’ ] , (136)
and

0
= 7] (137)



and further the system matrix F of Eq. 136 is observed to be idempotent in
that

FF=F. (138)
One benefit of dealing with an idempotent system matrix, F', is that the Kalman

“rank test” for “controllability” (as the standard regularity condition that must
be satisfied before an optimal control can be sought) usually degenerates into
a much more tractable expression for the Controllability Grammian that one
must check the rank of but, in the case of the present 2-dimensional example,
the simplified expression and the general expression are identical here (there
would have been a simplification if the 3-dimensional idempotent matrix of Eq.
22 had been selected for use as the system matrix in optimization problem Case
2 instead of the 2-dimensional idempotent matrix of Eq. 21), both being simply:

[QEA_I;]: 0 , (139)
1 .

ot

(520 [

which by examination is of rank=2 (=n in this problem), so the system of Eq.
135 is in fact controllable.

Recall from (2, pp. 97-100], that for a controllable system (as established above)
of the form of Eq. 135, with zero initial condition, and final condition zy, where
the minimization of a simplified or abbreviated finite-horizon quadratic cost
function of the form of Eq. 107 is sought, then the final form of the optimal
control that solves this problem (as worked out in [2, App. C] from a referenced
theorem in Luenberger’s 1969 textbook Optimization by Vector Space Methods)

182
-1

! T !
u(t) = el T4 [/ eFT=9) pp! F -9V ds| =z, . (140)
0

Please notice the similarity between the expression within brackets to be in-
verted in the above Eq. 140 and the structure that is routinely encountered in
computing the ezact discrete-time equivalent to continuous-time white process
noise covariance intensity matrix as Eqs. 17 and 38. The asserted similarity is
even more striking when the two pre- and post-multiplying matrices in Eq. 17
are brought back under the integral sign as the following rerepresentation:

A
Qq = [/ eFa=1 B Q BT F7 (A7) dr] 6k; (141)
0
where A is used here in Eq. 38 in the role of T'in Eq. 140, B serves in the role
of b, @ serves in the role of I,y,, and the dummy variable of integration 7 is

used here in the role of s in Eq. 140. From the simplification offered in [1, Eq.
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42] as a closed-form evaluation of Eq. 141 when F is an idempotent matrix,
we have that Eq. 39 again applies. The form of the answer in Eq. 140 may be
further simplified as:

u(t) = b T\~ 1g, (142)

where M is explicitly defined further below in Eq. 146 (using the result of
Eq. 39), the apostrophe,’, is now used to indicate matrix transpose to avoid
confusion with T that is now used to represent the fixed known (but arbitrary)
final time, and calculation of the exponential evaluation as a component of the
first term on the right hand side of Eq. 142 simplifies for idempotent matrices
to be:

— F*
6F(T N = Zzoo kv( —t)k
r ., F/m AN . F2 N2, F3/m N3
= I+5(T -+ 5T -1+ 5T -1+

= I+ F(ER 4 T2 4 TP

= I+ F(elT-9 - 1)
i -2 1+ 3T — 1) —2(lT-1) — 1)
= 1+ 2 1 (e(T—t) 1) - 2
~ 5 —2(eT-0 — 1) 14 (™0 —1)

(143)
by arguments identical to those offered for deriving Eq. 25. Therefore, the lead
component in Eq. 142 is

1449 -1) ~2(eT-1) 1)
0 1) [

“HT0 1) 14 (e - 1)

b,eFI(T—t)

= | =HeT9-1) 1+l -1)]. (144)

The remaining challenging term on the right hand side of Eq. 142, consisting
of the inverse of the expression of Eq. 141 to be evaluated for the variables
assignment of the problem of Case 2 Eq. 39, becomes:

/T F (T=2) gyt oF' (T~) ds] (145)
0

>

M

= [1+F(T-1) {/OT [[+F(e™ = 1)]bb' [14+ F'(e™ —1)] ds} [1+ F'(eT - 1)]

= [I+F("-1)]
T
/ [B + (FbY + B F')(e™* = 1) + FOYF'(e™ — 2¢™* + 1)] ds
0
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I+ F'(e” - 1))
= [1+F(" -1)]
bb'T + (Fbb' + bb'F)(1 —e T - T) + Fb_b’F’(—g - %e'-” +2¢ T 4 T)]
I+ F/(e" - 1)
(14 4T =1) ~2(eT - 1)
| =27 -1) 14 (T -1)
0 0 ° - P % - 3 1 -2T -T
“0 1}T+([_§ g])(l € _—T)+["§5 ﬁ](—§—§e + 2e +T)]
1+ 4T —1) -2 -1)
| 3T -1) 143" -1)
[(1+2(e"-1) —2(eT —1) ]
| =3 -1) 143" -1)
4.3 _1,~2T 4 5. -T 21— e=T oy = 2(—3 _ Le=2T 4 5.~T
i E?(lg_e‘%—mtzgg(_g i)§¢‘2T+2e‘T+T) T4+ El—e_T—:;+ gi—g—-ie‘”‘Ize‘Tig ]
[ 1+ (e 1) —2(eT —1) ]
-2 -1) 1+ HeT-1)
and, since
M = MiM,Ms = M~ = M7 M;* M, (147)

we have that the explicit components of the requisite inverse are:

4e~T 41 2 — 2T
M;! ,

2 —~92eT e T +4

1

25

{ 4e~T 4 1 2 —2¢T
M=

92— 2T e T+4
(148)

where

T+21—eT—T)+55(-3 -5 +2774T)  F1—e"=T)+5(-5 -3¢ +27" +7T)

1
M;! = -
T 21-eT-T)+ A(-3 -3 +277+ 1) w(-3- %221—42;)+ 2¢7T +T)
and where £ = % [T(——% —1eT 42T+ T)-(1—-e T - T)Z]. Now to com-
plete this problem (by evaluating Eq. 142) all we have to do is multiply out
the result of Eq. 144 times that of Eq. 148 with the result of Eq. 149 inserted
for My in Eq. 148, then post-multiplied by the final condition z; = [10,2]7 to
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yield (at t =2 and T = 5):

u*(2) = —0.0073 . (150)

10.2 Distinct optimization problems that appear to be sim-
ilar to CASE 1: '

1. Case 3: For the scalar linear system
z=ut), for0<t <1, (151)

with initial condition
2(0) = 3, (152)

where u(t) is the deterministic control to be specified.

1
MINIMIZE the scalar quadratic cost function : J[u] = z(1) + o / [u(2))? dt,
— 0
(153)
for general, fixed scalar
a>0. (154)

Unlike the feedback formulation obtained for the solution to Case 1 at the
beginning of Section 10, it is suggested that the optimum controller not be syn-
thesized here as a feedback control for this problem but merely as an explicitly
stated control solution as a function of time. What is the minimum cost for
the optimal control? Remember that we are only interested in a finite horizon
solution up to time=1.

2. Case 4: For the scalar linear system

t=u(t), for0<t<1, (155)
with initial condition
z(0) = 3, (156)
and final condition
z(1) = 0, (157)

where u(t) is the deterministic control to be specified.

1
MINIMIZE the scalar quadratic cost function : J{u] = +a '/0 [u(t)]? dt, (158)

for general, fixed scalar
a>0. (159)
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Unlike the feedback formulation obtained for the solution to Case 1 at the
beginning of Section 10, it is suggested that the optimum controller not be syn-
thesized here as a feedback control for this problem but merely as an explicitly
stated control solution as a function of time. What is the minimum cost for
the optimal control? Remember that we are only interested in a finite horizon
solution up to time=1.

Notice that these two problems differ between themselves and from the first prob-
lem, Case 1 in Section 10, only in a small aspect in the form of the cost function
to be minimized. However, the form and nature of the subsequent solutions will
be significantly different between these three problems. It may be helpful to uti-
lize the theorems within the textbook Foundations of Optimal Control, John Wiley,
1967, written by E. B. Lee and L. Markus; and the textbook Linear Optimal Control
Systems, John Wiley, 1972, written by H. Kwakernaak and R. Sivan.

10.3 Radically different answers to similar looking prob-
lems:

1. Answer to Case 3: For a general linear system with quadratic cost function to
be minimized over a finite-time horizon and with a slightly degenerate form of a
convex function (linear) of the final time state as a term in the cost function, as
in Section 3.3 of the textbook Linear Optimal Control Systems by Kwakernaak
and Sivan or by Theorem 5 in the textbook by E. B. Lee and L. Markus entitled
Foundations of Optimal Control), the original problem reduces to the solution
of the following two-point-boundary-value-problem TPBVP (entirely described
by the following four equations similar to what were obtained in the answer to
Case 1 above):

S S DILIE WP e
x—0z+lal17-—a‘n, (160)
B =am 0= -0=0, (161)
. 1 1 1
1) = —5 - (grad, (D) =~ - (1) = =3 , (162)
2*(0) =3 (163)

Since a feedback control is not sought, we can avoid assuming that the desired
control is a time-varying matrix times the fedback state x(t). Since we are not
interested in feedback solutions, we can avoid entirely having to deal with any
Riccati equation.

Instead, we now unravel the optimum solution directly by just using the maz-
imum principle found in Lee and Markus’ textbook (or as a direct application
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of the Pontryagin Mazimum Principle), the desired solution for the optimum
control can be found from the following solution procedure: From Eq. 161,

7™ =0 = solution : n*(t) = ¢, (a constant) . (164)

Therefore, by using the known final value for 7*(1) from the above Eq. 162
yields

= 4‘..0

)Z—— 1071

2

= m* (1) — —_— $
‘At

IN

1. (165)

IA

<3 C =

PO

Now from Eqgs. 160 and 164, the optimal state-variable trajectory is described
by the solution of the following equation:

R N 11 o
TEe T T T T T (166)
from which a solution may be obtained as
z* 1 t
/ dw*:————-—/dtforOStSl, (167)
3 2a Jo
hence .
:c*(t)=3—-2—07tfor0_<_t§1, (168)

From the maximum principle applied to linear systems and for a quadratic cost
function (Theorem 5 of Lee and Markus), it may be concluded that the optimal
control is:

wlt) =21 (5) = 5 (169)

and the square of the above optimal control is:

[ur(0)) =

T (170)

which, when substituted back into the original cost function to be minimized,
yieids the minimum cost to be:

Il = O+ [ alw@Pd ()
— [3——-(1] /rdt (172)
= pos] =3 (173)

This completes solution to the problem of Case 3. Notice that z2(0) = 9.
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2. Answer to Case 4: Since a feedback control is not sought, we can avoid as-
suming that the desired control is a time-varying matrix times the fedback state
z(t). Since we are not interested in feedback solutions, we can avoid entirely
having to deal with any Riccati equation. To handle a general linear system
with quadratic cost function to be minimized over a finite-time horizon and
with a degenerate form of a convex function of the final time state as a term
in the cost function, as in Section 3.3 of the textbook Linear Optimal Control
Systems by Kwakernaak and Sivan or by Theorem 3 in the textbook by E. B.
Lee and L. Markus entitled Foundations of Optimal Control, the original prob-
lem reduces to the solution of the following two-point-boundary-value-problem
TPBVP (entirely described by the following four equations similar to what were
obtained in the answer to Case 1 as Eqs. 108 to 111):

g =0-2"4+1-u"(t), (174)
W)=~ 1) (175)
= 20, « T
N =-2n,-2"()-0—95"-0=0, (176)
where
10 <0, (177)
and with prescribed initial and final conditions, respectively,
z*(1)=0, (178)
z"(0) =3. (179)
For specificity, select
1 o
77(0) - '_'é' ’ (160)
then Eq. 175 becomes
. 1,
u'(t) = S0°() (181)
and Eq. 175 has the solution
7*(t) = 0 = 77(t) = ¢ (yet to be specified) , (182)
Then Eq. 174 has the solution
z* - cl t
/ da:z-—/dtforOStSl. (183)
3 a Jo

Therefore, the form of the solution is
2 (t) = 3 + ia‘-t , » (184)
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and by Egs. 178 and 184,
* i
0==z"(1)=3+ —(1), (185)
so, as a consequence, we can now solve the above for ¢; as
g =-3a, _ (186)

hence Eq. 184 becomes
' (t)=3[1 -4, (187)

and from Eq. 181, the optimal control is
1
u*(t) = = 1 (-3a)=-3, (188)
and the associated minimum cost is

J[u(8)] :/Ola[u"'(t)]zdtz/Dla[——3]2dt=9a. (189)

This completes the answer to Case 4. Notice that z%(0) = 9. The solution
could have been worked out entirely for arbitrary nonnegative initial condition
z(0) but this would have made the algebra a little more challenging than it was
here.

11 Handling Serially Time-Correlated Process Noise

For the linear system and measurement model of Test Case 2 in Section 5.2 (Table 1),
assume that the process noise depicted is serially time correlated Gaussian noise
having the following correlation matrix:

L2l 4 Lembl 1 120l

R, (7) = , (190)

1, -2l S

L g Poogem

rather than uncorrelated white unit variance Gaussian noise, as depicted in Table
1 for Test Case 2. Show how this system should be configured (or augmented) for
Kalman filtering (which theoretically expects only uncorrelated white noises) to still
yield an optimal unbiased estimate of the state of this linear system.
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11.1 ANSWER:
For the continuous-time linear system of Test Case 2 of the form
z(t) = A z(t)+ B u(t) (191)
with sensor measurements
2(t) = C z(t) + v(t) , where v(t) ~ N (0, R) , (192)

and u(t) has the correlation matrix of Eq. 190.
The associated rational power spectral density matrix (obtained as the Bilateral
Laplace ® transform of Eq. 190) is

252 1
(4-352)(1—s2) 4-s2
q)uu(s) = s (193)
1 1
4-52 152

where the “abscissa of convergence” in Eq. 193 is for |Re(s)| < 1. It is desired
to model the above continuous-time power spectral matrix using a continuous-time
multi-input/multi-output linear shaping filter driven by white noise. The proper
shaping filter to be used to accomplish this can be obtained by applying standard
Matrix Spectral Factorization algorithms [18], [19], to yield a solution of the form

Dou(s) = WT(=s) W(s). (194)

Since the relationship between the input spectral matrix, ®,.(s), and the output
spectral matrix, ®,,(s), for a strictly stable linear time-invariant system is

®,u(s) = H(=5) Duuls) HT(s) (195)

where
H(s) = anot necessarily square transfer function matrix of

the linear system,;

it is convenient to treat the modeling as involving a zero mean, uncorrelated Gaussian
white noise input (having spectral matrix being the identity matrix)

Pyu(s) = In (196)

as driving the linear system to yield the following degenerate simplification of Eq.
195 as representing the output spectral matrix by

®,.(s) = H(—s) HT(s) . (197)

3Throughout this discussion, s is the complex bilateral Laplace transform variable as in the
Laplace transform kernel exp (—st). The Bilateral Laplace transform is closely related to the Fourier
transform (i.e., s = jw) but is more convenient for the manipulations to be performed here of spectral
factorization.
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By an obvious association between the factors of Eq. 194 and the representation of
Eq. 197, it is seen that an appropriate transfer function to model the power spectral
matrix ®,,(s) is

H(s) = WT(s). (198)

That the final result of computations does in fact yield a valid solution can easily
be verified or confirmed merely by multiplying the -asserted solution matrix by its
conjugate transpose to again obtain the original power spectral density matrix of
Eq. 193 as a check. Additionally, one should then proceed by checking the solution
matrix to be certain that no poles occur in the right half s-plane (LHP) or on the
Jw-axis, otherwise the result does not correspond to a strictly stable or to a stationary
random process.

For the specific example of Eq. 193, Matrix Spectral Factorization using Youla’s
first approach (detailed in [4, App. B]) yields the following factor as an answer

—o(V7/2)  —s=(/7/2)
W( ) (2+s5)(1+s)  (2+s){1+s) (199)
s) = ,
-1/2 3/2
(2+5)(1+s)  (2+s)(i+s)

which checks since for the factor in Eq. 199, the product W7 (—s) W (s) is again the
specific power spectral matrix of Eq. 193.

Now we need to determine a linear system realization of the transfer function
consisting of the transpose of Eq. 199 which is of the form:

¢ = Frorar = + Grorar wiy = Hrorar z , (200)
where
Frorar = diag [Fy, Fs, ..., F] (201)
Grorar =[G1,...,Gu]" , (202)
Hrorap = diag [Hy,...,Hy,] (203)
and z is the augmented state vector of dimension n = 3", n;. The obvious check is

that the original transfer function matrix should satisfy the following as an identity:

H(s) = Hrorar (sI = Frorar)™ GroraL - (204)

For concreteness, the above mentioned technique is demonstrated next as applied to
the realization having Eq. 193 as the output power spectral density matrix.
Referring to the Matrix Spectral Factorization result of Eq. 199, the associated
transfer function matrix is its transpose. The corresponding matrix transfer function
block diagram is depicted in Fig. 6, as can be verified by inspection. From the
transfer function block diagram, the system differential equations are obtained which,
unfortunately, also happen to contain differentiation of the inputs as the more general
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™ T1es) (25 "
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- -S-(V772)
(1+8) (248)
-1/2
- (1+S) (2+48)

X2 .—»
4,
3/2 é
. Y
(1+5) (2+S) " 2

Figure 6: Two-Input/Two-Output Transfer Function Implementation of the Spectral
Factor of Eq. 199.

situation that is most likely to be encountered in practice. For this example, these
differential equations are:

43 +2y = —3 — VT[22 — (1/2) 22, (205)

Go 439 +2yy = —2; —V1/2 21 + (3/2) 22, (206)

where in the above the use of - above a variable denotes differentiation with respect

. d
to time as e

In the next few steps, a procedure outlined in {3, pp. 334-335] (and generalized
for large dimensional systems as an algorithm in [5]) for removing the differentiated
input occurring in the differential equations is now applied here. Let

w; =Y and Wy = :l)] - kl Ty, (207)
then v _
u')l = Wy + k] I (208)
and substituting the above in Eq. 205 and rearranging, yields
Wy = (—1—k) & —(VT/2+3 k) 2y = (1/2) 22— 2wy — 3wy ; (209)
which upon taking
k] - —1, (210)

then zeroes out the coefficient of the #; term to yield

Similarly, let
r1 = yz and r = Yo — ko y; (212)
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Figure 7: Implementation Detail of Transfer Function Realization of Matrix Factor
Solution of Eq. 199.

then
‘f‘] = Tq + kg Xy, : (213)

and substituting the above in Eq. 206 and rearranging with

then zeroes out the coefficient of the differentiated input term to yield

Fo = —2 r1—3r2+(6——g) z+ (3/2) z,. (215)

The analog computer block diagram which summarizes this procedure is offered
in Fig. 7, where z; and z; are independent Gaussian white noises with unit variance.
Notice that only four integrators are required for this simulation!

The resulting augmented system, using the technique offered in [5], can be reex-
pressed in vector/matrix form as

wy 0 1 0 0 wy -1 0

d{w | | -1 -3 0 0]]|w 6-v7)/2 —-1/2 || =

Et- 1 - 0 0 0 1 IS + -1 0 ) ’ (216)
Ty 0 0 -2 -3 ro (6—v7)/2 3/2



with
wl(t
“(t)‘[o 0 1 0] m(t
(

7'2t

3
o (217)
)

The stability of this augmented system can easily be checked by applying the
Routh-Hurwitz criterion to the characteristic equation for the system matrix F in
Eq. 216. The characteristic equation is

S

0 = det[My— F]=det| 2 A+3) 0 0
0 0 A -1 18)
0 0 2 (A+3)

= MA4+6A3+13)02+12) +4.

The corresponding Routh-Hurowitz array formed from the coefficients of Eq. 218,
from which stability may be inferred, is

M1 13 4
A6 12
22111 4 (219)
Al | 108
11
A0 | 4.

Since there are no changes in sign along the first column to the right of the vertical
line in the above Routh-Hurowitz array, the interpretation from its use is that there
are no zeroes of the characteristic equation that have real parts greater than or equal
to zero. Therefore, this particular augmented system of Egs. 216 and 217 is stable
(and, as a consequence, is a stationary random process).

By the Kalman rank test on the controllability Grammian, for the augmented
system (F,G) to be a controllable pair, it must be that

rank[G ! FG ! F*G ! F?G] = 4. (220)

It is sufficient to just test the 4 X 4 matrix that results from adjoining the first two
indicated components as:

~1 0 (6-v7)/2 —1/2
: _ 6-vT)/2 -1/2 3V7/2)—-1 3/2 | _
det[G.FG]_det 2 0 (G-vD)2 32 =5V7—15#0.
(6-v7)/2 3/2 (3V7/2)-7 —9/2
(221),
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Since this determinant is nonsingular, we have that Eq. 220 holds. This in turn
assures that (F;,G4) is a controllable pair so the system of Eq. 216 is controllable.

By a similar Kalman rank test on the observability Grammian, for (H, F) to be
an observable pair, it must be that

rank [HT FTHT : (FT)PHT : (FT)3 HT] (222)
and since
1 000
. 0010
HT: FTHT] =
[ 0100 (223)
0 0 01
has four independent cola.mns it follows that Eq. 222 does in fact hold. Therefore,
the augmented system s an observable pair so the system of Eqgs. 216 and 217
g € pa Y q
is observable.
Further,
-1 _  adi[sI-F] __ adj[sI-F]
(SI - Fl) - det[s]l—F}] - (.92+3.s+21)2
= (:243s42)%°
(s+3)s? +3s42) —2(2+3s42) 0 °
(52 4 35+ 2) &(s2 4354 2) 0 2o
0 0 (s43)(s“ +3s42) —2(s°+3s )
o 0 Bt St (224)

and pre- and post-multiplying the result of Eq. 224 by the observation matrix of
Eq. 217 and the noise gain matrix of Eq. 216, respectively, again yields the trans-
fer function of Eq. 199, transposed, as a type of check on the correctness of these
calculations. _

Now the correlated process noise u(t) of Eq. 191 can be represented dynamically
in terms of the above linear system parameters (corresponding explicitly to Egs. 216
and 217):

u'(t) = F u'(t) + G w(t) ,where w(t) ~ N(0, 1) , (225)
u(t) = H v'(t), (226)

so the resulting system corresponding to augmenting the linear system of Test Case 2
with the current represention of the time-corrclated u(t), as driven by Gaussian white
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noise, w(t), being
o]
z(t)=1 - |, (227)

yields the following representation:

R (A ¢ BH|T a2 0
_d.._t. N = see e e . + w(t)’
u'(t) 0 F u'(t) G
5 -1 0 o] o .
6 0 0 0 0
= 0 0 0 1 0 0 R -1 0
0 0 -1 -3 0o oflL¥@® (6~ \{7)/2 —B/Q
0 0 0 0 0 | 6-VT)/2 3/2 |
| 0 0 0 0 -2 -3] (228)
with measurements now represented as
z(t) = [C:i0]z(t) + v(t) ,where v(t) ~ N(0, R),
()
z2(t)
= (PO 0000 ) | ). (229)
01 :0000 uh(t)
ug(t)
| ug(?) ]

This concludes the handling of serially time correlated process noise within an aug-
mented linear state variable representation that is completely compatible with opti-
mal Kalman filtering by only having effective uncorrelated Gaussian white process
and measurement noises present. The drawback or down side is that the computa-
tional burden being the cube of the state size now goes as (6) rather than just (2)*
for Test Case 2 of Table 1 devoid of time-correlated process noise.
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12 Philosophy of Software Structural Validity Con-
firmation Using Augmented Test Cases of Known
Closed-Form Solution Such as These

A difficulty, as discussed in {6, Sec. I}, is that most closed-form KF covariance so-
lutions are of either dimension 1 or 2 (as in [15, pp. 138-142, pp. 243-244, p. 246,
pp. 255-257, pp. 318-320]) or 3 (as in [10]). To circumvent this dimensional mis-
match to higher dimensional real applications that may be hard-wired, we can achieve
the dimension n goal by augmenting matrices and vectors with a concatenation of
several existing test problems. Use of only totally diagonal decoupled test problems
is notorious for being too benign or lenient and not taxing enough to uncover soft-
ware implementation defects (when the problems exist in the portion of the code
that handles cross-term effects). Augmenting either several low-dimensional 2-state
problems or fewer 3-state problems is the way to proceed in order to easily obtain a
general n-state non-trivial non-diagonal test problem. A confirmation that this pro-
posed augmentation is valid in general is provided next for a closed-form steady-state
radar target tracking solution that was successfully used as a check on the software
implementation of [16)].

An initial worry in adjoining the same 3-state problem with itself relates to
whether “controllability and observability” are destroyed, while the 3-state problem
by itself does possess the requisite “controllability and observability”. “Controllabil-
ity and observability” conditions, or at least more relaxed but similar “stabilizability
and detectability” conditions [17, pp. 62-64, pp. 76-78, pp. 462-465], need to be
satisfied in order that the covariance of a KF be well-behaved {15, p. 70, p. 142],
[17]. The following mathematical manipulations establish that such an adjoining of
two 3-state test problems does not destroy the “controllability and observability” of
the resulting 6-state test problem even though it already exists for the 3-state test
problem by itself.

First consider the 3-state test problem of [10] of the following form:

(3x1) position
Tz = velocity ,

| acceleration |

(230)

with

r = A1$+B1£, éNN(O’Ql),

v o= Cl-'13+77, ‘I]NN(O,R]),

and assumed to be already satisfying Kalman’s “controllability and observability”
rank test criteria ([15, p. 70]), respectively, as

rank[B; : A1B, I A’ B;] = n; =3, (231)
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rank[CT : ATCT : (AT)2CT)

Now the augmented system of the form

z
with )
A,
p=1---
i 0
Ch
v = . e
| 0

C

position |
velocity
acceleration

position
velocity
acceleration

T+

T+

n1=3.
0 | ¢
B |L¢
0 | [ »
1 (L7

(232)

(233)

(234)

(235)

has system, process noise gain, and observation matrices, respectively, of the form

Az

B,
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In testing for controllability of this augmented system, form

By ) [} A1 B; 0 : A§Bl . 1]
rank : «--other stuff =
| o . B 0 . A By 0 o Al ]
_ -
By | aB | Alp o : o : 0
rank . ++.other stuff
| o : 0 : o . By . aBy . Alp i
{990\
\HUJ}

In the next to the last line of Eq. 239, the columns of the Controllability Grammian
are rearranged for convenience to provide the necessary insight. Permuting columns
of a matrix doesn’t alter its rank but can alter at-a-glance conclusions. Since we are
able to show that the augmented system rank is 6, this system is confirmed to be
controllable. A similar conclusion (on the requisite observability being satisfied) can
be obtained by identical steps using the duality that exists between controllability
and observability results and the associated forms of arguments or proofs when sim-
ilar matrix structures, such as are present here, are involved. The above described
augmented system of Egs. 234 and 235 can be used with

Ri i 0
Ry=1|- o o |, (240)
| 0 ¢ R, |
&G o0
Qo= | v oo o |, (241)
0 Q]
[p]{m 0 -I
E \Ul v
P0)=| o o . | , (242)
0 i P0) ]

since now the augmented system has been demonstrated above to be both “observable
and controllable” and the measurement noise covariance R, of Eq. 240 to be utilized
is positive definite. This final observation allows us to use this 6-state augmented test
problem with confidence to check out the software implementation as it is currently
configured without making any further changes to the software.

The importance of this section is that subsequent software verifiers, when faced
with validating newly coded or newly procured Monte-Carlo simulator subroutine
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software modules and Kalman filters of their own, can treat the entire exercise as
one of confirming the proper performance behavior of the new modules merely as an
exercise with black boxes. Time can then be saved by just confirming the outputs
corresponding to the designated low-dimensional test cases of known closed-form so-
lution provided herein and matching critical intermediate computational benchmarks
(without having to necessarily further probe the internal theoretical intricacies that
are already justified in [9], in [1] and in [8], where the veracity and utility of these
test cases is established and explained in more detail) but can instead check the
code, with helpful clues as to the real software culprits and bugs being revealed by
these recommended tests when output results don’t jibe. Thus; the software veri-
fication/validation job is simplified by using the results presented here and used to
pinpoint or isolate any problems that exist in the code. This entire exercise of using
simple transparent test problems may be interpreted as an initial calibration of the
available software before proceeding to use the parameters of the actual application.

By using these or similar examples, certain qualitative and quantitative aspects
of the software implementation can be checked for conformance to anticipated be-
havior as an intermediate benchmark, prior to modular replacement of the various
higher-order matrices appropriate to the particular application. This procedure is less
expensive in CPU time expenditure during the software debug and checkout phase
than using the generally higher n-dimensional matrices of the intended application
since the computational burden is generally at least a cubic polynomial in n dur-
ing the required solution of a Matrix Riccati equation for the associated covariances
(also needed to specify the Kalman gain at each time-step). The main contribution
of these Test Cases is that one now knows what the answers should be beforehand
and is alarmed if resolution is not immediately forthcoming from the software under
test. Correct answers could be “hardwired” within candidate software under test, but
appropriate scaling ? of the original test problems to be used as inputs can foil this
possible stratagem of such an unscrupulous software supplier/developer.

Another scaling trick that increases the realm of test case possibilities of known
closed-form analytic solutions is to use

A=KA, (243)

as the system matrix in Eqs. 1 or 20, where K is some scalar constant selected for
convenience and A above in Eq. 243 satisfies the idempotent property of Eq. 24 (e.g.,
Eqgs. 30, 31). Then even though A’ doesn’t satisfy the idempotent property of Eq. 24
itself, we do have that A’ times itself is

AA =(KA(KA)=K*AA=K*A, (244)

9By virtue of the superposition property of linear systems, input uy(t) that results in known
output y4(f) and input ug(t) that results in known output yg(t), should yield known output
[o1y4(t) + a2ys ()] for input {a1us(t) + azup(t)] for any fixed scalars ay, a2 (for an infinite set of
possibilities that defy hardwiring answers in the software).
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and, moreover,

(AP =(KAP=K3A, (245)
and the following manipulation corresponding to Eq. 25 is again of closed-form as
the known solution:

] !

AA  _ oo AKX Ak
€ - Z:k:O-_m--A

= ]+A(é#+é?..’.\2+AsK3+...) (246)

L= ]+A(1+%}i+ﬂa+éil}f+..._1)

2!
= I+ AA¥ -1),

where again the last line of Eq. 246 can be explicitly evaluated exactly with simply
one scalar multiplication and a matrix addition.

The benefits of using these recommended or similarly justified test cases are the
reduced computational expense incurred during software debug by using such low-
dimensional test cases and the insight gained into software performance as gauged
against test problems of known closed-form solution behavior. However, a modu-
lar software design has to be adopted in order to accommodate this approach, so
that upon completion of successful verification of the objective computer program
implementation with these low-dimensional test problems, the matrices correspond-
ing to the actual application can be conveniently inserted as replacements without
perturbing the basic software structure and interactions between subroutines. Even
time-critical, real-time applications can be validated in this manner even when using
matrix dimensions that are “hardwired” to the particular application by tailoring to
the specified dimension using the technique espoused here.

Having validated software that one is confident of is a necessary prerequisite be-
fore venturing into mission critical Navigation applications (e.g., [29]-[33]), sonobuoy
target tracking [43], radar target tracking [44], and novel research areas such as appli-
cations of decentralized Kalman filters [33], [34] or sophisticated algorithms for further
post-processing and massaging the outputs of a Kalman filter, as occurs in certain
approaches to signal detection in nonstationary systems [6] and in NAV system failure
detection [33, Secs. II, III], [35]-[41], and maneuver detection [42]. Explicit analytic
closed-form examples or counterexamples are also useful for exposing existing prob-
lems or weaknesses in other areas of control and estimation theory (as provided in [2,
Secs. 1, 11, VB, V1], [23]-][27], [28], [33, Sec. II], [39]) so that these unfortunate holes
may be shored up in a timely fashion before damage is done in actual applications.
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