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known as the Levinson-Wiggins-Robinson (LWR) algorithm and the other being 
a multichannel approximate generalization of the single channel Burg Maximum 
Entropy Method. (NIEM) [I581 algorithm, as further developed and extended to the 
multichannel case by A. H. Nuttall. Both algorithms are described in Chapter 2. 
Chapter 3 describes experiments done on simulated data, first to test out the soft- 
ware tools that were implemented for this investigation, with supporting discussions 
provided in Appendices D, E, F, and G. These tools are then applied to the actual, 
data. These experiments point out some of the perceived strengths and weaknesses 
of these two representative algorithms that were encountered in seeking to apply 
multichannel LP modeling to radar target data. Some general problems that were 
encountered in applying these Multichannel LP algorithms are pointed out in Ap- 
pendix F. Considerations for using only Autoregressive (AR) process models here 
over apparently more general Autoregressive Moving-Average (ARMA) processes 
are provided in Chapter 4. Chapter 5 and its auxiliary Appendix A discuss how 
to effectively handle the radar ambiguity function effects that are present, which 
taint the processing results and, consequently, how to temper final cross-correlation 
results and conclusions in terms of a computed coherence function representation 
and associated moderating confidence regions. These techniques are applied to 
the Tradex RV wake data in Chapter 5 as a further detailed investigation of the 
cross-correlation present between designated channels representing either contigu- 
ous radar range gates and/or PP/OP components of the radar signal returns. Ap- 
pendix B summarizes the methodology that can be used to explicitly erect accuracy 
bounds about the AR parameter estimates, which are the focus of this investiga- 
tion, and the other supporting methodology available to calculate corresponding 
asymptotic Cramer-Rao lower bounds. After considering certain critical leads pro- 
vided by the results of the independent 2-D modeling investigation, as reported in 
Section 6.1, Section 6.2 of Chapter 6 illustrates use of the 1-D modeling approach 
as it is explicitly applied to a representative sample of the available Tradex data 
at a particular altitude. It is at this point that the pertinent conclusions of the 
2-D processing are folded in to aid in the selection of the most appropriate 1-D 
state size to use and to decide what states to include in the 1-D model. Concluding 
results on specifying an appropriate wake model (that is the primary objective of 
this investigation) are offered in the remainder of Chapter 6. Overall conclusions 
and a summary are offered in Chapter 7. 

(U)In general, technical details are relegated to the Appendices. The contents 
of Appendices A and B have already been described above. Appendix C describes 
the emergence of new techniques to gauge proximity to a spectral template that 
are important in subsequent downstream evaluations to gauge the adequacy of the 
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approach offered here or the results of this modeling effort in successfully approxi- 
mating the signature of actual RVs. Appendix D discusses the capabilities designed 
into the new simulator as well as elaborating on why this redesign was initiated 
as a way to preserve the cross-channel sensitivity by avoiding previous approxi- 
mations that tended to obscure simulated cross-channel effects. This is important 
in validating software implementations of spectral estimation algorithms that are 
themselves extremely sensitive to the veracity of the multichannel simulator imple- 
mentation. A discussion is also provided here of each new feature introduced and 
how it was checked out and validated as having been correctly implemented and 
how it is presently performing to provide the correct answers. The status of each 
critical software module and the structured progression of validation and debug ef- 
forts/activities are covered in Appendix F, while the specific analytic closed-form 
test cases used for verification/validation are derived or described in Appendix G 
along with identification and an explanation of what software feature is to be ver- 
ified through the use of each test case. Appendix H serves to explicitly remind 
that 1-D results are not totally comparable to 2-D results even when applied to the 
same data under almost identical conditions, as illustrated in Chapter 6. Finally, 
Appendix I concludes by leaving a trail of several technical details being offered as 
clarification for spectral estimation specialists. 

1.3 Background on Maximum Entropy Spectral 
Estimation and Radar Applications 

(U)An objection that had been raised in the past [I521 was that the superres- 
olution techniques of MEM would probably not be useful for radar applications. 
The useful exception acknowledged in [I521 as being ideal for MEM was for an 
application where detailed knowledge exists about the target and where the radar 
operation is not limited by noise or by clutter. Such an unusually pleasant situation 
is in fact the case for the Tradex modeling application considered here. 

(U)LP in a single inputlsingle output linear filter corresponds exactly to max- 
imum entropy spectral estimation for a single channel and is well known in this 
context for its high resolution capabilities (relative to the Blackman-Tukey (1959) 
or Cooley-Tukey (1965) FFT-based methods) and its ability to distinguish high 
peaks that may exist in the spectra. Since all versions of multichannel LP incor- 
porating linear autoregressive parametric models must estimate a fixed number of 
poles and zeroes, it is important to be aware that certain undesirable phenomena 
can sometimes be encountered with its use such as line-splitting [233] (as a result 
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Chapter 2 

Overview of Multichannel L P  
Spectral Estimation 

2.1 Fundamentals of Autoregressive (AR) Com- 
plex Random Processes, and the Structure 
and Properties of the Associated Power Spec- 
tra 

(U)A multichannel complex time series can be represented by a vector 

of M-channel samples at time index n where each component has both a real and an 
imaginary part. For a "coherent" radar application, where phase is also accounted 

.. . 

for, such a representation in terms of complex variables is necessary (see [70, Chapt. 
41, [88, Sec. 1.41, [48], [164]). For a stationary zero-mean process, the covariance at 
lag T is 

RXX(7) = E [x~+,&~] = ~ 3 7 )  (2.2) 

where the "H" superscript indicates the Hermitian conjugate (i.e., the complex 
conjugate transpose). 

Unclassified 



Unclassified 

(U)The associated spectral density of the process is defined by 

for R,,(T) corresponding to a continuous- time representation, or as 

for R,,(k) being expressed in a discrete-time representation. Here At is the time 
interval or time-step between successive samples of Xn and is chosen to satisfy a 
Nyquist criterion for the transmitted radar signal of known form. 

(U)A multichannel AR process of order P is generated by a random process of 
the form 

P 
(PIX X n = - C A i  -n-.j+Wn for n = 1,2,3, ... (2.5a) 

i=l 
P 

(PI or X n _ , = - C B i  n p + i + B  for n = 1 , 2 , 3  ,... (2.5b) 
i=l 

where AjP) and are, respectively, the associated forward and backward predic- 
tion matrices and En and W~ are zero mean Gaussian white noise driving terms. 
For the scalar case, the collection of A ~ ~ ) , s  and the collection of B I ~ ) ~ ~  are identical, 
but differ, in general, for the multichannel case [71]. Via standard input/output 
properties of linear systems 187, Sect. 10.21, the spectrum of the forward process of 
Ea. 2.5a is 

where 

A. = Bo = I, the identity matrix, 
At is the sampling interval, 
U = E [w? W F ]  , the forward residual error covariance, and 
z = ejwAt, and the complex conjugate is denoted byF = e-jwAt. 

Equivalently, using the backward representation of Eq. 2.5b, the spectrum of the 
Drocess is 
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where the backward residual error covariance is 

The associated forward and backward prediction error series are defined to be 

(U)For complex Gaussian processes such as are encountered in this investigation 
of the PP and OP components of the reflected radar signal, the underlying state- 
vector of Eq. 2.5 can be decomposed in terms of its constituent real and imaginary 
components as 

X(tk) = P ( t k )  + ]P( tk)  for 1 5 k 5 N - (2.9) 

and, moreover, for a super-st acked vector 

with zero mean as 

and with 

and 

the underlying pdf is Gaussian of the form [164, Eq. :I.] l:  

As in most applications of complex Gaussian processes, the underlying complex 
process that arises in this application is "circularly symmetric" such that 

lThe corresponding Eq. 1 of [164] is evidently in error by omitting the squareroot of the deter- 
minant of Q that should appear in the denominator as properly shown above in Eq. 2.14. 
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Further, the essentially stationary complex Gaussian processes of concern in this 
application are such that 

which again can be decomposed by virtue of Eq. 2.9 into 

where 

and 

Due to the condition of Eq. 2.15 holding, the following symmetries also must be 
satisfied [164, Eq. 81: 

and 
S R,,(T) - = 2RX2,1(7) = -2Rx~x2(~), 

The above expressions will be further utilized in the sequel and are also utilized 
in the companion report in [187, pp. 9-10 of Chapter 1 and footnote on p. 24 of 
Chapter 31. 

2.2 Multichannel MEM Generalizations 

(U)The MEM approach to spectral estimation has been utilized for a wide variety 
of practical applications[98]. While almost all variations of single channel LP are 
closely related to single channel MEM spectral estimation (as identified following 
Table 2.1), there are several different versions of multichannel LP that more or less 
correspond to multichannel MEM. However, it is noteworthy that Burg in [loo, 
Intro., p. xiii] observes that: 

multichannel spectra do not have the necessary structure to permit the 
correspondingly rich development as occurs in the single channel case. 
Because of this (situation existing), no simple extension of the Burg 
technique [I581 to the multichannel case is possible 
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. . . . .. . 

as he thought in 1975. 
- 

(U)Since 1975, there has now been considerable prior work in seeking multi- 
dimensional MEM generalizations. Lang [91], [94] gave a general and complete 
presentation of the theoretical issues that arise in the multidimensional MEM spec- 
tral estimation problem and suggested an algorithm. Alternatively, the Lim-Malik 
algorithm for two-dimensional MEM [68] is a type of alternating projection algo- 

. . 

rithm commonly used in signal processing. It achieves computational efficiency 
by exploiting the speed of the FFT to an advantage. Johnson [go] reported that 
for the Direction Finding (DF) application, Lang's version of multichannel MEM 
performed poorly relative to conventional Maximum Likelihood Method techniques 
and especially as compared to SVD-based approaches [88, Appendix B] (such as 
MUSIC 2, which can better handle the situation for the signal of interest in the DF 

- .  

application consisting of essentially two separate spectral component lines or tones 
(i.e., sinusoids). (See [92] and [95] for additional evidence of relative performance 
in evaluating the outcome of alternative algorithms for the common test problems.) - 

(U)The multichannel LP algorithm of Nuttall [86] provides LP coefficient esti- 
mates directly by minimizing a very reasonable error criterion defined directly in . . .  

terms of the measurement data. At the same time, Nuttall's algorithm also provides 
. - 

a simple model for eventually generating the process by using the recursive model 
of Eq. 2.5a in reverse as driven by a Gaussian white noise pseudo-random number 
(PRN) generator as input. 

2.3 The LWR and the Nuttall algorithms as LP 
Multichannel Generalizations of Particular In- 
terest in this Tradex Wideband Application 

(U)Multichannel LP was used in this investigation because its simple parametric 
form is suggestive of an autoregressive (AR) solution to the modeling problem, and 
because efficient algorithmic implementations exist. While there are several alter- 
native met hods for obtaining the multichannel LP coefficients, the two approaches 
investigated here are the "Levinson-Wiggins-Robinson" (LWR) and the "Nuttall" 
algorithms. LWR is the direct multichannel generalization by Whittle [I261 of the 
single channel Levinson recursive algorithm, which requires intermediate estimation 
of the covariance matrices by averaging the outer products of the multichannel data 
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inputs (expressed in vector form), before proceeding to the main goal of estimating 
the (AR) coefficient matrices of Eq. 2.5 as used in forming the spectrum. 

(U)The multichannel LWR algorithm [I271 utilizes a recursive representation of 
the AR coefficients that provides a Pth order solution in terms of the prior (P - l)th 
order solution. The LWR algorithm can be briefly summarized as (cf., [84], [99, 
Sec. 111 where slightly different but equivalent conventions are used): 

with initial conditions 
Uo = Vo = R(0) 
AC) = BAk) = I for all k .  

(U)This algorithm solves the Yule-Walker or normal equations, which minimize 
the mean squared error (provided that the covariance function used is exact rather 
than approximate, as it is here). Hence, use of this algorithm in applications where 
the covariance function must first be estimated leads to a potential vulnerability to 
error in subsequently estimating the AR prediction coefficient matrices. In order to 
ensure stability in a LWR mechanization, a triangular (a.k.a. a Bartlett) window 
is usually utilized 3. LWR is sometimes alternately referred to in the literature as 
being the L'autocorrelation method" [82]. 

(U)The Nuttall algorithm invokes the LWR recursion as specified above, except 
that the reflection coefficient matrix A, is obtained as the solution to the generalized 
Lyapunov-like equation: 

3Windowing, as used here, has a much less pronounced effect upon the results than it does in 
conventional FFT-based approaches to spectral estimation but is needed to ensure that a positive 
semidefinite matrix sequence is obtained, as is necessary in order to rigorously proceed. 
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where 

-I N-I 

and Ek and Zk in the above are again the forward and backward prediction error 
series as defined in Eq. 2.8. The above matrices E,, Fp and G, can be interpreted, 
respectively, as being the windowed sample averages of the forward and backward 
error series, and their respective cross-correlation 4. By solving for the AR coef- 
ficients in this way, the Nut tall algorithm minimizes the weighted error function 
defined directly in terms of the measured data as 

trace E, + F,] . 

(U) For a complete derivation of the Nuttall algorithm, see 1861. Compared to the 
LWR method, this Nut tall algorithm is of much greater computational complexity 
since on each iteration, Ep, Fp, and Gp as well as a solution to a steady-state 
generalized Lyapunov-like equation must be evaluated. 

2.4 Overview Comparison Between the LWR and 
Nuttall Algorithms 

(U)Table 1 has been constructed as an encapsuled overview of properties asso- 
ciated with the two multichannel algorithms of interest here. The Burg algorithm 
[I581 is essentially identical to the single-channel version of both the LWR and Nut- 
tall algorithms. It is only included in the above table as a familiar reference gauge 
for comparison purposes. 

(U)Note that while windowing is used in the LWR to theoretically guarantee 
stability, stability still can not be guaranteed if finite wordlength (FWL) arithmetic 
is being used [93] and sufficient computational dynamic range is not available or 

4While the representation of Ep, Fpr and Gp in [84, Section 31 averages by a factor of & rather 
than by & as done here in Eq. 2.24, extensive numerical experience is that averaging by $ has been 
better behaved in providing positive semidefinite matrices as needed to rigorously proceed further. 
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(U) Table 2.1: Relative Comparison of Properties of Several LP Algorithms 

Table 2.1: Relative Comparison of Properties of Several LP Algorithms (U) 

unacceptable truncation and roundoff procedures are being utilized. It is our expe- 
rience that stability with FWL is also "not guaranteed" for the Nuttall algorithm. 
Nuttall has proved stability of his technique only in the "ideal" case when it is not 
encumbered with a finite wordlength arithmetic implementation constraint as is 
unlikely to be encountered in most practical applications (cf., [75], 1761). Naturally, 
the situation is usually ameliorated when multiple precision is utilized. 

Nuttall (M-channel) 

necessary 
guaranteed 

not guaranteed 
very expensive 

(M2x)  

PROPERTY 

WINDOWING - 
STABILITY 
STABILITY with FWL 
EFFICIENCY 

Unclassified 

i UNCLASSIFIED 

LWR (M-channel) 

necessary 
guaranteed 

not guaranteed 
efficient 

Burg (1-channel) 

not necessary 
guaranteed 
guaranteed 
expensive 

( lox 
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Chapter 3 

Initial Results of Data Processing 
to Estimate AR Coefficients and 
Associated Spectra 

3.1 Using Simulated Data 

(U)This simulated data experiment is designed to verify that our recently mod- 
ified algorithmic computer program implementations work properly. The spectral 
estimation programs were first tested using simulated data generated by a known 
strictly stable lSt order 2-channel complex Markov process of the form 

where TVn is vector Gaussian zero mean white noise of unit variance. Using tech- 
niques identical to those demonstrated in Section 3.2, eigenvalues were explic- 
itly calculated from the characteristic equation (associated with the above sys- 
tem matrix displayed in Eq. 3.1) to be 0.4615 + j0.5895(0.75ej51-940) and 0.4285 - 
j0.8095(0.917e-j62-100), each being within the unit circle to guarantee the asserted 
stability of the system of Eq. 3.1. The associated effective time constant for Eq. 
3.1 is Atlln(0.917) = 11.54At, where At is the sampling step size and the high- 
est frequency of Eq. 3.1 ( to which the proper Nyquist sampling in specifying an 
adequate At is related) is 62.10"(71-/180")/At = 1.081At [251]. 

(U)Via Eq. 2.6, the two channel power spectrum associated with the above 
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Markov process of Eq. 3.1 is: 

Computation of the result of Eq. 3.2 involved using the routine properties that the 
sum, product, and ratio of complex variables are, respectively, the sum, product, 
and ratio of the conjugates. 

(U)The two-channel pole-zero plot of Fig. 3.1 corresponds to Eq. 3.2, each term 
of which has poles in common of multiplicity two located at -0.462+j0.590(0.75ej~~~.~~" 
and -0.429 - j0.810(0.916e-j~~~-~~), well within the unit circle. All terms have a 

1 

zero of multiplicity two at the origin. The additional two zeros of the Sll term 
are at -0.55 + j0.835(0.9998ej123.370) and at -0.55 - j0.835(0.9998ej~~~.~~") ,  both 
essentially on the unit circle. The additional single zero of the S12 term is at 
1.025 - j1.65(1.94e-j~~.l~~) and so is not of minimum phase since it is outside 
the unit circle. Correspondingly, the additional single zero of the Szl term is at 
1.025 + j1.65(1.94ej~~.~~") and as the conjugate of the S12 term zero is also out- 
side the unit circle. The additional two zeroes of the S 2 2  term are at -0.34 + 
j0.6862(0.7658ej116.36") and at -0.34 - j0.6862(0.7658ej24364"), well within the unit 
circle and therefore being of minimum phase. As indicated in [25:1.], the "effective 
bandwidth" for each component of this random process is the reciprocal of the inte- 
gral over the unit circle of the square of the corresponding component of the power 
spectral density function, as scaled by 2r j .  This can be explicitly evaluated using 
Cauchy's residue theorem for the double poles enclosed. 

(U)The true spectra corresponding to Eq. 3.2, as evaluated using z = exp [j27r f At] 
for varying values of f, are shown in Figs. 3.2a, b, c. The superimposed dashed 
line in Fig 3 . 2 ~  represents the phase while the solid lines represent the standard 
magnitude of the power spectra. Naturally, autospectra being exclusively real have 
no phase component. The corresponding outcome of LWR estimation of these sim- 
ulated spectra, by operating directly on the Monte-Carlo data generated from Eq. 
3.1 (following a skipping of the results of the first 100 iterations of Eq. 3.1 to avoid 
the initial transient prior to entering into a type of steady-state, corresponding to 
nine time-constants having elapsed, where the process is then sufficiently station- 
ary), is shown in Figs. 3.3a, b, c. Similarly, the outcome of Nuttall estimation for 
this same test case and conditions is shown in Figs. 3.4a, b, c. All plots have the 
same scale throughout for ease in unambiguous cross-comparisons. 
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(U)While both algorithms correctly capture the auto-spectra thus confirming 
our software implementations of the two algorithms involved, it is observed for this 
example that the LWR technique, by more closely approaching the actual inflections 
exhibited in the shape and phase of the true simulated cross-spectrum, appears to 
be the best performer for this first-order AR process with this length of data of 
999 sampled points and a sampling rate of once every second (i.e., A=1). (This 
conclusion is not inconsistent with that of [84] which found the Nuttall algorithm 
to be the best performer, but that competition was against two other multichannel 
algorithms). However, we refrain from designating a particular LP algorithm as 
being "best" because it most likely is situation and application dependent. For a 
comprehensive comparison of the LWR, Nuttall, and Morf algorithms l ,  see [81]. 

3.2 Experiments to Gauge Algorithm Sensitivity 
to the Data Length 

(U)This section consists of an investigation into the degradation incurred by AR- 
based techniques due to a foreshortened length of available data on which to base 
spectral estimation. The results of several numerical experiments using simulated 
data are displayed here for calibrating the anticipated degradation or diminishing 
in clarity, resolution and/or general performance capabilities of the LWR (and/or 
Nuttall) algorithms to provide adequate multichannel spectral estimates. We cal- 
ibrate this effect of limiting the length of data available by roughly identifying at 
what point the AR coefficient estimates no longer acceptably correspond to those 
"known" coefficients that we explicitly used in the simulator. 

(U)The complex example, Case 4 of Table F.1, was used as the parameterization 
for the simulator. Then the resulting single sample function that emerged as an 
output from the simulator, consisting of 898 time samples taken every second, was 
routed through the AR Estimator (with flag set for the "Nuttall" option) yielding 
the following estimate of the underlying system cofficient matrix as an output: 

lThis is yet another multichannel LP generalization. This version is based on minimizing the 
geometric mean of the forward and backward error series. As Morf's later algorithm, it is computa- 
tionally more efficient than Nuttall's earlier algorithm, as established in [84]. 
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The associated characteristic equation for the above matrix is: 

The above quardratic equation of the form: 

has solutions of the form (still valid even in the complex case): 

Performing the indicated operations for evaluation using the parameters for a, b, 
and c from Eq. 3.4 yields: 

= 0.74185799 efi0.440 and 0.91407276 e-361.060 (3.7) 

So even though the underlying A matrix presented above doesn't look identical to 
the matrix that was originally used to simulate the data, the resulting eigenvalues 
that were obtained are still identical (as they should be as a confirming check). 
The AR Estimator does not automatically invoke a preferred coordinate system and 
results obtained can theoretically differ by a similarity transformation; however, the 
resulting AR estimates should still have the same eigenvalues as correctly exhibited 
here. In fact, it was enough to stop at the point of observing that the characteristic 
equations were identical since roots of the same common polynomial equation of 
the same degree are necessarily identical and it is overkill to actually solve it again 
but informative to do so at least once 2.  

(U) Proceeding to investigate the effect of constraining the length of available 
data on the performance of the LWR version of the AR Estimator by only using 100 
equally spaced data samples this time (with the same 1 second time step), rather 
than the previous 898 data samples, yields the following underlying system matrix 
(when the "LWR" computational option within the software is utillized): 

2Some grief (induced by hand computation of eigenvalues from the associated characteristic 
equation with complex coefficients) can be spared by using the Fortran program offered in 146, 
pp. 335-3371 for factoring complex polynomials. 
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The associated characteristic equation is 

This is essentially the same characteristic equation as reported above in Eq. 3.4 
except that only one or two digit accuracy is now available due to the forshortened 
data length. This will give rise to slight differences in the calculated eigenvalues 
from those of Eq. 3.7. 

(U) Proceeding to also investigate the effect of constraining the length of avail- 
able data on the performance of the Nuttall version of the AR Estimator by similarly 
only using 100 equally spaced data samples, rather than the previous 898, yields 
the following underlying system matrix when the "Nut tall" computational option 
is utillized: 

The associated characteristic equation is 

Again, this is essentially the same characteristic equation as reported above in 
Eq. 3.4 except that again only one or two digit accuracy is available due to the 
foreshortened data length. Again, the resulting eigenvalues will differ slightly from 
those of Eq. 3.7. 

3.3 Using Radar Target Data 

(U) As indicated in Fig. 3.5, a burst is designated to be a collection of radar target 
pulse returns that are in general proximity to one another with an interpulse sepa- 
ration interval or instantaneous pulse-to-pulse repetition interval (PRI) that is less 
than some prescribed constant, K. On the other hand, strings of radar target pulse 
returns are declared to be members of a distinctly different pulse train when the 
time since reception of the last target return pulse exceeds a prescribed maximum 
allowable time interval, TMAX. The radar data initially investigated here consists 
of 3 bursts (each containing 32 pulses) that occupy a total of 114 contiguous radar 
range gates. This situation can be interpreted here as a worst case condition for 
possible multichannel LP estimation as a vector time series consisting of 32 time 
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Figure 3.5: Pulse Returns from Test Radar: definition of Bursts and Trains via 
relative proximity of pulses as gauged by system parameters K and TMAX (U) 

samples of a possible, but unlikely, upper limit extreme of 114 vector channels of 
data. Because of limitations on the amount of computer memory available to us and 
for other practical considerations to be further discussed below, no more than 10 
channels at a time are actually considered here. The radar pulse repetition interval 
is 14 microseconds. Based on some prior Lincoln Laboratory radar precedents [226] 
and subsequent follow-ups for the narrowband case of BRVAD Phase 1, a postulated 
fourth order AR random process model is used for this Tradex radar application to 
represent the underlying RV wake target effect in each radar range gate. 

(U)Fig. 3.6a shows a 1-channel LWR applied to (radar range)gate 1 of the data. 
Fig. 3.6b depicts the same channel 1 autocorrelation, where a 5-channel LWR is 
now used (and the other 4 channels are from gates 2-5 of the actual process). Figs. 
3.7a and 3.7b depict the results of an identical estimation experiment using the Nut- 
tall algorithm. The obvious degradation in clarity observed in the auto-spectrum 
estimate as the number of channels is increased has also been observed and docu- 
mented in [84]. The explanation is that a single-channel MEM needs to estimate 
only P parameters, but the generalization of MEM must estimate M2 P parameters 
for M-channel spectral estimation, being a major increase in the scope or number 
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of parameters to be estimated which occurs while the the number of supporting 
data points available for information extraction is only modestly increased from 
N points in the single channel case to M N  points in the M-channel case. There- 
fore, the multichannel estimator can only estimate this larger number of parameters 
while unfortunately incurring an increased degadation in variance, as pointed out 
by Marple and Nuttall [84]. 

(U)This deleterious effect is much more pronounced when the channels consid- 
ered do not have significant cross-spectral content. It is documented in [81] that for 
uncorrelated channels, a signal present in one channel may manifest itself as a can- 
celling of pairs of zeroes in another channel; but because of round-off error incurred 
in the digital implementation of an otherwise ideal algorithm, the cancellation is 
not perfect. In these cases, there may be "feed-through" or leakage of some of the 
auto-spectrum from one channel to another. 

(U)Figs. 3.8a, b and 3.9a, b depict the same LWR versus Nuttal algorithm 
experimental comparisons as performed on another channel being Gate 2 for the 
radar data that was provided. Notice that the degree of performance degradation 
in going to 5 channels is different in this case but still present none-the-less. 

(U)Figs. 3.10a, b, and 3.11a, b compare 1-channel and 2-channel estimates for 
primary polarized vs. orthogonally polarized data using LWR versus Nuttal algo- 
rithm estimates. The use of 2-channel AR modeling appears to be very suitable 
here since it is already anticipated from a physical argument and from other ex- 
perimental precedents with other dual polarization radar applications that the use 
of orthogonally polarized radar returns from the same target on the two separate 
channels should be highly correlated. Whether use of an AR-based model struc- 
ture suffices for RV wake modeling or whether an ARMA-based model structure is 
required is considered in the next chapter. 
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Chapter 4 

Precedents in ARMA Modeling of 
Targets as well as Use of Standard 
AR Modeling Techniques 

4.1 Motivation for Considering ARMA Models 

(U)A question arose as to whether the underlying truth model Monte-Carlo simu- 
lator for exercising the spectral estimation algorithms should also contain a provision 
for including a component of additive measurement noise as well as the standard 
process noise in the final sensor measurement so that it is more properly modeled 
as consisting of the following sum of two statistically independent components as: 

~ ( t )  = YAR(~)  + v(t), where v(t) N(O,r). (4-1) 

Typical Kalman filter simulators always include a measurement noise simulation 
capability, so it was initially perceived to be somewhat unusual that some AR 
simulators don't include this provision or capability. However, an AR process with 
measurement noise present is essentially an ARMA process, as can be conveniently 
seen for the scalar case by considering the underlying equivalent correlation function 
that results from summing an AR process plus additive independent Gaussian white 
measurement noise, as demonstrated here: 
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where the above left hand fraction represents the correlation function of a pure 
AR process by having a constant numerator and the above right hand fraction 
represents the effective equivalent ARMA process that results by having a non- 
constant numerator. Use of pure AR techniques in situations involving underlying 
ARMA processes could be a fairly severe model mismatch [149]. A preprint paper 
on this topic of MEM estimation with white Gaussian measurement noise present, 
yet to appear in the open literature, is [26]. Other papers on this topic are [30], 
[150], [179], with asymptotic Cramer-Rao lower bounds having been worked out for 
this situation in [150]. 

4.2 Overview Summary of ARMA-Based Spec- 
tral Est imation Considerat ions 

(U)While as recently as 1981, Kay and Marple observed in [27] that their ver- 
sion of high resolution model-based spectral estimation using an ARMA model was 
tractable only when p, the order of the AR portion is identical to q, the order of the 
MA portion of the ARMA(p,q) random process. For p to be identical to q is a fairly 
contrived condition not likely to be usually satisfied in practice for arbitrary situa- 
tions other than that of a pure AR signal in additive "ideal" white noise. Recently, 
the approach of [28] has emerged and is advertised to be tractable for arbitrary 
p and q (as long as the dimensions of p and q are specified beforehand). Nested 
hypothesis tests on model order values of p and q using the Akaike Information 
Criterion (AIC) [55] or canonical correlation techniques [5:1.] such as are already 
typically used in parameter identification for deterministic control systems, and for 
model order reduction for reduced-order Kalman filter applications [106, Secs. V 
and V:C], [108], are appealing in this new ARMA context. However, despite some 
apparent successes [169], reservations or limitations on use of AIC for certain ap- 
plications are expressed in [49, Section 51 where it is claimed that use of AIC yields 
an estimate for the model order that is not statistically consistent (cf., [173]) and 
that asymptotically tends to overestimate. Earlier complaints along this same line 
about use of AIC were raised in [50] and recent critical discussions of AIC appear 
in [163, Preface]. 

(U)Several alternative approaches have been proposed for rigorously handling 
the order determination problem for ARMA processes [52], [I511 and for AR pro- 
cesses [53], [54], [57], respectively, both recently and historically [56], [58], [I 111, 
[I 121, [I 771. Brief, insightful comments on the fundamental problem encountered in 
attempting to handle the general ARMA situation is provided in [I771 and in the 
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. . 

accompanying author's reply. In this classic historical dialog, the important point 
that is made is that the criterion to be minimized in determining the numerator 
and denominator coefficients of an ARMA process is highly nonlinear 'and that the 
standard methods of parameter identification involve some form of minimization of 
this or some similar criterion, in which case the calculated values, as obtained by 
most alternative computational approaches to constrained optimization or function 
minimization, will likely be merely local minima rather than the global minima that 
represent the true solution. For additional perspective on the "nasty" nonlinear op- 
timization problem one is faced with in seeking to pursue standard exact maximum 
likelihood approaches to ARMA parameter identification and what rigorous asymp- 
totic results are guaranteed for large sample size, see [231]. There is a suboptimal 
but extremely tractable approach, which starts with a given sample autocorrelation 
function (rather than with the preferred unreduced raw data as input) and uses the 
modified (or extended) Yule-Walker equations in performing subsequent manipula- 
tions. For this type of approach, the estimation of the AR and MA parameters is 
separated out and the resulting estimation equations are rendered benignly linear 
or at worst quadratic [215, p. 9011. The best approaches to consistent estimation 
of model order appear to be [I161 - [119], [218] as recently claimed in [120]. Now 
that ARMA-based super-resolution spectral estimation techniques are considerably 
more tractable and flexible in allowed assumptions than they had been in the past, 
there may be more impetus to use them in the future but use of these techniques 
are apparently unnecessary at this time for the BRVAD application of concern to 
us here as further explained in Section 4.3. 

(U)Not too surprisingly, a link has now been revealed between two parallel 
branches of technology that had previously been developing independently. The 
modern control theory specialty of parameter identification has objectives of esti- 
mating parameters of state-variable models, which can further be of AR, MA, or 
ARMA structure as special cases [176, pp. 90-951. The observations of [172], [I851 
are that the modified Yule-Walker or so-designated normal equations that arise 
in estimating the AR parameter portion of an ARMA process can be viewed as 
a special case of the Instrumental Variable (IV) method of parameter identifica- 
tion. Once the spectral estimation intermediate objectives of obtaining adequate 
AR coefficient estimates are recognized to be identical to the objectives of parame- 
ter identification in general, the supporting theory and cross-checks from parameter 
identification [174], [I631 can subsequently be brought to bear on spectral estima- 
tion as well. Of particular interest or relevance here are conditions of identifiability 
and structural identifiability which guarantee that such endeavors or attempts are 
in fact do-able. 
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4.3 A Novel Result to Allow the Subsuming of 
ARMA Models Within AR Models for Spec- 
tral Estimation 

(U)The particular contribution of the present author to this problem of modeling 
radar target spectra having an underlying model that corresponds either to the 
more tractable AR processes or to the less tractable ARMA processes can be 
found in [187, Sections 4.5 and G.41. In [187, Section G.41, it is demonstrated using 
an extremely old, extremely simple trick from ordinary differential equation (ODE) 
theory (but involving an extremely tedious derivation that is not repeated here for 
the sake of brevity) in order to show that a multichannel or multi-inputlmulti- 
output ARMA process can be equivalently reformulated as a multichannel AR pro- 
cess (being of higher order than the original ARMA process but of finite order 
none-t he-less). 

(U)The general properties of the original algorithm of [I871 that can be invoked 
to get rid of differentiated input (i.e., to get rid of the MA portion of an ARMA 
process to result in just a pure AR process of slightly greater dimension) are now 
discussed. This approach is formally generalized in [187, Section G.4 of Appendix 
GI and demonstrated there to be a totally rigorous approach from which to validly 
obtain a state variable model which is a minimal realization. The main result 
that is an outcome of the manipulations in [187, Section G.4 of Appendix GI are 
summarized in the remainder of this section. 

(U)Consider the scalar constant coefficient linear differential equation of order 
n; represented by the following: 

or, equivalently, 

l'l'ractability here refers to the ease of performing MEM spectral estimation. 

34 
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where the superscript in parentheses denotes the order of the derivative with respect 
to time, t. Define auxiliary variables z; (i = 1, . . . , n;) such that: 

where, for each j, the sequence {kmj}:,l must yet be specified. Determining just 
what the sequence {krnj}n,'=, must be in order that all the differentiated input terms 
of the xi's be removed so that the resulting differential equation in z;'s may be 
represented in standard state variable form is the goal. The above represents a 
change of coordinate axes in the underlying state space. 

(U)Notice that from the above, it can be seen that 

indeed, the general expression can be seen to be 

Obtaining expressions for the y;'s from the equations above, we have that: 
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Using all of the above expressions for the y(.)'s and substituting into the original 
differential equation of Eq. 4.4 , we obtain an expression involving $zni; this 
expression is: 

Now by working with the above expression to eliminate all expressions involving 
y's and to maneuver it into a more manageable form by performing changes of 
the dummy index of sumination and by performing interchanges in the order of 
summation, the resulting expression is: 

From the analysis of [187, Section G.4, Eq. G.641, we have that: 

bjni = k l j  for each j .  
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Further, from [187], the following recursion equation is available to completely spec- 
ify all the requisite kmj's as: 

Thus each of the kmj's for (1 < m 5 n;) is now specified for each j via the above 
finite recursion. 

(U)A few representative terms are now found to illustrate how this result is 
applied. For fixed j ,  we had found from. the derivation of [187, Section G.41 that 
the starting value is: 

klj = bjni ; (4.21) 

now applying the preceeding recursion results in a complete specification for the 
kmj9s as: 

(U)The above procedure, as generalized here for handling multiple inputs, allows 
us to recast or re-represent the general system-describing differential equations of 
Eqs. 4.3 or 4.4 (having differentiated inputs) in the equivalent state variable form 
devoid of differentiated inputs as follows: 
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where the kmj's are found as specified above (as availed in Eqs. 4.19 to 4.23). 

(U)An alternate interpretation can be applied to this very old trick from differen- 
tial equation manipulation as offered next. Notice that within the realm of random 
processes (where the inputs to Eq. 4.4 are Gaussian white noises), the straightfor- 
ward transformation offered here essentially converts a scalar ARMA process into 
an equivalent vector AR process. Typically, AR processes are usually much simpler 
to work with (especially with regard to spectral estimation). When this result is 
used in conjunction with the approach illustrated in [187, Sections 4.2, 4.3, and 
4.41, then the method is applicable for converting multi-inputlmulti-output ARMA 
processes into AR processes. This is the difference between this new more general 
method offered for the first time here (and in [187]) and more standard methods for 
getting rid of differentiated input terms such as that offered in 1987 in [214, Eqs. 
1 and 21. The approach of [214] is only applicable to Single-InputISingle-Output 
(SISO) transfer functions of the form 

where the numerator and denominator polynomials in Eq. 4.25 are Hurwitz and 
additionally [214] assumes that p = q to yield the realization result in terms of 
so-called "phase-variable" or "companion form" [220] that: 

with y, = [O, . . . ,0,1] x, , 
but unfortunately of limited utility to us here because of the above stipulation that 
p = q and it is only good for SISO, while for the application of interest here we are 
considering approaches that can handle more general vector channels. 

(U)Aspects not previously explicitly addressed in the open literature to this au- 
thor's knowledge that cannot remain unaddressed here (since it directly pertains 
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to the efficacy of using this proposed AR equivalence technique for the application 
of interest) relates to whether the final AR model that results is in fact a "mini- 
mal realization". This topic is important for the reasons elaborated on in the first 
~aragraph of Section 4.2 of [I871 relating to reducing unnecessary expense of using 
more integrators than are absolutely necessary and avoiding possible inst abilities 
of the "unobservable" or "uncontrollable" portion of an excessively nonminimal 
realization, while a minimal realization is always entirely both LLcontrollable" and 
"observable" and of minimum degree (i.e., uses the least number of integrators for 
implementation). The approach of [214] above (only being applicable to a scalar or 
single channel ARMA process) can be seen to be "controllable" because it results 
in an AR system matrix that is in "phase variable" canonical form (also known as 
"companion form") and this representation is reasonably well known to be "con- 
trollable" ([220]) and being "controllable" and also obviously "observable", it is a 
"minimal realization", as established by the KalmanIGilbert results that are re- 
viewed in this context in [187, Section 4.41. The approach of 1176, Eqs. 3.9-13 to 
3.9-161 offers an equivalent AR model for the (scalar single channel SISO) ARMA 
process and just "hopes for the best" without being able to prove or establish that 
the resulting model is well-behaved and satisfactory in this role. This structure, 
to date, has defied establishing "controllability and observability" for the equiva- 
lent AR representation of [176]. The beauty of the present author's approach for 
multi-input/multi-output (multi-channel) ARMA process re-representation as an 
equivalent AR process here is that the resulting AR system matrix is also demon- 
strably "minimal" as ascertained using the theoretical results of 1187, Appendix HI. 
An indication of a minor limitation to the algorithm offered here when the degree 
of the MA portion exceeds that of the AR portion of an ARMA process (and its 
subsequent remedy) are provided in [187, last paragraph of Appendix GI (also see 
[15:1.] for additional perspective). 

(U)Again, the obvious further benefit of using the above AR reformulation is 
that the simpler MEM approaches based on an assumed AR process structure can 
now be validly used without recourse to the more involved less tractable ARMA 

2This result also offers a new perspective on a fairly well known historically observed phenomenon 
that in numerical evaluations or numerical experiments using various hypothesized model orders on 
the same data, the candidate AR models of higher order ultimately reduced the residual error in 
estimation (as a figure of merit where smaller means better) even when it was obviously of greater 
order  than the known AR process model  that was actually used t o  generate the data via Monte- 
Carlo simulation. Previously, the observed reduction in residuals provided by use of even higher 
assumed AR model order was perceived as deleterious and was attributed to the "dumb" parameter 
estimation algorithm "not knowing any better" (by being unable to distinguish the true underlying 
situation) than to prefer an increase in the assumed model order to better fit the characteristics of 
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model-based spectral estimation techniques that are frequently plagued by numer- 
ical sensitivities due to nonlinearities inherently encountered in most ARMA ap- 
proaches as reviewed above in Section 4.2. Our approach, as augmented with these 
new theoretical results of [187, Section G.41, subsumes the ARMA-based approaches 
without incurring the usual intractability difficulties of ARMA-based spectral esti- 
mation approaches but at the price of a slightly enlarged dimension of system order 
and matrices utilized. 

the simulated additive noise. The results of this section demonstrate that the effect of having noise 
present in the simulation is tantamont to having an AR system present of higher order than the 
original model order used to generate sample functions. Therefore, the behaviour of the parameter 
estimation algorithm in seeking a higher order system model was not so "dumb" after all and (by 
the insights revealed by this analysis) is now justifiable and laudable. 
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Chapter 5 

How Much Gate-to-Gate 
Cross- Correlation is Really There? 

5.1 Discussion of the Problem that Confronts Us 

(U)The question arises of how to distinguish between "real" cross-correlation that 
may exist between some contiguous radar range gates (due to the presence of the 
target's smeared out reflected returns) versus de facto correlation as a consequence 
of the underlying signal structure of the particular test radar (as introduced by the 
effect of the sidelobes of Tradex's ambiguity function) as it inadvertently diverts 
some of the energy from the RV body target returns to spill over into range gate 
returns associated with the wake. 

(U)A two dimensional waveform amplitude distribution in both time delay T 

and in frequency displacement + in terms of the form of the underlying transmited 
radar signal waveform is 

x(r, 4) = Jm s(t)s*(t + .r)exp [ - j2~+t]  dt 
-00 

(5.1) 

One of several alternative conventions [115, Chapt. 41, [123, pp. 127-1411, [124, 
pp. 303-309, pp. 310-3171 (cf., [166, Eq. 31) is to denote the real quantity 
[ ~ ( r ,  +)x*(T, +)] as the radar ambiguity function of interest. Closed-form expres- 
sions for different standard forms of X(T, +), including FM chirp, are available in 
[114, Chapt. 31, [122, Eq. 6.341. 

(U)Real gate-to-gate cross-correlation that should be universally present be- 
tween adjacent gates could be exploited to an advantage in performing target de- 
tection and, eventually, tracking. To develop universally applicable target models, 
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it is necessary to adequately evaluate the persisting residual cross-correlation that 
is independent of the signal structure or ambiguity function of a particular test 
radar. Therefore, it is desirable to remove the effects due to the test radar's ambi- 
guity function alone. Perhaps this ambiguity function should be replaced by that of 
the anticipated operational threat radar for additional realism but this is generally 
not practically feasible for reasons described below. Besides, the threat radar will 
superimpose the effect of its own ambiguity function and to additionally include 
it in the modeled emulation would double the effect as an unfortunate but likely 
discriminator from an actual RV. 

(U)While a fairly obvious approach to removing the effect of the known ambi- 
guity function would be to exploit the standard input /output spectral formulation 
of Eq. 2.6 and pre- and post-multiply in the frequency domain by the inverse of 
the associated transfer function matrix corresponding to the FFT of the Tradex 
test radar's ambiguity function. While conceptually correct at the aggregate level, 
certain random aspects of the radar signal make it difficult to exactly line up and 
synchronize the pre-recorded ambiguity function with the radar pulse initiation 
times that correspond to the specific recorded target returns. To attempt to strip 
off the effect of the radar ambiguity function in this simple manner may actually 
introduce more fictitious correlation into the successive radar range gates beyond 
what is nominally present. 

(U)In particular, use of the ambiguity function such as that depicted in Fig. 5.1 
(as recorded a year earlier), cannot be prudently used to decorrelate the current data 
without risk of severely misleading results. This situation exists because radar com- 
ponents such as amplifiers, phase-shifters, transmitters, switches, e t ~ .  , age with time 
and consequently slightly alter the radar's performance. More confidence could be 
placed in data that was decorrelated using an ambiguity function that was obtained 
via a calibration sphere measurement just prior to data recording and additionally 
was confirmed to be unchanged by a subsequent calibration sphere measurement 
immediately following the mission target tracking, as would all be recorded on tape. 
In this way, the target data would be bracketed by calibration sphere data and the 
two sets of calibration-sphere-data-evaluation-of-ambiguity-function could be con- 
firmed to be close enough to be essentially the same throughout the mission. Only 
by doing this would the above proposed method to decorrelate the effect of the radar 
ambiguity function be defendable. Besides this effect, slight mis-synchronizations 
inevitably occur that interfere with exactly cancelling out the effect of the ambigu- 
ity function and to attempt to do so in this obvious way may in fact further smear . 

and corrupt the signal of interest. Additionally, for good Primary Polarization (PP) 
and Orthogonal Polarization (OP) calibration, the radar measurements should be 
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made using calibration dipoles since spheres are least capable of stimulating OP 
effects. 

(U)It was mentioned above that the effect of the radar ambiguity function was 
creating a problem by "muddying the water" as we seek to accurately assess the 
degree of inherent cross-correlation that exists between contiguous range gates due 
to the presence of a target in our particular application scenario. Recent results 
that were further pursued in seeking a deeper understanding and a resolution in 
this area are [31], [32] but to no avail in the problem that faces us here. Instead, 
coherence-function-based tests of gate- to-gate cross-correlation, hypothesis tests, 
and distributional tests will be performed and conclusions caveated with a warning 
on possible tainting of final results by the radar ambiguity function itself. 

Use of St at ist ical Tests of Significance 

(U)Use of st atistical hypothesis tests of significance will be pursued to verify validity 
at various stages of the modeling effort. The first cut at this, as offered below, is to 
seek to use coherence functions as a measure, where gate-to-gate cross-correlation 
can be tested two-at-a-time. This is also to be used two-at-a-time to test for sig- 
nificant target wake PP and OP cross-correlation, as are expected to be significant 
based on expectations as forged by past experience. Expressions for the variance 
and bias (cf.,[14]) to be expected in coherence function calculations, as utilized in 
Section 5.3, are offered here for possible benefit to others and are derived in Ap- 
pendix A. Such information is useful in quantitatively caveating conclusions (as via 
confidence regions or a! - probability in the outcome of statistical hypotheses tests) 
that may otherwise be interpreted too strongly. These recent theoretical results 
offered in Appendix A can be compared to earlier 1963 SANDIA results [15] along 
these same lines as well as with more recent results by Ralph Deutsch (in the text- 
book [16, Appendix]) and NUSC results in coherence function calculation by G. C. 
Carter, and distributional tests (of Thomas Kailath and Mati Wax from Stanford 
Univ. as occured in a recent 1986 paper on detection of signals [49]). G. C. Carter 
just came out with a streamlined high level overview survey of pertinent results and 
statistics associated with coherence function calculation in [12], so that apparently 

= all the following prior NUSC reports on this topic [5], [6], [7], [62] (also by Carter) 
are now subsumed and superceded by his more concise overview report [12]. 

(U)Actually, Kailath and Wax [49, p. 388, para following Eq. 41 claim that 
the more statistically sophisticated approaches to this same problem by Bartlett 
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[I351 and Lawley [136] based on a sequence of hypothesis tests suffer from having 
to rely on "subjective" judgement in the selection of decision threshold levels for 
the various intermediate tests and that the approach of [49] therefore avoids this. 
These complaints raised in [49] against [I351 and [I361 could be perceived as being 
somewhat artificial if a full evaluation procedure is available for specifying the nec- 
essary thresholds for each required test in terms of its operating characteristics a, 
/? (i.e., probabilities of false alarm and correct detection, respectively) and power of 
the test. While [I351 and [I361 are somewhat dated by having been published in the 
middle 1950's, more recent work in this active research area such as are discussed 
next should be more germane by being more complete. 

(U)While hypothesis tests involving two bivariate Gaussians are well-known 
(e.g.,[137, p. 2491, [141, pp. 175-1911, [140, p. 153, ff 190]), a challenging research 
problem has been how to rigorously handle hypothesis tests involving multivariate 
Gaussians of unequal variance as evidenced by the historical summary of painfully 
slow theoretical advances in [137, pp. 257-2581, [138], [139], [140, pp. 154-1551. 
In general, the problem of known and unequal variances for the multivariable case 
(even the bivariate case) is very formidable while the case of unknown variances that 
must be estimated is much worse and usually involves working with a distribution 
of the Wishardt matrix (see [160]). 

(U)In particular, the maximum likelihood estimate of multiple correlation coeffi- 
cients for an underlying multivariate Gaussian problem has variance and covariances 
that have a Wishardt distribution [143, pp. 191-192, p. 3251, [144, pp. 341,3441, 
[137, pp. 113-1181, having properties that can be related to tensor products [137, p. 
1191. Other approaches to this problem also exist [181, pp. 321-3821. Full statistical 
rigor may perhaps need to be sacrificed in this particular application in favor of a 
more tractable more expedient analytical "punt" such as is offered below involv- 
ing pair-wise tests of significant radar cross-correlations using coherence function 
evaluation. 

5.3 Results of Using Coherence Estimation on 
Available Radar Data 

(U)A common presentation format is adhered to for all coherence function esti- 
mates to be presented in Figs. 5.2 to 5.7. The mean square coherence (MSC) results 
portrayed here, as originally estimated in this investigation via Eq. A.3 using con- 
ventional Fast Fourier Transform (FFT) techniques (see 2nd and 3rd paragraphs of 
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two gates away (Fig. 5.4b), and five gates away (Fig. 5.4~). Yet the results of Fig. 
5.4 are less likely to be artifact effects due to target body interaction in the radar 
ambiguity function sidelobes. 

(U)Since Gate 5 is less likely to be adversely tainted by the above described 
radar ambiguity function effects, a cross comparison of the most significant cross- 
correlation indications, as occurred between Gates 5 and 6, are obvious candidates 
for further cross-comparisons at the two Altitudes Nos. 1 and 2. This comparison is 
performed in Figs. 5.5a and 5.5b, where again the greater cross-correlation appears 
to be at the higher altitude (Altitude No. 1) but both are significant at the lower 
frequencies of interest due to the likely leaking of RV body energy. 

(U)The anticipated supplementary reinforcing effect of using both PP an OP 
data within corresponding radar range gates, treated as two separate simultaneous 
channels, is now investigated. Results for Altitude No. 1 are portrayed in Fig. 5.6. 
The coherence results for Gate 1 PP and OP are displayed in Fig. 5.6a and are 
comparable to zero for low frequencies yet this time are more significant at higher 
frequencies but also possibly due to the likely tainting by the effect of the RV body 
as siphoned off to the wake gates by the ambiguity function. However, for Gates 
5 and 10, the primary low frequency components of the target show up as being 
significant in Figs. 5.6b and 5 .6~.  The corresponding results at the lower Altitude 
No. 2 show less significant cross-correlation in Gate 1 PP and OP results (Fig. 5.7a) 
but more consistent high frequency components of significant cross-correlation for 
Gates 5 (Fig. 5.7b) and 10 (Fig. 5.7~). Thus, PP and OP results appear to be 
significantly cross-correlated. 

(U)There was more supporting data on coherence function calculation but it 
is perhaps less convincing because it relies heavily on arguments based exclusively 
on simulation only. It involves simulating an extremely simple additive measure- 
ment noise- free two channel situation with precisely controlled known (and speci- 
fied) cross-correlation using a specified level of process noise as the common driver. 
However, this situation appears to be too simple or to be lacking of sufficient gen- 
erality; so much so that its relevance to the actual radar application is somewhat 
questionable due to the fact that the simulated system has no dynamics (i.e., no 
numerator or denominator terms in the associated transfer function between in- 
put and output). Ignoring this shortcoming for the moment, however, the further 
simulation gestures are germane. The result of a controlled simulation experiment, 
with known controlled cross-correlation, is convolved wLith the known pre-specified 
ambiguity function of the radar of this application with its principal sidelobes 30 
dB down. The resulting coherence function, a known constant, is estimated and 
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horizontal two-sided 80% conficence regions are calculated and erected for this situ- 
ation (as depicted in Fig. 5.2a as horizontal dotted lines and as should also appear 
in Figs. 5.2b to 5.3~). The coherence function estimate for the lower frequencies, 
where the significant wake energy lies (as opposed to the higher frequencies, which 
are noise dominated so they are of little significance to us) are predominantly within 
this 80% confidence interval strip. This says that the computed coherence for the 
actual radar data generally falls within the two-sided 80% confidence interval for 
simulated data of known cross-correlation as affected by the actual radar ambiguity 
function. In other words, the effect of the radar ambiguity function dominates the 
situation. 

(U)The major difficulty with the above results is that only one run is portrayed 
in each of Figures 5.2 to 5.7 (rather than being the results of averaging many runs) 
so that strong conclusions on the coherence trend and therefore on the underlying 
gate-to-gate cross-correlation can not be inferred from the above without strong 
reservations. These runs of a year earlier probably need to be redone with consid- 
erably more trials included (enough to obtain a representative average as, say, at 
least 4 and maybe even 10 trials). This is one of the motivations for the further 2-D 
investigations of this effect that were performed with greater success and clarity 
than the results of this section and that are reported in Section 6.1 of Chapter 6. 

(U)This completes this preliminary investigation of coherence, which is used 
both as a measure of the inherent gate-to-gate and PP-OP cross-correlation that 
exists. When the cross-correlation due to just the target (and not an artifact of the 
RV body effect in the sidelobes of the ambiguity function) is significant, then the 
gates should be used jointly in a multichannel model of the target's signature as 
pursued in Section 6.2. 
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Chapter 6 

Specifying and Computing 
Parameters for a Typical 1-D 
Model Proposed for Wake 
Emulation 

6.1 2-D Processing Results that Influence our Fur- 
t her l -D Modeling Decisions 

(U)Historically, according to Aki and Richards [153, p. 6131: 

Burg [I571 points out that a 2-D frequency-wavenumber approach to 
certain applications may give better physical insight. .. , but the multi- 
channel approach is more practical for filter design. 

This somewhat surprising point of view of being willing to sacrifice "physical insight" 
for "ease of implementation" with the analytical tools currently at their disposal 
was evidently in vogue during the time frame of the early 1960's. More recent 
revelations such as [167], [168], and [I751 illustrate the current utility and ease of 
using 2-D techniques, thus reversing the prior practice of shying away from the 2-D 
approach. Moreover, even in the 1960's according to Aki and Richards [153, p. 6131 : 

A detailed illustration of different [2-D versus multichannel] approaches 
[to the same problem] was given by Schneider et a1 [I551 for a relatively 
simple two-channel problem . . . 
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of eliminating ghost arrivals from the unrelated problem of reflection seismograms. 
More recently, connections between the multichannel approaches and certain 2-D 
Linear Prediction approaches such as that of [log] have been revealed [I591 to further 
expidite 2-D analyses. 

(U)An independent sister study was performed by the Naval Postgraduate School 
(NPS), as monitered, tracked, and reported on in [259], [260], [261], and [262]. A 
primary observation from the sister study of [224], as representatively depicted in 
Fig. 6.1, is that (except for the scale) the PP, OP, and cross-spectrum magni- 
tudes are remarkably similar/comparable and, as also depicted in Fig. 6.1, that 
the PP/OP MSC indicates that a significant level of cross-correlation exists l. The 
similarity of the PP, OP, and cross-power spectra at 20 km, as depicted herein, is 
typical of what was observed at all altitudes. 

(U)A second significant feature of the above mentioned plots is that the spectra 
are rather broad in the wavenumber direction but not flat (complete flatness would 
be indicative of white noise with no correlations). This suggests that there is a 
degree of space-correlation along the gate direction. 

(U)An observation that can be made is that the character of the wake spectra 
does not change drastically over the extensive range of altitudes considered in the 
study of [224] even though the expanse of altitudes bracket the BLT region. There 
may be slight changes in the width of the main ridge, as illustrated, but the plots 
do not depict any consistent broadening or narrowing of this ridge with altitude. 
No other special features such as subsidiary peaks seem to appear. The subsidairy 
peaks seen in earlier analyses still appear at all altitudes only when gates close to 
the RV (i.e., gates 1 through 5 or gates 2 through 5) are also included in the data 
used for spectral estimates. (Clarification: By previously including gates 1 through 
5, energy from the RV itself was, unbeknowst to us at the time, improperly spilling 
over into the assessment of the wake. This has now been remedied in 2-D processing 
results and for the l-D modeling/processing results reported in Section 6.2, but is a 
problem that plagues the results depicted in Section 5.3.) The size of the secondary 
peak (in the frequency domain) is still larger at the lower altitudes (i.e., below 20 
km) but is less apparent now that a logrithmic scale is being used. While pieces 
did break off of the RV during the mission, the observed uniform presence of the 
subsidiary peak at altitudes higher than where this flaking off occurred essentially 
debunks this as a possible explanation for the occurrence of these secondary peaks. 

lUnlike what may be hoped for as a path for cross-corroboration between the l-D results of Section 
5.3 and the 2-D evaluations here of coherence in the frequency domain, Appendix H explains why 
this type of desired cross-corroboration is not possible in general. 
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Figure 6.1: 2-D Plots of PP-, OP-, and Cross-Spectra at 25 km (U) 
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Since equally spaced uniform rectangular sampling was utilized throughout, there 
is no possibility of this effect having appeared because of alliasing occurring due to 
any deleterious effect in one coordinate spilling over into the other, as had originally 
been feared. 

(U)Finally, the main significant observation from the study of [224] which is 
immediately useful to us in our 1-D RV wake modeling effort is depicted in the 1-D 
autocorrelation plot of Fig. 6.2. Here the subsidiary peaks that appear in these 
range gates within the RV wake most likely represent harmonic spill-over from the 
RV body due to interaction with the sidelobes of the ambiguity function. Where 
magnitude dropoff from the first primary peak equals the maximum magnitude 
of the secondary peak at approximately 3 to 4 gates behind the body while the 
ambiguity function depicted in Fig. 5.1 decayed at a faster rate. It appears prudent 
to assume an effective correlation distance of three range gates (that would be used 
in conjunction with the corresponding three OP range gates) to capture the essence 
of the significant correlations present as further pursued in a 1-D model as described 
in the next section. 

(U)A 2-D model implementation would ordinarily have a structure as repre- 
sented in Fig. 6.3. If the application structure is such that it can be demonstrated 
to be separable, then significant implementation simplifications accrue and 2-D 
implementation becomes much more tractable in hardware than the fully general 
implementation depicted in Fig. 6.3. 

6.2 Demonstrating the Multichannel Spectral Es- 
timation Technique to Obtain a Representa- 
tive 1-D Model 

(U)The results of modeling the RV wake using the 1-D LWR spectral estimation 
technique is depicted in Fig. 6.4. As motivated by characteristics exhibited by the 
results of the 2-D investigation, a six channel or six state model was used consisting 
of three contiguous PP range gates in conjunction with the corresponding three 
OP range gates. An underlying fourth-order AR model was also assumed based 
on the historical precedent that it was adequate for Phase 1 BRVAD and also to 
avoid unnecessary model complexity. The use of three wideband range gates is 

2As mentioned in footnote 1 on p. 5,  an AR model order as high as seven had been used in the 
past but was later discarded as not being necessary. 
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also comparable in length to half of a single narrowband range gate, as apparently 
sufficed for Phase 1 BRVAD. (See end of Appendix F for status of accompanying 
plots of associated spectra.) 

(U)A representative implementation diagram is depicted in Fig. 6.5. Since the 
wake keeps moving downwards as the RV descends, it is not necessary to consider 
that correlations from the farthest gate away (i + 2) affect the earlier gates (i .+ 1 
and i), only that the earlier gates affect what occurs in the latter gates. This is a 
phenomenological argument based on the cause and effect of reentry physics, rather 
than on having balanced symmetry in the statistical sense of the contents of gate i 
being correlated with that of gate i + 1 being equally significant in both directions. 

6.3 1-D Computational Burden for Implementa- 
t ion 

(U)Once the four 6 x 6 AR coefficient matrices are estimated, they can be used 
within a model of the form of Eq. 2.5a for the purposes of RV wake emulation 
as driven by zero-mean Gaussian white pseudo-random noise, w(k) ,  pre-calculated 
and inputted from a stored medium. A computational load analysis for an imple- 
mentation of this approach is considered next. The 1-D mechanization of Section 
6.2 (including both PP  and OP effects) for each trio of three contiguous range gates 
is of the form: 

where each indicated matrix-vector product term is equivalent to 36 complex mul- 
tiplies and 36 complex additions which together with the indicated accumulations 
across four constituent components on the rigt-hand side of Eq. 6.1 is: 

4 x (36) = 144 complex multiplies, 

4 x (36) = 144 complex adds, which accumulate from four matrix-vector 
products and the driving vector, w(k), as an additional 5 x 6 = 30 complex 
adds to yield a total of 174 complex adds. 

Each complex multiply is equivalent to 4 real scalar multiplies and 2 real scalar adds 
and similarly each complex add is equivalent to 2 real scalar adds. For emulation, 
it is likely that the threat radar PRF will be matched. For Tradex, this PRF is 
14 x as the time within which all of the above computations must be made for 
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the emulation to be credible. Rather than being constrained to an implementation 
on a classical Von Neumann sequential machine, it is likely that a distributed or par- 
allel processor architecture will be used for emulator implementation. It will likely 
be able to handle at least 4 sets of 6 complex multiplies and adds simultaneously on 
6 separate channels; thus, it initially appears that it must be able to calculate the 
results for this model of the form of Eq. 6.1 for arround 50 to 200 separate gates 
as (worst case) as 1 parallel complex multiply every - = 7 x seconds and 
similarly for complex additions, with an assumed "hard-wired" complex accumu- 
lator also being utilized. This is pushing the leading edge of small scale portable 
digital computing technology pretty hard. It will be demonstrated below that this 
apparent requirement is more severe than actually necessary. The above estimates 
can be mitigated somewhat if the following structural observations are exploited. 

(U)An approach that was initially considered to be extremely lucrative was to 
reduce the estimated AR matrix to its corresponding phase-variable (companion) 
canonical form [257, pp. 82-85] via the numerical technique of [220], which is much 
less of a computational burden in the general multichannel case than computing 
eigenvalues. These companion form matrices are very sparse and are of the form 
of the left-most matrix of Eq. 4.26. The lure in programming up an Active Decoy 
emulator using matrices of this form is that it appeared to involve the least number 
of tap weights to be specified, as a likely considerable savings in programming 
labor, but would still yield the same multichannel power spectra since it represents 
merely a "similarity" transformation, as a change of underlying basis vectors. We 
now refrain from further pursuing use of companion form representation because we 
now recognize that unlike the case of a first order AR process, as treated in Sections 
3.1 and 3.2, the fourth order AR process of the form of Eq. 6.1 must be converted 
to companion form in one fell swoop from its augmented form as represented next 
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Having to now deal with a 36 x 36 matrix rather than with merely 4 6 x 6 matrices 
dampens our enthusiasm for using the companion form for this wake modeling 
application since it would be difficult to unravel even though the underlying lure 
is still there of only having to perform the same number of nontrivial complex 
multiplies in hardware implementation of the corresponding companion form as the 
dimension of the matrices involved (in this case 36). The payoff is still enticing but 
the burden of getting there is now more taxing since it now goes as 362 rather than 
the previously expected 4 x 62. It was also feared that by having to deal with larger 
matrices, the adverse computational effects of roundoff and truncation in converting 
them to companion form would be more severe, thus diminishing the quality of the 
final result. 

(U)One final structural observation further strengthens the argument against 
using the companion form in this particular wake emulation application. When 
converting to the companion form via a transformation that is an effective change 
of coordinate basis, the original identities of the underlying states are lost. This 
would ordinarily not be of much concern if just one  set  of three gates was being em- 
ulated using the companion form technique in the manner described, but more gates 
are needed to adequately represent the RV wake. A techniqe is described below for 
recursive emulation of successive PP and OP radar range gate target return effects. 
from previously emulated ones using explicit identities of the states (as associated 
with particular known range gates) once the designated first three contiguous gates 
behind the RV body are emulated using the structure of Eq. 6.1. The cornerstone 
of the following approach exploits explicit knowledge of the physical identities of 
the underlying states, so to convert to companion form (which looses the identities) 
and then to have to convert back again to recover them would just interfere with 
the procedure to be described below without providing the benefit of an exclusively 
companion form implementation. If the  same  identical t rans format ion could be used 
for each sequence of three contiguous gates to convert Eq. 6.2 to the associated com- 
panion form, then this companion form technique and the approach to be described 
below could be combined, since underlying st ate identities, while altered, would still 
be const ant. However, this constant transformation result is unlikely to occur. 
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(U)A more fruitful approach to computational simplifications for hardware RV 
wake emulation, without seeking recourse to companion form representation, is now 
discussed. An equation of the form of Eq. 6.1 should be implemented in hardware 
coresponding to the first three contiguous range gates (i, i+l,  i+2), then in seeking 
to handle the next three contiguous range gates of concern (i+l, i+2, i+3), notice 
that PP and OP states for gate i+2 and i+3 are in common with the first three 
contiguous range gates considered 3. Therefore, it is only necessary to further 
emulate the new entities representing one additional gate (i.e., the PP  and OP 
components of i+3 using the prior emulation of i+2 and i+3) without emulating 
the effect of gates i+2 and i+3 a second time, otherwise the effects of gates i+2 and 
i+3 would be emulated more than once and would be unrealistic for that reason. 
The additional new gate i+3 can be handled without unsettling redundancy by 
implementing the following subset of Eq. 6.1: 

In this way, new gates are introduced one gate at a time beyond the original firit 
three. The augmenting calculation to handle the next additional range gate beyond 
the original first three contiguous gates only requires 12 x 4 = 48 additional complex 
multiplications and 12 x 4 + 2 = 50 additional complex adds, and two additional 
pseudo-random variables to be used. Of course the AR coefficients used in the above 
Eq. 6.4 are as obtained off-line for gates (i+l, i+2, i+3) rather than those obtained 
for (i, i+l, i+2). The emulation of the effect of including each additional range gate 
can be handled similarly as a recursive extension with this reduced computational 
burden of not having to perform each operation implied in Eq. 6.1 to account for 

3As seen from Fig. 6.6, it wouldn't do to handle gates (i, i+l ,  i+2) and (i+3, i+4, i+5) as 
two completely separate implementations because that would miss the important cross-correlation 
between (i+l, i+2, i+3) and (i+2, i+3, i+4). 
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Dots Represent Radar Range Gates I 
Figure 6.6: Handling Emulation of the Effect of Additional Range Gates without 
Undue Redundancy 

Unclassified 

the effect in the other gates handled. Retallying the total computational burden, 
as calculated from this new perspective, yields a specification of 
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144+N(48) complex multiplies per threat radar cycle, 

Inn- . . . . . . .O  . ... 
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174+N(50) complex adds per threat radar cycle, 

144+N(48) total memory locations for storing AR coefficients, 

where N in the above estimates represents the number of additional gates emulated 
beyond the initial three contiguous ones represented by Eq. 6.1. What N should be 
for Phase 2 BRVAD needs to be decided as a tradeoff between realism and practi- 
cality of implementation. In Section 1.1, it was mentioned in Eq. 1.3 that for Phase 
1 BRVAD only 14 gates were emulated for the earlier narrow-band case because 
this number (in conjunction with the radar range gate size of 15) corresponded to a 
total wake length of 210 meters. In order that emulated RV wakes for the wide-band 
case of Phase 2 BRVAD be just as long, the number of gates to be included in an 
emulation should be " , : ~ ~ , " ~ ~ ~  = 84 or N = 81. It is mentioned again for emphasis 
that many of the calculations should be done in parallel. 
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data possessing both "real" and "imaginary" components. After demonstrating the 
utility of this particular modeling approach on a representative multichannel test 
problem in providing a time-domain state variable model having prescribed auto- 
and cross-power spectra, the results were documented in [187]. In considering the 
benefits versus the drawbacks of this MSF-based modeling approach, it was not 
subsequently applied to actual Tradex radar data because it was realized that doc- 
umenting a computed solution of general complexity in terms of arbitrary numbers 
would be a horrendous task and further a significant preliminary step requires 
that all the data used be first converted into the frequency domain via FFTs in 
order to proceed. The other two approaches to RV wake modeling, discussed below, 
can be applied directly in the time domain to sampled data; thus, representing a 
simplification as they were applied to Tradex mission data. 

(U)The second approach to RV wake modeling (briefly discussed in Section 6.1 
of Chapter 6) was pursued by the Naval Postgraduate School (NPS) subcontractor 
using relatively recently emerging 2-D random process or random field techniques 
in now treating the RV wake as a more general 2-D space-time process. Special 
purpose software was developed and successfully validated with test problems and 
subsequently applied to Tradex mission data for five (5) different quantized alti- 
tudes of interest in providing clear 2-D estimates of spectra and cross-spectra. The 
benefit of explicitly modeling gate-to-gate cross-correlations was investigated as well 
as jointly handling Principal Polarization (PP) and Orthogonal Polarization (OP) 
data as reinforcing information whose simultaneous use more realistically depicts an 
actual RV wake. As aggreed upon, Mean Squared Coherence (MSC) functions were 
evaluated in conjunction with this investigation as a convenient, easy to interpret 
gauge of the inherent cross-correlation present. Results indicated that gate-to-gate 
cross-correlation that is present is just slightly more than could be reasonably at- 
tributed to be due solely to the Tradex ambiguity function alone. It was also nec- 
essary to skip five gates behind the RV body to prevent energy from the body from 
spilling over into the range gates of the wake and unacceptably corrupting/tainting 
evaluation results. These results are documented in the NPS Report [224]. While 
the computational burden of implementing a completely general 2-D model for the 
RV wake modeling application was shown to be very large and probably imprac- 
tical, the structure of three novel possible simplifications were investigated under 
the assumption that the RV wake signal returns are a "separable" 2-D process, 
which has considerably lower implementation demands for wake emulation. It re- 

lBut not an obstacle for problems with "nice" numbers, such as were used for illustrative purposes 
in worked (hand calculated) and machine computed examples in [187]. 
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mains to determine whether the RV wake is in fact truly separable 2; however, an 
NPS graduate student is further pursuing this issue along with alternative practi- 
cal implementation strategies in his thesis research, using this classified data, with 
conclusions that should be available soon. 

(U)The third approach to RV wake modeling, that is the topic of this report, 
investigated the utility of two linear AR-based spectral estimation approaches, as 
generalized to the multichannel case, being the Levinson-Wiggins-Robinson (LWR) 
algorithm and the Nuttall and Strand algorithm (that are described in Chapter 2 
with results demonstrated in Chapter 3 and in Section 6.2 of Chapter 6). Between 
these two AR-based techniques, the conclusion of an earlier investigation [225] was 
revised based on the evidence to favor use of the LWR implementation as perform- 
ing better in this particular wake modeling application by having fewer occurrences 
of spiky cross-channel spill-through and more faithfully estimating phase of the 
( 6  complex" cross-spectrum. This multichannel approach can be easily generalized 
without change to encompass many channels if it were demonstrated that the en- 
hancing RV wake target cross-correlation effects exhibited by adjoining additional 
adjacent radar range gates are significant and worth exploiting by simultaneous 
inclusion in a more massive joint model; however, to date, use of just three chan- 
nels appears to suffice and use of a larger model would be a greater computational 
burden in seeking an implementation, apparently without offering any additional 
benefit in accuracy or realism. In Chapter 5, variations were considered in how 
statistical results summarizing the evaluation of gate-to-gate and/or PP/OP cross- 
correlation effects are best presented and, to that end, MSC function techniques 
were also utilized. Bounds on expected accuracy had been derived earlier (as re- 
ported in Appendix A) as one of the novel contributions of this investigation in 
order to obtain accurate one-sided confidence intervals about the theoretically ex- 
pected MSC of zero that is anticipated if there were no cross-correlations between 
range gates beyond that caused by the radar ambiguity function alone. Almost all 
of the gate-to-gate cross-correlation evaluation results of Chapter 5 fell within this 
80%-confidence interval bound except for the prevalent anomalous lower frequency 
results attributable to RV body energy spilling over into the range gates associated 

2Seeing [232] when it is finally available may help. 
3The more computationally challenging and numerically sensitive ARMA-based spectral estima- 

tion techniques were not pursued within this investigation for the reasons detailed in Chapter 4. 
Instead, a novel approach was provided for reexpressing an arbitrary ARMA process as a more 
tractable AR process of slightly higher dimension and applied, as explicitly demonstrated in two 
representative numerical examples in Chapter 4 of [187], for the case of multichannel ARMA pro- 
cesses in order to extract an equivalent "observable" and "controllable" AR process representation 
of "minimum degree". 
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with the wake (when five gates behind the body were not skipped as they should 
have been). 

(U)The investigation of this third approach culminates with the illustrative eval- 
uation of AR coefficients in Section 6.2 of Chapter 6 for a six state or six channel 
model of the RV wake using returns for three (3) contiguous PP range gates in 
conjunction with OP returns for the same three (3) range gates. An evaluation 
of corresponding AR-coefficients was performed using the Tradex mission data at 
a representative altitude. Motivation is provided in Section 6.2 for how this par- 
ticular model was selected as well as the assumed order of the underlying vector 
AR process and this report further describes the complete methodology used in 
the evaluation. This documentation includes a consideration of algorithm selection 
(Chapter 3 and Sections 1.1, I.3), software implementation (Appendices D, E), soft- 
ware validation history (Appendices F, G), and all other pertinent information that 
should be useful. 

7.2 Detailed Considerations and Further Recorn- 
mendat ions for the Approach of this Invest i- 
gat ion 

(U)The computational results displayed in the earlier Chapters 3 and 5 of spectral 
estimation experiments are those that were originally performed over a year ago. 
Further more extensive numerical evaluation and step-by-step cross-comparisons 
between comparable methods or alternative implementations confirmed their cor- 
rectness of implementation (as discussed in detail in Appendices D, E, F, and G) 
and also served to fill in missing data relating to signal processing particulars that 
were needed such as providing the sampling rate that is used and the length of data 
segments that are processed. With a more detailed scrutiny and sorting through 
of prior results and placing them in convenient juxtaposition in Chapter 3 to aid 
in performing a meaningful cross-comparison, the conclusion of an earlier investi- 
gation [225] was revised to favor use of the LWR implementation as performing 
better in this particular wake modeling application by having fewer occurrences of 
spiky cross-channel spill-through and more faithfully estimating phase of the "com- 
plex" cross-spectrum both for simulated data and for Tradex RV wake data. This 
new resumption of the prior investigation went further to also obtain additional 
results as well as providing a more refined simulation methodology for initial soft- 
ware algorithm calibration. In particular, the specific AR coefficients, as obtained 
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as intermediate results from the best performing LWR multichannel spectral esti- 
mation approach, are prominently displayed in Section 6.2 of Chapter 6 as our main 
modeling goal. Although joint multidimensional confidence regions on the coeffi- 
cient matrices are preferred but are unavailable due to lack of existing techniques, 
confidence intervals for each row of the AR coefficients can be calculated using one 
of the recent more tractable techniques of either [I91 or as a C-R lower bounding 
technique either as described in [I501 or as a bound based on the "unknown-but- 
bounded" technique originally developed by F. C. Schweppe ([252], [216, pp. 21-29, 
ff. 76, ff. 1541, [253], [254]) and refined for AR-based spectral estimation by Norton 
([213, subsections 8.6.1, 8.6.21, [23]), as summarized in Appendix B. 

(U)Results of coherence function calculation, as have already been performed on 
the available radar data, are displayed in Sections 5.3 and 6.1. Additional data-base 
experiments are recommended for refined validation of remaining hypothesis about 
the data, such as will be described below. 

(U)One way to determine if range correlation is due entirely to the effect of the 
radar's transmitted signal is as follows. If the wake is indeed a white noise process, 
then the wavenumber spectrum is proportional to the squared magnitude of the 
radar transfer function. Thus, if the wake is truly uncorrelated, we should see the 
exact same wavenumber spectrum at each altitude and even for different missions! 
This is a characteristic whose existence can be determined or verified by computing 
and examining spectra over several different altitudes and/or missions. 

(U)An approach for handling the important but temporary turbulent regime of 
Boundary Layer Transition (BLT) before laminar flow is reestablished and where 
the associated random process is nonstationary is offered in Section 2.3 of [I871 in 
terms of time-varying Matrix Spectral Factorizations and time-varying linear system 
realizations, but is probably not too attractive as an easily tractable implementation 
for emulation. However, a handy approach for handling or faithfully modeling 
general transitions between altitudes as the RV descends is to use cubic spline 
interpolation on the reflection coefficients as determined at the quantized altitudes. 
This "spline interpolation approach'' is apparently beneficial even over BLT. 

(U)Some considerations and technical perspectives of fairly recent vintage are 
offered in Appendix C on how to further gauge the goodness of emulated RV wake 
signatures in quantifying their degree of distinguihability from actual RVs. These 
can be performed either in terms of standard K-factor evaluation or as refinements in 
divergence measure evaluation or, more radically, in terms of bispectra and trispec- 
tra evaluation criteria that have recently returned to signal processing/hypothesis 
testing prominence. Practicalities of on-line RV discrimination using these novel 
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higher moment spectra are briefly discussed in Section C.2. 
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of efficient algorithmic implementations [72, Chapt. 111. Even the multidimensional 
random field case (e.g., 2-D) (with strong links to the multichannel case [log], [159]) 
has been described in [89, Sect. 6.51. The numerous alternative approaches being 
available and numerous auxiliary algorithms being offered is similar to the situa- 
tion that exists in decentralized Kalman filter developments [69, Sec. IV], [113]. 
The existence of the tutorial discussions mentioned above has made our job easier 
in sorting through and picking the ones'that we feel are most appropiate for the 
Tradex radar application. 
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Appendix A 

Compensating the Bias of 
Coherence Estimates and 
Providing Associated Confidence 
Regions 

(U)The magnitude-squared coherence (MSC) or generalized correlation of two 
signals x and y (perhaps from different channels representing different polarizations 
of PP/OP or from different range gates for this radar application) is defined by ([8, 
pp. 1499-15011, [10],[11]): 

C =  ISx~(f:)l~ , where 0 5 C 5 1 
J I S ~ ~ ( ~ ) I ~ I S ~ ( ~ ) I ~  

where Sxy(f) is the cross-spectrum and S,,(f) and Sy,(f) are the auto-spectra. 
The coherence is a useful quantity in a variety of applications, including time delay 
estimation [8], [12] so important for sonar and sonobuoy arrays. 

(U)In [12, Sect. 21, a generalized framework for cross-spectral power estimation 
for two stationary processes is postulated as consisting of the following seven steps: 

1. Partitioning each time-limited realization of both random processes into N 
segments, where segments may be overlapped; 

2. Multiplying each segment by a time-weighting function (possibly unity or a 
rectangular weighting or some more exotic rectangular weighting such as, for 
example, a Hanning weighting); 
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3. Computing discrete Fourier coefficients (DFC) from each weighted segment via 
an appropriate algorithm such as the Cooley-Tukey FFT after each segment 
has been appropriately appended or padded with zeros to achieve a common 
power of two data length; 

4. Multiplying DFCs from one segment by the complex conjugate of the DFCs 
for the corresponding time sequenced segment of the other process; 

5. Averaging of resulting complex products over the N available segments; 

6. Fourier transforming the resultant spectral estimates into the correlation or 
lag domain where they are multiplied by a lag-weighting function (possibly 
unity); 

7. Transforming results back into the frequency domain. 

Alternatively, the above steps 6 and 7 may be replaced by convolution in the fre- 
quency domain, depending on the application and on which alternative comput a- 
tional path was the lesser computational burden. 

(U)Carter then points out in [12] how three existing alternative spectral analysis 
techniques, being those of : 

Blackman and Tukey; 

Weighted Overlapped-Segment Averaging (WOSA) also referred to as Welch's 
technique; 

Lag-Reshaping technique of Nuttal and Carter; 

each fit into the above described generalized framework. Additionally, [12] points 
out that these resulting estimates (and others) have the same statistical properties 
regarding the size of means and variances. 

(U)Since much is known about the statistical properties of the MSC l ,  the MSC 
can be used to measure the benefit of including a consideration of the cross-terms 
in multichannel spectral estimation. Results from previous work by Carter and 
Nuttall are based on Goodman's distribution as used in [6], which makes several 
assumptions about the estimated spectra. Additional alternatives not pursued here 
are discussed in [17]. 

lSee [246] for most recent result that avoids need to assume Gaussian statistics for even one of 
the two channels of concern. Also see [244] and [245]. 
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(U)This Appendix discusses Carter's distribution for the MSC when measured 
by the method of averaging periodograrns. We verified this implementation for 
the case of short data length (32 samples - a condition which appears to be so 
short as to violate the assumptions of Goodman in [6]). We chose to remove the 
bias by a method that is apparently more reliable than the method in [5] because 
it guarantees accuracy for all cases (although it is a more severe computational 
burden). The confidence boundary used here for the MSC estimate differs from 
that of [62] in that it minimizes the width of the confidence interval. This feature of 
this confidence boundary may be a desirable aspect favoring its use in hypotheses 
testing applications of the type pursued here. 

A.l Estimating MSC by Averaging Periodograms 

(U)Let xb,, ybp, b = 1,2, . . . N ,  p = 1,2, . . . M be two signals. For the radar applica- 
tion, b would be the burst number, and p would be the pulse number. In general, 
N can be considered to be the number of independent data segments, and M is the 
number of data samples in each segment. When xbp and yap are jointly stationary, 
then the coherence can be estimated by the method of averaging periodograms [67]. 
Let 

where W(p) is a windowing function (i.e., Xb and I$ are the corresponding FFTs 
of the windowed xb,, yap). The coherence estimate is 

The estimate in Eq. A.3 requires that N be greater than 1, however, the $ terms 
in the numerator and denominator of Eq. A.3 effectively divide out. Choosing N 
and M is a tradeoff between achieving stability and having adequate resolution. A 
data record divided into N segments of M data points each will achieve reasonable 
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resolution for &(k) if M is large, but having too large an N decreases the variance 
of C. Nuttall recommended that segments with 50 percent overlap with adjacent 
segments should be used since apparently segments even with as much as 50 percent 
overlap still behave as if they are effectively independent. 

(U)Carter clarifies the situation in [12, Sec. III.A] with the following explanation 
of the trade-offs involved: 

Spectral resolution of the estimates varies inversely with the segment 
length T. Proper weighting or 'windowing' of the T-second segment is 
also helpful in achieving good sidelobe reduction. On the other hand, for 
independent segments with ideal windowing, the bias and the variance 
of the MSC estimate vary inversely with the number of segments, N. 
Therefore, to generate a good estimate with limited data, one may be 
faced with conflicting requirements on N and T. Segment overlapping 
can be used to increase both N and T. When the segments are disjoint, 
that is, non-overlapping, we call the number of segments nd. As the 
percentage of overlap increases, however, the computational requirement 
increases rapidly, while the improvement stabilizes owing to the greater 
correlation between data segments. 

In Figs. 9 and 10 of [12], plots are provided, respectively, of the bias and variance 
incurred in estimating coherrence as a function of the percentage of overlap utilized. 

A.2 Statistics of 6 
(U)Carter [63] gave the form of the probability density function of 6' under the 
assumption that x and y are stationary, Gaussian, and have M independent (non- 
overlapping) bursts. (For additional perspective into the utility of pulse trains or 
bursts in radar applications, see [121].) Assume, in addition, that the number 
of samples (pulses) is large enough to ensure good spectral resolution, and that 
the segments are perfectly windowed so that power from the kth frequency bin 
does not leak into surrounding bins. These assumptions are the same as those 
invoked by Goodman for his distribution of the spectral density estimates, and 
the distribution used by Carter in [6] is further derived from Goodman's. If these 
conditions are satisfied, the probability density function (pfd) for the MSC is (using 
Drake's notation [64]): 
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where 

N  = the number of bursts, 
~ F I  = Hypergeometric function([59], [16, App.], [2], [15], [131, Ch.181) 

for N  2 2, simplifies to 

zF1(1- N, 1 - N ;  1; cC) = 
n=O 

(A.5) 

and (z), = Pochammer's symbol, defined by ::&.- *! .. g:' (z)o = 1 .. . . . 
9 ,  ... : . . 

(z), = Z(Z + 1)(z +2)...(z + n  - 1) . .;:.- , - .  ,,,: i , . : . . ,  .* . a; 

The corresponding cumulative distribution function (cdf) is as follows: 

Eq. A.4 applies to Eq. A.6 for N strictly greater than 2. Since both 

the general shape of the pdf lies between 0 and 1 and has a peak in the vicinity of 
C, the true MSC. (Two additional alternative representations of the pdf of compa- ' ..- . . 

. 1- 

rable complexity also involvingthe hypergeometric function of the same order,.a~~;:~it':~. -;,2 
" i  .- , .  ,.> , '. '9, 

provided in [12, Table :I.] .) Figs. A. 1 and A.2 depict the pdf and cdf of the.+&rnate .'.... #- 

, .:+: ? C for the case N = 3, and for a span of values of C. -. L . I l t l  - . ., .- .. 

(U)The 1" moment or mean of c is [63] : 
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The bias is largest at C = 0 (where actual Bias = k) and decreases monotonically 
with distance from zero to a minimum of zero when C = 1 [12, Sec. III.B]. Nuttall 
gave an approximate expression for the bias in [5]. However, we observe that the 
bias can be directly removed by solving for C in the RHS of Eq. A.8. This is much 
more of a computational burden, but it has the advantage that the error can be 
guaranteed to be small even in cases where the assumptions in [5] may not be valid. 
Since c and N are known, it follows from Eq. A.8 that 

Since Eq. (A.9) is a polynomial in C, we can solve for C, the unbiased estimate of 
the true coherence by truncating the summation at (M - 1) terms to yield an Mth 

order polynomial, and then dropping the quantifiable remaining error term so that 
the absolute error incurred in using this approximation is known. To achieve this 
goal, a useful decomposition is: 

where 

00 n ! 
ERR = (N-l)N! cn+1 

n= M (N + 1 +n)! 

ERR is upper bounded by noting that 

n ! < 1 
for n, N 2 0 

(N + 1 + n)! - (N + I)! ' 

(A. 11) 

Equality in Eq. A.12 only occurs when n = 0, which never happens in Eq. A.ll. 
Therefore, 

ERR < (N  - 1)N! " C cn+l 
(N + n=M 

(A. 13) 
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Since the bias is positive, C < C, so that all the more: 

N - 1  " 
ERR <- C &+' 

N + l n = M  

- - -  ( N  - 1) (e"+;) - 
N + 1  1 - C  

(A. 14) 

Eq. A.14 is the desired final form. Solving for Eq. A.14 for M we find that it must 
be that 

The M in Eq. A.15 is the minimum order of the polynomial in Eq. A.14 needed 
to ensure that Eq. A.10 is off by no more than ERR. While a measure of relative 
error (as absolute error/true coherence value) is perhaps more desirable near zero 
values of C, it is unfortunately intractable and unavailable. Fig. A.3 shows a plot 
of the debiased estimate of (? versus that measured by actually estimating c as 
averaged for various values of N,  the number of bursts for this radar application. 
In [12, Table 21, both exact and approximate expressions are provided for the bias 
and the variance of 6 in terms of the number of data points N. 

A.4 Verifying Carter's PDF 

(U)Standard tests for the goodness-of-fit to a particular postulated pdf are the 
Kolmogorov-Smirnov and the Chi-Squared test [65]. The Kolmogorov-Srnirnov test 
is used here because it is known to sometimes yield good results for smaller sample 
sizes such as we are constrained to consider for this particular radar application. 
For a brief discussion of the relative merits of using the Kolmogorov-Smirnov test 
versus the use of Chi-Squared test, see [66]. The Kolmogorov-Smirnov test statistic 
is the maximum error between the measured cumulative distribution function and 
the expected cdf (corresponding to the theoretical cdf or "null hypothesis") as 

D = max IS(&) - F&~(~,-,)J ; 
60 

where 

D = Kolmogorov - Smirnov statistics 
number of samples<C ~ ( 6 )  = tot, n-bw of 

F&<(C~) = CDF of the null hypothesis 
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(U) Figure A.4: Kolmogorov-Srnirnov distribution, for large N 

~ ( 6 ' ~ )  can be thought of as an estimate of F&,(&). Each estimate here is an average 
of N radar bursts. 

(U)Consider Fig. A.4. In the limit as N gets large, fD(Do), the pdf of the 
Kolmogorov-Smirnov test statistic is observed to approach the Chi-Squared distri- 
bution. For- a set of estimates, if the statistic Do (defined in Fig. A.4) corresponds 
to an a < 0.05, that set of estimates is said to have failed the test at the 0.05-level of 
significance (i.e., the conclusion is that the samples were not distributed according 
to the null hypothesis). 

A.5 2-Sided and 1-Sided Confidence Bounds 

(U)In Fig. A.5, consider the pdf for any statistic, s ,  in general and any two points, 
sl and s2, selected in such a way that the area of the pdf between them is (1 - a).  
Then this is a valid 100(1 - a )  percent confidence bound for s. In reference [62], 
the confidence bound is selected so that the area of both the left and right tails is 
a/2. For the purpose of relating confidence bounds to hypothesis testing, we are 
interested in a confidence bound where fs(sl) = fs(s2) = p, (see Fig. A.5). For 
pdf's that have one peak, such as the pdf for C, this corresponds to choosing a 
confidence bound that minimizes Is2 - s l ( .  The result is shown in Fig. A.6 for 
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Appendix B 

Alternative Methodologies for 
Gauging the Accuracies of AR 
Coefficient Estimates 

(U)The prudent analyst always seeks to quantify the degree of confidence asso- 
ciated with final results. To this end, it is desirable to have variance estimates or 
confidence regions specified for each of the coefficient matrix estimates, a!'), that 
are associated with multichannel LP approaches to spectral estimation similar to 
those existing bounds of [213, subsections 8.6.1, 8.6.21, [23] for ARMAX (Autore- 
gressive Moving-Average-Exogenous) models. An acceptable alternative as a "test 
of the entire pudding" would be to quantify the uncertainty incurred in the subse- 
quent calculation of the multichannel spectral estimates for which estimates of the 
coefficient matrices were necessary intermediate results. As a class, spectral esti- 
mation results obtained from one parametric model-based approach to LP should 
not be drastically different from those of a similar approach to LP (viz., [27]). 

(U)Historically, considerat ion of estimating the bias and variance of spectral 
estimates has been treated in [20] and [21], respectively. For the particular LP 
estimation approach of MEM, confidence intervals ([18], [19], [263]) have been de- 
veloped for the resulting intermediate AR parameter estimates but only for the 
scalar single channel case. The recent extension in [19] makes such confidence in- 
terval calculations more tractable by circumventing the prior requirement in [18] of 
having to integrate over a two-dimensional generalized Student's-t distribution in 
transitioning from the underlying joint pdf (being a function of the true but un- 
known values of the AR parameters being estimated (also see [24])) to the goal of 
having confidence regions. The results of [I91 are also claimed to be applicable to 
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maximum entropy wavenumber estimation as well (of interest if the 2-D modeling 
approach reported in [224] is adopted) but is still available only for the scalar case 
rather than for the multichannel case as we are faced with in this multichannel 
radar application. 

(U)Historical approaches to using Cramer-Rao (C.-R.) lower bounds to conser- 
vatively gauge the uncertainty incurred in AR parameter estimation encountered a 
barrier of having to perform multitudinous differentiations in order to obtain the in- 
termediate result of computing the associated Fisher information matrix. However, 
the recent result of [22] circumvents this prior computational burden via a neat iden- 
tity that allows mere shift-matrix operations to suffice (as long as the underlying 
process is stationary). Unfortunately, the form of the C.-R. bound utilized in [22] 
assumes that the AR parameter estimator being utilized is unbiased, which perhaps 
is not the case for our radar application. (See [107], [I101 for discussions of the form 
of the C.-R. bound that properly acknowledge and handle possible biasness in the 
estimator.) Another historically exact expression for Cramer-Rao lower bounds on 
AR coefficient estimation is credited to Donald Tufts [250] and is derived for both 
the AR and ARMA case in the recent textbook [247, pp. 211-213, 302-3051. 

(U)Another augmenting experiment (involving simulated data), beyond what 
was already presented in Section 3.2, is to determine the effect by calibrating the 
response of the alternative multichannel AR-based spectral estimation algorithms 
with respect to varying intensities of additive Gaussian white measurement noise. 
In this way, the robustness of these high resolution algorithms to the effect of noise 
being present (and, moreover, its response to actual mismodeling in assuming an 
AR-process to be present, when, in actuality, it is an ARMA process as discussed 
further in Chapter 4) can now be gauged as to how well it performs and at what 
intensity level of the noise do the resulting estimates of the AR coefficients become 
unacceptably degraded. Results of these numerical experiments (offered in [I 791, 
[185], [255], and [256] so that there is no longer a need for us to perform them 
ourselves l. at some expense) can be compared for proximity to the above described 
asymptotic C.-R. lower bound for additive noise being present, as calculated using 
the technique of [150]. While the actual radar application of interest here is not 
noise-limited since target returns have an extremely strong SNR advantage, it is 
in fact time-limited or of constrained data length. It is proposed that a buy-off of 
sorts can be performed to still use the C.-R. lower bounds of [I501 in this RV wake 
modeling application, where white additive measurement noise being assumed to 

lAn awareness of the existence of these results avoids the expense of an unnecessary duplication 
of effort in repeated evaluation. 
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be present makes the lower bound higher than normal, in place of not being able 
to have enough data to achieve asymptotic C.-R. bounds, which also makes lower 
bound results higher than normal. The correspondence could be experimentally 
calibrated but awaits evaluation by the user who makes the final decision on which 
of the approaches to use, either 1-D or 2-D; otherwise, it would just be a wasted 
exercise to determine a 1-D refinement if the 1-D approch was not used. Additional 
benefits of pursuing the evaluation technique of [I501 is that an explicit formula for 
the lower bound is available that does not involve numerical integration, as most 
other evaluation approaches require. Indeed, in some applications one is interested 
not so much in the AR parameters themselves as in some useful function of these 
parameters such as in the center frequency, bandwidth, and power of narrowband 
spectral lines. Another beneficial aspect of the results of [I501 is in providing a 
simplified methodology for computing C.-R. lower bounds on such general functions 
of the AR coefficients (and additive noise intensity). 

(U)The "unknown-but-bounded" approach of [252], [216, pp. 21-29, ff. 76, ff. 
1541, [253], [254] as converted to apply to AR coefficient estimation in [213] is not 
recommended for further pursuit for the RV wake modeling application for reasons 
provided in [23] relating to disappointments in performance in practice. Again 
knowledge of these results avoids unnecessary duplication of effort. 

(U)The topics of Appendices B and C, while germane to the task of modeling 
and evaluating the model for RV wakes, is more in the nature of R & D to be 
utilized further downstream. The issues in these two Appendices B and C are more 
like "icing on the cake" and recieve less emphasis in this report than the higher 
priority primary concerns addressed throughout the remainder of this report. 
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Another area of concern in the calculation of K-factors is when unequal variance 
situations sometimes arise, where K-factors are not appropriate (however a stan- 
dard tractable approximation is to average the two differing variances and take the 
result to be the common variance that exists for both situations) [239, p. 1051, and 
to then proceed in the usual manner. 

(U)New divergence measures have recently been developed or modified to gauge 
spectral proximity of amplitude and phase components to a specified goal or tem- 
plate. Additionally, higher order spectral characteristics are now beginning to be 
utilized or exploited in practice such as bispectrum and trispectrum methods which 
relate, respectively, to third- and forth-order moments. Unlike most other statistical 
and random process techniques, these higher order techniques only apply to pro- 
cesses that are non-Gaussian, as are more likely to be encountered in actual target 
data rather than by resorting to a perhaps untenable assumption of Gaussianess. 

(U)Sophisticated measures for determining whether significant cross-correlation 
exists between channels (as between contiguous range gates or between primary par- 
allel polarization and orthogonally polarized target returns) can be based on metrics 
such as the well-known measures of Chernoff coefficient, Bhattacharyya distance, 
I-divergence measure, and J-divergence measure, all to be further described below. 

C.l  Analytic Formulation of Four New Measures 

(U) While the exact evaluation of probability of error in statistical hypotheses 
testing situations is frequently intractable l, two well-known bounds that bracket the 
elusive exact probability of error, P,(m), based on m-data samples, xm, in decisions 
associated with signal detection and pattern recognition applications (where fl (xm) 
and f2(xm) are the underlying pdfs of xm under hypotheses Hl and Hz, respectively, 
and T and (1 - T) are the corresponding prior probabilities) are known to be [33]: 

1 1  2m Z 
- - - [I - 4a( l -  T) [Bm(0.5)] ] 5 P,(m) 5 [ ~ ( l  - a)] * [Bm(0.5)lm (C. 1) 2 2 

and 

'A detection/hypothesis-testing situation that is surprisingly tractable as a departure from the 
usual situation where frequently one is elated to be able to evaluate even mere coarse bounds is 
reported in [248]. 
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where, in the above, Bm(t) is the Chernoff coefficient: 

for 0 5 t 5 1, and the J-divergence is: 

(U)The quantity -mlogBm(0.5) in the above is denoted as the Bhattacharyya 
distance and a related distance measure is the I-divergence defined as: 

(U)The above described four measures have already been asymptotically sim- 
plified in [33] and can be used to distinguish between two comparably dimensioned, 
covariance stationary Gaussian processes on the basis of m discrete time samples 
as further discussed in [33], while other measures are still being further refined [34], 
that employ a detailed consideration of the adequacy in matching the amplitude 
and phase component of the spectral function that is the goal. Moreover, higher 
order spectral characteristics ([35] - [44]) and remnants can also be checked for an 
adequate match. 

C.2 A Resurgence of Interest in Bispectra and 
Trispectra Estimation as More Sensitive Dis- 
criminators than Just Spectral Estimation 

(U)The bispectrum of a stationary process is the Fourier transform of its third 
moment sequence [39] (which can be utilized in a measure of skewness) and, corre- 
spondingly, trispectra can be related to fourth order cumulants (or semi-invariants) 
[43] which, in turn (as a measure of flattening, excess, or "kurtosis"), relate to 
fourth moments of the system or random process output sequence. (See [103, pp. 
15-20] for a clear treatment of how to handle transitioning between moments and 
cumulants.) Although these bispectrum techniques have been around since the 
middle 1960's and before [41], and [44]), such higher moment techniques 
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are being increasingly advocated for use in extracting elusive phase information 
about a random process and in performing more accurate parameter identification 
of non-Gaussian Autoregressive (AR) processes. Such techniques are being looked 
into by sonar practitioners [42]. As a reversal of the usual situation for statistical 
techniques, these new higher moment techniques do not usually work well when the 
underlying process is Gaussian, but have performance that improves markedly as 
the underlying random process departs more radically from Gaussianess (as may be 
explicitly revealed using the techniques of [142], [I291 in the same manner as have 
already been applied via an available FORTRAN program in [132]). Unfortunately, 
the variances of these higher order spectra for the same length of data are consid- 
erably worse by being higher than that of conventional power spectra, as would be 
expected. In seeking to use higher order spectral techniques, a greater length of 
data is needed in order to obtain comparable reasonable accuracy of results. 

(U)Multichannel higher moment techniques have already been developed (e.g., 
[39]) but, to date, have internal constraints imposed that the dimension of the 
output must be identical to that of the input for these multi-inputlmulti-output 
(MIMO) systems. However, this excessive constraint will probably be soon lifted in 
the future since it is not a physical constraint but a mathematical one imposed for 
the convenience of the analyst in the assumption of [39]. Additional insights and 
developments on this important topic are still evolving (e.g., [38], [45], [102]). A 
need apparently exists in how to modify/expand on all of the above bispectra and 
trispectra results in the manner indicated in [48], [I641 in order to obtain comparable 
results for the complex processes that arise in coherent radar applications involving 
complex covariance matrices and power spectra. The main obstacle to adequately 
handling the complex case is to settle on a convention that can be consistently 
adhered to as in, for example, the handling of conjugation for third moments as 
discussed further below. While for second moments (as are exclusively used in 
standard spectral estimation) there is no ambiguity in using the conjugation for 
the second term in order that the result be all real; however, for third moments, 
the conjugation can be anywhere between three likely candidate locations with no 
real preference dictated by any other physical or mathematical constraints being 
available to invoke, thus recourse must be made to adopting a common convention 
instead. The appropriate convention to use is still being debated by specialist (as 
reported by Nikias at the Minisymposium on ASSP in Boston, MA in May, 1987). 
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Appendix D 

Capabilities Designed into the 
New Simulator 

(U)Within this investigation a new state-variable based Monte-Carlo simulator 
for AR process emulation was developed. The new simulator possesses the following 
new features: 

Incorporates "exact discrete-time equivalent of continuous-time white noise". 

Offers option of using the more efficient direct calculation of steady-state ini- 
tial conditions corresponding to stationary behavior of the underlying random 
process (without having to iterate to steady-st ate to avoid the nonstationary 
initial transient). 

Offers option of having additive (stationary white Gaussian) output measure- 
ment noise present (thus creating a type of ARMA process). 

Doesn't require use of only diagonal covariances for noises or for initial con- 
dition covariances. 

If covariances are not diagonal, the program internally automatically checks to 
verify that the covariances possess the requisite "positive definiteness" prop- 
erty (via use of the Singular Value Decomposition (SVD) in the manner in- 
dicated in [105, p. 5041, [178], [108, Section 111, p. 7131, [106, Section 111, p. 
63]), otherwise diagonal covariances are merely verified not to have zeroes or 
negative numbers on the principal diagonal. 

Unclassified 



Unclassified 

Calculates transition matrix by more accurate Pade approximation (offering 
two validated options along these lines) rather than through use of a Taylor 
series expansion. 

Can handle nonzero means for noises and initial conditions. 

Outputs final pseudorandom noise (PRN) seed value to enable continuity of 
use via allowable dovetailing of output sample functions if further prolonged 
sample function history is subsequently pursued (which uses this PRN seed 
during subsequent start-up). 

Each of the above mentioned features will be elaborated on further for clarification 
and to explain why having each new feature is important in this investigation. 

D. 1 Discrete- time Equivalent of Continuous- time 
White Noise 

(U)To avoid discrepancies between a continuous-time formulation and the (of 
necessity) discrete-time implementation on the digital computer, the following re- 
finement was pursued. To ignore the discrepancy or to invoke a rather well-known 
approximation, discussed at the end of this subsection, would incur an uncalibrated 
error that would mask the aspects of the software implementation of the spectral 
estimation algorithms that we seek to verify as our intermediate goal. 

For a time-invariant linear cont inuous-time st at e-variable represent ation in terms 
of the matrix triple (F, G, C) as 

Y ( t >  = C z(t) 

with corresponding system transfer function matrix 

the equivalent discrete-time reformulation in terms of the matrix triple ( A ,  B, M) 
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with corresponding system transfer function matrix 

where z in Eq. D.6 is the 2-transform variable but in Eqs. D.l, D.2, D.4, and D.5 
is just notation for the system state variables with x(t) as the input. 

(U)An initial investigation of posing the continuous-time problem as an exact 
formulation in discrete-time proceeds as follows. The form of the solution to the 
differential equation of Eq. D.l is: 

In particular, for the upper and lower limits of the above integral being 

A = constant incremental step - size , (D.10) 

the solution of Eq. D.7 corresponds to the following recursive iteration in discrete- 
time: 

which, under the further assumption that x(r) is essentially constant over the time- 
step from any k A to any other ( k  + 1) A, yields: 

Upon making the change of variable 

r = r l + k A  

and substituting into Eq. D.12, yields: 
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The expression in Eq. D.14 is the most general form of the discrete-time formulation 
that corresponds exac t ly  to the continuous-time formulation of Eq. D.7 except for 
the minor error incurred in assuming X(T) to be essentially constant over each small 
stepsize A. In the case where the continuous-time input x(t) is independent, white, 
Gaussian process noise of cont inuous-time covariance intensity level, Q, to have 
exac t  adherence without any approximation incurred, the discrete-time formulation 
should be 

z(k + I) = [ eFA]  z(k) + [eF A ]  x'(k) (D.15) 

where 
x'(k) = zero - mean Gaussian white noise (D.16) 

having discrete-time covariance intensity level. ([234, p. 4- 127b], [176, p. 2701): 

where the above Kronecker delta is defined as 

1 if k=j bkj = 
0, otherwise. 

The above Qd in Eq. D.17 is the appropriate discrete-time process noise covariance 
level to use to have exact  agreement between the discrete-time mechanization of 
Eq. D.15 and the the continuos-time formulation of Eqs. D. 1 or D.7. A well-known 
approximation for Qi [238, pp. 83-84] (due to Kalman) which is sometimes used is 
to take 

however, the deleterious effect of invoking this approximation is uncalibrated and 
it can easily be seen to be obviously unsatisfactory by considering the case of a 
system with a diagonal continuous-time Q, but a nondiagonal system matrix, F. 
The approximate Qi, defined above, is consequently merely diagonal while the exact 
Qd of Eq. D.17 is definitely nondiagonal. See calculations of Eq. G.5 for Test Case 
2 in Appendix G as a concrete example. 

D.2 Direct Calculation of Steady- State Initial Con- 
ditions 

(U)A stationary linear system must not only have a system description that has 
matrix parameters that are time-invariant, but must also be initialized with the 
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proper initial conditions that correspond to its steady-state behaviour, otherwise 
an initial transient occurs within the computations that must first be endured and 
subsequently skipped before truely stationary behaviour of the system is achieved. 
Rather than have to iterate Eq. D.15 to steady-state (which is an approach that 
converges to the desired answer at only a linear rate, thus being fairly expensive 
in terms of computational resources expended), two different approaches are uti- 
lized here for calculating the steady-state mean and covariance associated with the 
primary iterative mechanization of Eq. D. 15 for Monte-Carlo simulation. The 
approach implemented for the computation of the steady-state covariance is that 
developed by Kleinman [235], [236]; while the approach implemented for computa- 
tion of the steady-state mean is original and was developed within this investigation 
as a novel contribution. Both techniques are described next. 

D.2.1 Steady-State Solution of Covariance 

(U)The Kleinman algorithm [235], [236] was developed to solve the following 
continuous-time Lyapunov equation: 

or, equivalently, the discrete-time version of the Lyapunov equation as: 

(which arise as the primary obstacle that must be computationally overcome within 
Kleinman's novel approach to steady-state Riccati equation solution) in obtaining 
the st eady-st ate constant value for 

being the steady-state covariance associated with the linear system of Eq. D.l when 
F is constant and strictly stable. That P(t) satisfies a Lyapunov equation is demon- 
strated in [234, pp. 165-1671. The rate of convergence of Kleinman's approach to 
the steady-state solution is better than quadratic [237] and was implemented as one 
of the available software routines of [I971 that was first obtained and then validated 
with test problems of known solution, as discussed further in Appendix F. The 
resulting steady-state positive definite solution matrix is first checked for positive 
definiteness (using the technique discussed in Section D.4), then invoked as the ini- 
tial condition covariance used to start the recursions of Eq. D.15 that constitute 
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the Monte-Carlo simulations. By initializing in this manner, the sample functions 
that immediately emerge correspond exactly to stationary behaviour of the system 
without having to wait for an initial transient period to end. A detailed explanation 

, of the computational aspects associated with using Kleinman's approach is provided 
in [240]. 

D.2.2 Steady-State Solution of Mean 

(U)The original approach to computing the steady-state mean of Eq. D.l  is 
discussed now. The implementation of the recursion of Eq. D.15 in software can 
be easily accommodated. However, there is a simpler alternative to iterating 1000 
times to achieve steady-state operation as was done in the predecessor simulator. 
Using 1000 iterations can be extremely costly for larger dimensioned state sizes 
and, although simple and straight forward, is not the computationally efficient way 
to achieve steady-state operation. For some problems, even 1000 iterations would 
not be enough to achieve steady-state (i.e., the step-size A must be such that 1000 
iterations [1000A] is more than 5 times the effective time constant of the underlying 
system of Eq. D.l;  if it's not, then steady-state is not achieved even after 1000 
iterations. Similarly, if the system matrix, F, in Eq. D. l  is such that it is only 
marginally stable rather than being strictly stable, then no steady-state is defined 
(except for the situation where there is a single pole at the origin while all noises 
are zero mean; which yields a constant output in steady-state for the corresponding 
state variables as long as no other state variables are related to it such as being the 
integral of it, otherwise a ramp results which has no steady-state). 

(U)Returning to Eq. D.l  to focus on the long term effects of providing the 
linear system with a Gaussian initial condition, having the following statistics for 
the mean and variance, respectively: 

where Po = P? > 0 is positive definite and E(.) denotes total expectation. Notice 
that in taking the expectation, E(-), throughout Eq. D. l  yields 

and under the generally valid condition that differentiation and expectation (in- 
terpreted as a Riemann -Stiltjes or Lebesque-Stiltjes integral with respect to the 
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monotone increasing [and therefore possessing the requisite property of being of 
bounded variation as needed for this type of integral representation] cummulative 
distribution function) are interchangable, Eq. D.23 simplifies as 

or for ~ ( t )  E[z(t)], equivalently, 

i ( t )  = F Z(t) , with ~ ( t , )  = z, . (D.25) 

The above is the describing equation from a continuous-time viewpoint while the 
equivalent discrete-time equation (obtained by similarly taking expectations through- 
out Eq. D.15) is 

~ ( k  + 1) = [eFA]z(k) when properly initialized with ~ ( 0 )  = 2,. (D.26) 

For the case of a zero mean: 
Z, = 0 - vector , 

the need to solve either Eqs. D.25 or D.26 is circumvented entirely. For the case of 
a nonzero mean: 

Z, # 0 - vector , (D.28) 

the steady-state mean value (if it exists) is the solution of 

or, equivalently, the solution of 

It is worthwhile to solve for Z(W) because this value (along with the steady-state 
P) can be used to initialize the Monte-Carlo simulation so that it starts out ex- 
hibiting stationary behaviour, rather than having to wait for it to progress through 
the transient portion. As mentioned above, one solution approach is by recursive 
iteration as in Eqs. D.25 and D.26, but with better control exercised on the number 
of iterations utilized than was exhibited in the predecessor simulator. Rather than 
blindly always using 1000 iterations l, which is generally not satisfactory for the 
reasons already given above, it is better to use knowledge of the system structure 

lThis is satisfactory if the simulator were being used on a one shot basis, which is how it was 
originally being used over a year ago for the single case of Section 3.1, but is no longer the case here. 
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D.5 Updated Calculation of the Transition Ma- 
trix 

(U)The calculation of the transition matrix, or matrix exponential as it reduces to 
for the linear time-invariant system of Eq. D.l, was modernized to take advantage 
of the most accurate computational techniques that have been relatively recently 
advertised (and endorsed) by specialist in this area of numerical analysis. A detailed 
accounting is provided in Appendix E. 

D.6 Handling Nonzero Means for Noises and Ini- 
tial Conditions 

(U)This capability was provided so that situations could be created where a bias 
is present. It is frequently instructive as a test against reality to find out how well 
an algorith performs when an unanticipated bias is present. Frequently, analysts 
tacitly assume biases to be zero for convenience and tractability but the actual 
physical application may not be so accommodating. There is no technical challenge 
in including this feature within the simulation capabilities of the new simulator, it 
was just another item that had to be specified and routinely added in. 

D .7 Outputting of Final Pseudorandom (PRN) 
Seed Value 

(U)In obtaining sample functions from the simulator, it may later become appar- 
ent that a longer time record is desired than originally simulated. When the last 
value of the PRN is outputted from each run as is now done in the new simula- 
tor, it can be utilized to initialize a new run starting with the final value of the 
previous run as the initial starting condition of the new run. In this way, the new 
run can dovetail with the results of the previous run as effectively one longer run 
without having to throw away the results of the earlier run that was deemed too 
short. With the exception of the original technique for specifying the steady-state 
mean that is offered in Subsection D.2.2, all the other features discussed above are 
standard techniques that are now used in modern approaches to specialized linear 
time-invariant Monte-Carlo simulators, as also pursued for this investigation. How- 
ever, each new feature described in this Appendix D was first implemented using 
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to specify explicitly the number of iterations required to achieve steady-state. This 
could be achieved by using the Singular Value Decomposition (SVD) on F to ex- 
pose the underlying eigenvalues, the longest time constant being the reciprocal of 
the smallest real part of all the eigenvalues encountered. The required number of 

5 iterations would be the interger portion of s. 
(U)While the above described solution should work, the preffered solution pro- 

ceeds as follows. Notice from Eq. D.30 that the steady-state solution of Eq. D.29 
is a right singular eigenvector of eFA as 

(XI - [eFA]) ~ ( m )  = 0 (D.31) 

for 
X = l  

so that all that is computationally needed is to perform an SVD operation on eFA 

as 
eFA = UAV* , (D.33) 

where A is diagonal and contains the eigenvalues exposed as 

in descending order of magnitude, and the associated matrix V* contains the corre- 
sponding right singular eigenvectors. All that is further required is that the resulting 
diagonal matrix A in Eq. D.33 be searched from left to right to find that eigenvalue 
that is equivalent to 1 while simultaneously adjusting a corresponding pointer to the 
rows of V*. If no such eigenvalue exists that is equivalent to 1, then no steady-state 
exists for Eqs. D.25 or D.26. The "slot" or index value (i.e., value of i = i,) for 
which 

Xi, = 1 (D .35) 

corresponds exactly to the appropriate vector column slot within V* of the form 

. . 
V* = [vl : vz : . . . i v,] (D .36) 

such that the steady-state value being sought is: 

(corresponding to Eqs. D.31 and D.32, together). This is the algorithm that is 
included in the current simulator. Thus, the steady-state mean can be calculated 
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(when it exists and this solution approach possesses the additional feature of also 
automatically checking on the existence of the steady-state solution). This sim- 
ulator can also be used for Kalman filter applications, where these steady-state 
initialization features for the mean and covariance will likely be of even greater util- 
ity by providing the capability of generating a completely theoretically stationary 
random process sample function upon entering the normal iteration cycle without 
the usual "wait for things to settle down". 

D.3 Option of Including Corrupting Additive Out- 
put Measurement Noise 

(U)A question arose as to whether the underlying truth model Monte-Carlo simula- 
tor for exercising the spectral estimation algorithms should also contain a provision 
for including a component of additive measurement noise as well as the standard 
process noise in the final sensor measurement so that it is more properly modeled 
as consisting of the following sum of two statistically independent components as: 

y(t) = YAR(~)  + v(t), where v(t) - N(0, r). (D.38) 

Typical Kalman filter simulators always include a measurement noise simulation 
capability, so it was initially perceived to be somewhat unusual that some AR sim- 
ulators don't include this provision. However, an AR process with measurement 
noise present is essentially an ARMA process, as can be conveniently seen for the 
scalar case by considering the equivalent correlation function that results from sum- 
ming an AR process plus additive independent Gaussian white measurement noise, 
as demonstrated here: 

where the above left hand fraction represents the correlation function of an AR 
process by having a constant numerator and the above right hand fraction represents 
the equivalent ARMA process that results by having a non-constant numerator. Use 
of pure AR techniques in situations involving underlying ARMA processes could be 
a fairly severe model mismatch [149]. The motivation for including this feature in 
the new simulator for this investigation is provided in Sections 4.1 and 4.3. 
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D .4 Accommodating More than Just Diagonal 
Covariance Matrices 

(U)Employing only diagonal covariance matrices in a simulator allows an easy 
check to be utilized to guarantee that such diagonal covariance matrices are positive 
definite (consisting merely of a verification that every entry on the principal diagonal 
is positive). However, such a simplistic approach is not general enough for many 
routine simulator applications. 

(U)Because of geometric or other physically induced constraints (such as arise 
in alinement applications in navigation systems, or in possessing correlated random 
vector initial conditions-such as result from the method of Section D.2 for initializing 
the simulation in the steady-st ate condition, or in having either cross-correlated 
process noise or measurement noise or both in multichannel applications), the initial 
condition covariance, Po, the process noise covariance intensity level, Qd,  of Eq. 
D.17, and the measurement noise covariance intensity level, R, can be nondiagonal 
and usually are nondiagonal. That this is the case can easily be seen for Qd by 
examining the structure of the defining equation of Eq. D.17, as pursued next. 
From Eq. D.17, please observe that when F is not diagonal, which is the prevelant 
situation, then eFT is not diagonal so even if the continuous-time Q  is diagonal, 
which sometimes occurs, the matrix product of e - F T ~ ~ ~ T e - F T T  that appears in 
the integrand of Eq. D.17 is not diagonal, so the discrete-time Qd is not diagonal 
in general. 

(U)In this general case of encountering nondiagonal covariance matrices, it is 
still prudent to check that these covariance matrices do in fact possess the requisite 
positive definiteness property in order to proceed with confidence in the knowledge 
that fundamental structural requirements are in fact satisfied. After first checking 
for the presence of a degenerately simpler diagonal matrix for which the test may be 
streamlined in the manner already mentioned above, the "complex variable" form of 
the SVD subroutine from the International Mathematical Software Library (IMSL), 
Edition lO.O,(being "LSVCR") is used to decompose any nondiagonal covariance 
matrix under test (as in Eq. D.33) into 

and the eigenvalue entries exposed on the diagonal matrix A are checked to confirm 
that these entries are exclusively positive. 
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the modern software development techniques of [227], then fully checked out and 
verified as discussed in Appendix F. 

106 

Unclassified 



Unclassified 

Appendix E 

Machine Computation of the 
Matrix Exponential and 
Verification of its Software 
Implement at ion 

E.l Preliminary Perspectives 

(U)As discussed in Appendix D, we have replaced an earlier Monte-Carlo sim- 
ulation routine with a new version that is upgraded in several important ways so 
that we know exactly what is being produced by the simulator and to what accu- 
racy. This is extremely important in calibrating the spectral estimation algorithms 
of primary interest in this investigation. Within our modifications, we had a need 
to calculate the matrix exponential, which is analytically defined in terms of its 
corresponding Taylor series as: 

(U)While several historical software implementations [188], [189], [198], [204] 
pursue evaluation of eFt using the defining relationship of Eq. E.l, modern im- 
plement ations use other techniques for this import ant and fundamental evaluation 
[190]- [193], [195]- [197], [198]- [203] such as via use of the following two techniques: 
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E. l . l  A Chebyshev Approximation: 

(U)Makes use of the matrix series analogy to the following scalar relationship: 

e2= = Io(2) + 2 C;=, Im(2)Tm(~) for 1x1 5 1 
= 1 + C:=l cixt (E.2) 

where 
Im(2) = modified Bessel function of the first kind 

- 1 
- CLo- 

Tm (x) = Chebyshev polylnomial 

m 2s.- ( m i  ) (2x)m-2s = 2Cs=O m-s 

E.1.2 Pade Approximation: 

(U)Makes use of the matrix series analogy to the following scalar Pade approxi- 
mation to ex as 

where 

and 
Dn(x) = Nn (-2) 

The motivation for deviating from the obvious standard defining Eq. E.l in com- 
puter evaluation or computation is the lure of greater accuracy that can be achieved 
either via the Chebyshev or Pade approach for an equivalent computational burden 
to that of using the more direct Eq. E.1. 

(U)The computational algorithm depicted in Fig. E.l (which is based on the 
defining Eq. E.l) was reported in [199, p. 751, as inherited from the procedure 
originally used in [188], and serves as the basis of the computational technique 
used at many universities and aerospace companies. However, Systems Control 
Technology (previously Systems Control, Inc.) endorses the Pade approach of [192], 
[I931 as being the preferred approach for calculating eFt since it has greater accuracy 
in general for the same computer burden [196, p. 7-21]. The Taylor series approach 
is exact at the point of expansion (as, say, about zero) for up to the number of 
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derivatives (or terms) retained but drops off in accuracy the further away (i.e.,larger) 
A is from the original point of expansion (being zero for this discussion). However, 
the error in Pade approximation as the ratio of two polynomials (where, for matrices, 
the denominator polynomial corresponds to a matrix inversion), has an error that 
oscillates between being positive and negative all along the baseline from the point 
of expansion to the point of evaluation, with a net error at the time step A that is 
considerably less than that measured in using a Taylor series expansion approach. 

(U)A so-called "convergence analysis" (for the Method of Fig. E.l) appears in 
[I981 that is based on claimed properties of an "alleged" norm: 

However, the revelations of Kerr [I941 demonstrate that the "alleged" norm of 
Eq. E.8 is in fact bogus and that the "alleged" properties being exploited in the 
convergence analysis are subsequently compromised but can be patched up using the 
suggestions of [194], as provided. An independent substantiation or endorsement of 
the observations of [I941 on this topic of the "norm" in vogue being bogus appeared 
in [254, p. 7981. Just for perspective and historical appreciation, it is mentioned 
that the misinterpretation of the intuitively appealing expression of Eq. E.8 as 
incorrectly being a norm was asserted in [188], [I981 and propagated by several 
others [189], [203] including seasoned numerical analysts (e.g., [205], [206]) in this 
evaluation area. 

(U)Correct calculation of the transition matrix, eFt,  for time-invariant linear 
systems is of fundamental importance in the computational solution of linear differ- 
ential equations, in Kalman filtering applications, in optimal control and guidance 
applications, in related signal processing applications, and in those nonlinear ap- 
plications where the solution approach is to first linearize over short duration time 
intervals over which the system may be reasonably approximated as having constant 
parameters. Obviously computational considerations are "bread and butter" issues 
for companies and practioners engaged in such evaluations. Having been personally 
following the development and evolution of computer algorithms for evaluating eFt 

for the last twenty years, I feel compelled to archive the following neat test prob- 
lems (and their derivation) as discussed in the next section for the possible benefit 
of others seeking such a definitive cross-check for software implementation and veri- 
fication just as we had originally been faced with. We used the test problems of the 
next section, to quickly verify the accuracy of the two different algorithmic versions 
of eFt calculation that have been implemented in the new simulator. One version 
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is entitled MEXP, which is based on the Cheyshev approximation approach [190], 
and was obtained from David Kleinman(University of Connecticut) as a DLK.LIB 
software subroutine [197], while the other version is entitled PADE8 and is based 
on the Pade approximation approach of Ward [192], [I931 and the version that we 
have utilized in the new simulator was implemented by Ward himself. 

(U)At Lincoln Lab, certain enhancing pre- and post-processing modifications 
have been made for both algorithms to make the form of input entry and output 
reading be easier, more user friendly, and less human error prone, by appending 
a matrix format structure (originally adopted by TASC in the 1970's) that makes 
reading large matrices more convenient from a human engineering viewpoint. An 
example of this format for a 46 x 46 matrix is depicted in Fig. E.2. Row numbers 
are indicated at the left followed by a single right parenthesis. The row entries are 
10 per line, with the excess folded around underneath. The alternative to using 
this convenient format when dealing with matrices of dimension greater than 10 
(as I have personally increduously witnessed) is for people to wall paper office walls 
with the matrices they are working with! Such wall papering is highly inconvenient 
for stacked-case runs that alter some parameter values and elements within those 
matrices for a sensitivity analysis of results over a range of likely parametric values. 

Slick Test Cases and Their Derivation 

(U)Certain matrices known as "idempotent" matrices have the unusual property 
that 

A - A = A  (E.9) 

While I'm not aware of any prior really fruitful use made of idempotent matrices, the 
present application of software verification, as now described, is a neat application 
of idempotent matrices as used to construct test matrices for verifying the transition 
matrix algorithic implementations that we are using for computer computation of 
eFt.  The utility of these test matrices is that the resulting analytically derived 
expressions for eFt is conveniently in closed-form for F = A. Hence the performance 
of a general eFt subroutine implementation can ultimately be gauged by how close 
it comes to achieving the known ideal exact solution. 

(U)Another benefit of dealing with idempotent test matrices, A, is that the 
Kalman "rank tests" for "controllability" and "observability" also degenerate into 
much more tractable expressions such as, for example, in having to check only the 

Unclassified 



Unclassified 

considerably smaller matrix 
r 1 

to see if it is of rank n rather than having to check the generally much larger but 
in this case equivalent Controllability Grammian matrix: 

(E. 1 1) 

to see if it is of rank n to confirm that the linear system under investigation is in fact 
controllable; thus use of the former expression results in considerable simplification. 
A similar simplification in testing for "observability" can be exploited in applying 
Kalman's rank test to Observability Grammians. 

(U)Returning to the definition of Eq. E.l, with A in Eq. E.9 substituted for F 
in Eq. E.l and time-step A used for scalar time, t ,  in Eq. E.l, yeilds 

= I + A ( $ + $ + $ + . - - )  (E. 12) 

where the expression within the first set of parentheses resulted by repeated ap- 
plication of the property of Eq. E.9, where the quantities +1 and -1 were added 
within the second set of parentheses without altering the sum, and the series within 
the second set of parentheses is recognized to be eA - 1. The final expression in 
the last line of Eq. E.12 checks since for A = 0, the correct result of 1 is obtained. 
Thus, the closed-form expression for the transition matrix of idempotent matrices 
is as depicted in the last line of Eq. E.12. 

(U)To obtain non-vacuous idempotent matrices is the next issue. Obviously, the 
zero matrix and the identity matrix satisfy Eq. E.9, however, these are not useful for 
our purposes of testing software routines. Two useful examples will be given below 
but first motivation is offered for how they were obtained (i.e., they definitely were 
not just plucked from the air as a lucky guess). Consider the problem of seeking to 
solve the following algebraic equation for x(n x I), given y(m x 1) and C(m x n): 
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Independent of rank conditions on C and dimensions of y and 2, it is reasonably 
well-known (see [106, Appendix A, Section A.11 and [207,~. 4171) that a solution 
to Eq. E.13 is of the form 

z = c t y  + (In - CtC)Ul - - (E. 14) 

for arbitrary w and that the term within parenthesis in Eq. E.14 is idempotent (where 
Ct in Eq. E.14 is the Moore-Penrose pseudoinverse). In forming two counterexam- 
ples in [108], [106], the following two matrices and their respective pseudoinverses 
were obtained (as derived in [106]): 

(E. 15) 

and 
1 2 1  1 1 1  

(E. 16) 
1 1 0  

Therefore via Eq. E.14, the following two matrices are idempotent 

and 

(E. 17) 

(E. 18) 
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both of which check as being idempotent by satisfying Eq. E.9 as an identity. In 
considering the step-size to use in the evaluation of Eq. E.12, convenience in using 
just a scalar multiplying factor of one half times the matrix in Eq. E.12 would 
dictate using 

A = 0.405 (E.19) 

since from Burlington's mathematical tables [210] 

Therefore, the two evaluations corresponding to invoking Eq. E.12 are 

and 

The results of Eq. E.21 and E.22 are the now known closed-form solutions to eAA 

evaluation of the matrices of Eqs. E.17 and E.18, respectively, with A = 0.405. 
These two solutions along with several other test cases from [203] were used 
to successfully verify the correct performance of both PADEB and MEXP (after 
a few locally-induced minor transition rehosting bugs were found and removed). 
This is the first time that I have seen test problems for validating correct software 
performance of eFt calculation routines constructed in such a novel way. Hopefully, 
this technique will be useful to others as well, which is why I have bothered to 
document it. A further benefit in having the closed-form expression of Eq. E.12 for 

lCopious examples of idempotent matrices and/or important associated structural observations 
are offered in .[209, pp. 106-107, p. 121, and especially on p. 3401. It is observed in [207, p. 66, 
Example 7.21 that the eigenvalues of a "projector matrix" such as that of Eqs. E.17 and E.18 (being 
constructed as on the right hand side of Eq. E.14) as symmetric idempotent matrices are always all 
either zero or one (and so always correspond to an unstable system). In [211, p. 277, Exercise 51 
some observations are made on representing certain special matrices as the sum of two "nilpotent" 
and "idempotent" components as further introduced in a matrix exponential calculation; however, 
Nering's result is different and is not as clean and useful for computational verification/validation 
as the result offered for the first time here as Eq. E.12. Evidently statisticians routinely encounter 
idempotent matrices. 
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the matrix exponential of an idempotent matrix A is offered below. Consider the 
expression of Eq. D.17 that must be calculated in software in order to obtain the 
"discrete-time equivalent of continuous-time white Gaussian process noise". Using 
the result of Eq. E.12 for idempotent matrices within the more general expression 
of Eq. D.17 allows this expression for the required discrete-time process noise 
covariance Eq. D.17 to be evaluated analytically in closed-form as: 

This is a new result that is also useful as a confirming check for software implemen- 
tations (as used in preparing Test Case 1 of Appendix G and Table F.l). 

(U)Other less complete approaches exist to constructing test problems with 
nice numbers based on relationships between similarity transformation (via Eigen- 
value/Eigenvector calculation 12081) to Jordan Cannonical form as 

(E. 24) 

(where in the above E is the matrix of eigenvectors of F  and XI,  X2, X3, are distinct 
eigenvalues of F )  utilizes the standard reverse relationship 

(but the appropriate expressions are even more complicated than those of Eqs. E.24 
and E.25 if the eigenvalues of F  are not unique or do not break separately). A pro- 
cedure is provided in [208], where Eigenvalue/Eigenvector calculations (as needed 
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for the transformations of Eqs. E.24 and E.25) can be done entirely in terms of 
"nice numbers", as is desirable for conveniently tractable test problem formulations. 
This alternative approach of [208] still needs further work or augmenting use of an 
exploratory computer program in order to take it to fruition, while the approach 
offered in this Appendix of using idempotent matrices is complete as it already 
stands. 

(U)We further validated the above mentioned two eFA computational algo- 
rithms, PADE8 and MEXP, on the 9 x 9 example depicted in Fig. E.3 (with 
A = 1.5) just to be conservatively certain that the accuracy in the results of these 
new algorithms is not severely degraded with increasing problem dimensions. 
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(U)Through the cooperation of AFGL, Lincoln procured a free copy of Paul 
Fougere's nonlinear MEM and line-split supression software although it was not 
in the original task. This software had been hosted on AFGL's CDC 7600 ma- 
chine and we had to convert it to our target IBM 3081 machine. The original 
purpose for obtaining the AFGL software was merely to speed up validation of our 
recently modularized software implementations of the LWR and Nuttall algorithms 
by comparisons in benchmark tests to the outputs (for the same "real variable" test 
problems) of a respected existing program with a certified established track record 
such as is possessed by this ten year old AFGL software. During the conversion 
process to Lincoln's IBM 3081 as host, we became aware of the fact that many 
more changes were needed than we originally expected, thus interfering with or in- 
validating use of AFGL's rehosted software as a test gauge. These changes related 
to: 

1. use of random number generator (with output that is computer wordlength 
dependent), 

2. conversion to IBM double precision to approximately match the CDC's 60 bit 
word in single precision, 

3. replacement of older CALCOMP Plotter usage, and 

4. replacement of dummy temporary scratch pad storage with disk scatch pads, 

and all this without recourse to valid CDC intermediate outputs that could perhaps 
have served as a reasonable basis for "apples-to-apples" comparisons at various 
critical points during the transition. Two additional aspects that contributed to a 
diminishing in our enthusiasm to use Paul Fougere's Line-Split Suppression program 
[96] as a cross-check in the BRVAD application are the following: 

1. We had originally seen what we thought at the time was evidence of line- 
splitting in the Tradex wake spectra; however, when Paul Fougere saw some 
of our unidentified data (in our May 1987 draft paper for possible open lit- 
erature publication) corresponding to the figures depicted within Section 3.3 e 

of Chapter 3 (but devoid of intelligible coordinate scales), he suspected that 
they were evidence instead of cross-channel feed-through which looks similar 
to line-split to an extent. The clincher was that line-split is much more of a 
worrisome phenomena in tones or sinusoidally random data (e.g., of say di- 
urnal earth-rotation periods, yearly earth-revolution related periods, 11 year 

rates, and lengths of data, . . . , as now provided in this report to complete the puzzle and salvage 
many previously evaluated results without having to duplicate them. 
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sunspot activity, and 88 year sunspot cycles such as AFGL is concerned with 
[98] or rotating machinery and generators in ASW applications such as NUSC 
is concerned with) rather than in our non-sinusoidal data. 

2. Paul Fougere's programs were only for "real variable" data and so were not 
sufficiently general enough to accommodate the "complex" case that we need 
to handle Tradex data, with its coherrent phase processing requirements. 

In lieu of not being able to use a rehosted AFGL program to do cross-comparisons 
to it as an established reference using just "real" data in order to verify on a 
relative basis the new Lincoln implementation of the LWR and Nuttall algorithms, 
we instead used more test cases and relied instead on a simulator for fuller test 
coverage to exercise and verify these newer programs on an absolute basis. 

(U)Using a background in modern control and Kalman filtering and filter related 
concerns (such as failure detection, event detection, and maneuver detection) but 
not in spectral estimation per se, there was still considerable direct carry-over of 
prior experience to the problem of spectral estimation 2. However, debug within 
the exclusive regime of the spectral estimator proper (instead of in the simulator 
portion, which was already familar) was difficult and challenging dispite the exis- 
tence of a recent paper [I841 on this aspect 3. (The technique that was eventually 
homed-in on of using the consistency of eigenvalues of "what was simulated" to 
"what was estimated" as a measure of goodness in validating the correctness of 
cc simulator/power spectrum estimator" will be discussed further below.) Debug- 
ging is where prior experience really pays off. There are some obvious similarities 
between debugging of Kalman filter algorithms and debugging spectral estimation 
algorithms since both deal with random processes and accompanying second order 
statistics. One particular difficulty in the BRVAD application that most Kalman 
filter practicioners don't normally encounter and so are usually inexperienced with 

2Particularly relating to the carryover and dovetailing of topics of "positive definiteness testing" 
[105], [I781 and "reduced-order modeling" [106], [108] as well as several other numerical algorithms 
that these apparently diverse topics have in common. , 

3To illustrate what a - "can-of-worms" this can be, the newer fast resolution spectral estimation 
algorithms (such as Cadzow's algorithm which has had spectacularly good performance on excep- 
tionally short lengths of data) can even yield counter-intuitive indications of negative power spectral 
densities as an output (as documented in [215, p. 9001) even from correctly coded versions. While 
another standard check case would be to see if the area under the PSD curve was in fact the variance 
of the process (as possibly scaled by 27r, depending on the convention of FFT's being used); however, 
one of the Burg algorithm-based multichannel generalizations doesn't even theoretically satisfy this 
usual sanity check [I841 so we can't use this usually desirable feature as a numerical check on the 
correctness of the software implementation. 
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these test cases will be examined in the next section during the discussion of the 
results of each test. 

F.2 Results of Structured Testing for Validating 
All Software Used 

(U)The first test was performed on the two transition matrix calculation modules 
that we obtained as discussed in Appendix E. The correct answers were obtained as 
expected for both alternative implementations based on use of Pade approximations 
instead of use of the Taylor series for calculating the matrix exponential. 

F.2.1 Verifying the Simulator Proper 

(U)The overall structure of the new simulator is simply depicted in Fig. F.1. 
Using the parameters of Test Case 1, as depicted in Table F.l  (briefly discussed 
in Section G.l, and derived in Appendix E), the intermediate outputs provided by 
the software implementation were verified to be correct. The specific features of 
the software implementation that were confirmed using Test Case 1 are detailed 
in the second column from the left in Table G.1. These activities for Test Case 1 
are summarized in Fig. F.2. Actual sample functions obtained for the underlying 
known unstable system that was convenient to use to check detailed intermediate 
internal software calculations are depicted in Fig. F.2. 

(U)Using the parameters of Test Case.2, as depicted in Table F.l (discussed 
in detail and derived in Section G.2), the intermediate outputs provided by the 
software implementation were verified to be correct. The specific features of the 
software implementation that were confirmed using Test Case 2 are detailed in 
the third column from the left in Table G.1. These activities for Test Case 2 are 
summarized in Fig. F.3. Actual sample functions obtained for the underlying known 
benign stable system that was also convenient to use to check detailed intermediate 
internal software calculations are depicted in Fig. F.3. 

(U)Using the parameters of Test Case 3, as depicted in Table F.l (discussed 
in detail and derived in Section G.3), the intermediate outputs provided by the 
software implementation were verified to be correct. The specific features of the 
software implementation that were confirmed using Test Case 3 are detailed in the 
fourth column from the left in Table G.1. These activities for Test Case 3 are 
summarized in Fig. F.4. Actual extremely regular essentially deterministic sample 
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functions obtained for the underlying known unstable system that was convenient 
to use here to check that the output is exactly correct at a high level are depicted 
in Fig. F.4. Besides confirming the outputs of the simulator with an easily recog- 
nizable expected answer (as contrasted to Test Cases 1,2, and 4 which only provide 
random noise corrupted sample functions that can only be confirmed at the aggre- 
gate level from statistical properties), this Test Case 3 also allowed the programmer 
to calibrate (and correct his plot routines, his scales from linear to dB, and to con- 
firm or more accurately straighten out use of the WMH convention [249] for the 
intermediate input/output disk files used between each separate program module. 

(U)Using the parameters of Test Case 4, as depicted in Table F.l (briefly dis- 
cussed in Section G.4, and derived in Section 3.1)) the intermediate outputs provided 
by the software implementation were verified to be correct. The specific features 
of the software implementation that were confirmed using Test Case 4 are detailed 
in the fifth column from the left in Table G.1. These activities for Test Case 4 
are summarized in Fig. F.2. Actual sample functions obtained for the underlying 
known unstable system that was convenient to use to check detailed intermediate 
internal software calculations are also depicted in the previously mentioned Fig. 
F.3. 

F.2.2 Verifying the Performance of the Simulator and AR 
Coefficient Estimator Software Together 

(U)An obvious test that comes to mind of seeking to validate proper performance 
of a new spectral estimation software implementation using complex sinusoids (gen- 
erated from a simply simulated known signal of the form e~?) to see if the spectral 
estimator under scrutiny can identify the correct amplitude and frequency was not 
pursued here for the following less obvious but nevertheless valid reasons. First, 
sinusoids or simple tones are best estimated by a software implementation of al- 
gorithms that differ drastically in structure from the ones used here (as described 
in Chapter 2) such as by using the modified Prony methods [84, pp. 367-3711) by 
using the Pisarenko harmonic decomposition method [84, pp. 371-3741) or by using 
one of the other eigenvector decomposition met hods (e.g., 12421, [243]); however, 
the Tradex RV wake modeling application exhibits no such sinusoidal structure but 
does exhibit the Markov signal structure that matches our simulator structure and 
structure of our particular spectral estimation techniques utilized. Hence, we select 
both the tool and the software validation procedure that best matches the applica- 
tion at hand-that of RV wake modeling. Second, it is fairly well known that even 
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VAI-IDATION OF SIMULATOR .(Cont'd) 

w DEGENERATE TEST CASE (with all noises present but cranked down to be miniscule) OF LINEAR RAMP 
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(U) Figure F.4: Handling Test Case 3 ! 
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Correctly implemented "maximum entropy" -based spectral estimation software is 
frequently plagued with line-splitting, where proper estimation of the underlying 
tone is instead split into two lines, neither of which occurs at the proper frequency, 
but which do occur in general proximity of the true tone, sometimes bracketing it; 
and, additionally, the associated amplitudes similarly differ from what was actually 
present or simulated. 

(U)A siminal investigation of the problem of line-split ting occurring when "max- 
imum entropyv-based spectral estimation techniques are used is reported by Fougere 
(1977) [96] and is revisited by Fougere (1985) in a follow-up study in [233]. One 
of the interesting counterintuitive aspects of line-split ting that Fougere uncovered 
is that line-splitting is frequently aggrevated with decreasing magnitude of additive 
measurement noise rather than with an increasing level of such noise and that the 
phase of the underlying sinusoid also plays a role [233] in the tendency for line 
splitting to occur. 

(U)The validation that was actually used to confirm the performance of the AR 
Coefficient Estimation software utilized Test Case 4 of known solution as exhibited 
in Section 3.1. The steps that were followed are as depicted in Fig. F.5. The confir- 
mation Technique for the eigenvalues of the Coefficient Matrix is identical to what 
was used in Section 3.2. Thus, this was a confirming check on both the simulator 
and the AR Coefficient Estimator working in concert. We had no reservations in 
using this software on Tradex data to evaluate AR coefficients as reported in Section 
6.2. 

F.2.3 status in Verfying the Concatenated Performance of 
Simulator, AR Coefficient Estimator, and Spectral 
Estimator 

(U)While the simulator and AR Coefficient Estimator were both validated as 
performing correctly, the results from all the software modules together as depicted 
in Fig. F.6 were initially somewhat puzzling and unsettling. There are two com- 
ponents of an explanation that satisfactorily accounts for the apparent discrepancy 
exhibited here of the two power spectral density plots of Fig. F.6 not being iden- 
tical. One aspect relates to the IMSL FFT routine used, the other is the way the 
asserted true situation depicted in Fig. 3.2 was originally obtained over a year ago 
in [225] by merely turning down the noise and making the Test Case 4 to be essen- 
tially deterministic and ostensibly obtaining exactly the same structural form and 
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VALIDATION OF COMBINED SIMULATOR AND AR COEFFICIENT ESTIMATOR 
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(U) Figure F.5: Validating AR Coefficient Estimator by Confirming That the Estimated 
Coefficient Matrices Have Eigenvalues Identical to What was Simulated 
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parameter values for the estimated AR coefficient Matrix as possessed by the origi- 
nal matrix of Eq. 3.1 that was simulated. More detail on these aspects is provided 
below. 

(U)Originally, a point of some consternation was how the ideal curves of Figs. 3.3 
and 3.4 were obtained in [225]. This question has now been answered. Through an 
interview it was found that, during the prior investigation, the noise was essentially 
initially zeroed out in the simulation, and the earlier version of the multichannel 
spectral estimation technique that had been implemented in software was allowed 
to estimate these unknown parameters. Remarkably, the estimated AR matrix was 
comparable to the orginal matrix in that all the parameters were very close to the 
matrix that was entered for simulation. Theory specifies that the estimated AR 
matrix should agree with what was started with in the simulator to within a "simi- 
larity" transformation; but of the infinite number of representation possibilities, the 
AR estimation scheme evidently selected exactly the same coordinate basis as was 
used in the simulator to represent the AR coefficient matrix. Thus, when both the 
corresponding simulated and estimated power spectra were plotted using a common 
software implementation of Eq. 2.6 for the case of A. G I, and an almost com- 
mon Al, the results appear identical since a common IMSL FFT routine entitled 
"FFTCC" (ostensible applicable to any length "complex" data sequence) was used 
throughout the software that was inherited and used although apparently less trust- 
worthy than the more common IMSL FFT routine, "FFT2Cn, that is usually used 
in the role of FFT-ing 'Lcomplex" data structures (of a length that is constrained 
to be a power of two), as are encountered here, and the proper performance of 
FFT2C is more generally familar to Lincoln Laboratory personnel (as ascertained 
from an informal poll of several users). The recently released Edition 10.0 of IMSL 
software offers only "FFTCF" as a subroutine to compute FFTs of 1-D "complex" 
data thus removing the ambiguity of Edition 9.0 IMSL surrounding which complex 
FFT subroutine can be safely used, but Edition 10.0 IMSL FFTs became avalible 
too late to help us in this investigation. 

(U)One final aspect remains to be dicussed regarding software before the sta- 
tus report on our RV wake modeling software is completed. The initial version 
of the plotter "PLADY2" documented in [249] was set up to plot out only a sin- 

4An initial fear in this area was that power spectra were being generated by a routine that was 
originally developed to compute the spectra of purely "real" processes and where it was normally 
enough to evaluate the FFT in the expression merely for w between zero and a since the remainder 
for a to 2a radians would be identical for real processes by symmetry, but not so for the "complex" 
processes of this application. However, a careful line-by-line check revealed no such discrepancy here 
since the 1024 point FFTs are evaluated over the full 2a radians around the unit circle. 
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gle output binary file (created using the so-designated WMH format described in 
[249]). Correspondingly, the initial version of the spectral estimation routine "AR- 
TOSP" documented in [249] was set up to only output one file (in WMH format), 
either an autospectrum or a cross-spectrum, but only one, even though all were 
calculated simultaneously within the software in the computation of Eq. 2.6, with 
z = exp j 2 ~  fAt via a 1024 point FFT. This was not much of a problem when we 
were just investigating computations associated with the 2 channel analytic closed- 
form test problem of known solution in Sections 3.1 and 3.2, since it was just a slight 
waste to recalculate something (that had actually already been calculated previ- 
ously) in order to plot the two 1-1 and 2-2 autospectra and the 1-2 cross-spectrum. 
Being constrained to use the programs in this way forced the same intermediate 
calculation of the Power Spectral Matrix to be performed each time a single scalar 
matrix component entry was to be plotted out. However, this was deemed to be 
an unacceptable waste when the six state model of Section 6.2 was being tackled. 
The number of distinct entries of the 6 x 6 power spectral matrix to be plotted out 

n n+l is *=21, so to avoid the waste of 20 unnecessary recalculations of a common 
intermediate quantity that was now expensive to calculate in the 6 x 6 case that 
had been relatively inexpensive to recalculate in the 2 x 2 case, a modification of 
the software of [249] was undertaken under fairly tight time constraints of less than 
a week. Additionally, all the modules discussed in [249] had a built in maximum 
upper limit of 5 for the matrices and vectors to be handled while the application of 
Section 6.2 was for 6. Therefore, this maximum allowable size had to be opened up 
to accommodate these larger vectors and matrices. The openning-up was initiated 
and completed sucessfully to yield the 6 x 6 results depicted in Section 6.2 and the 
last-minute modification of "ARTOSP" and "PLADY2" were initiated but have yet 
to be demonstrated to perform properly. We were debugging this aspect when the 
clock stopped. The 6 x 6 test cases of Sections G.5 and G.6 had been developed to 
aid in this checkout and bebug effort. 
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Appendix G 

Derivation of Test Case Examples 

(U)Because the programmer was unfamiliar with spectral estimation applications 
and for that matter with software implementation of general matrix operations, it 
was necessary to develop closed-form examples to be used as confirming test cases at 
every critical step. In order to know what the correct answers should be (as used in 
Appendix F for confirming checks on the output of the computer programs), certain 
analytic closed-form results and some intermediate and final answers werk derived 
to be test cases. These originally derived Test Cases 1 to 4 are documented and 
explained here and all the specific parameter values used for each of these primary 
test cases are summarized in Table F.l in Section F.2 of Appendix F. The second 
phase augmenting test cases used just prior to the computer runs of Chapter 6 in 
order to upgrade the software to handle the six channel case are also addressed here 
as Test Cases 5 and 6. All these test cases may be useful to others in validating 
similar software implementations. 

G.1 Test Case 1 

(U)A complete description of this continuous-time state variable system is de- 
picted in the second column of Table F.l in Section F.2 of Appendix F. As motivated 
in Appendix E, Section E.2, the continuous-time system matrix, Fl, of Eq. E.18, 
the time-step A = 0.405 (chosen for convenience, as explained in Section E.2, Eq. 
E.20), and the corresponding continuous-time transition matrix (from Eq. E.22) 
are as indicated in the second column of Table F.1. The 2 x 3 obsevation matrix, 
H I ,  indicated in Table F.l was chosen so that the system is properly observable (cf., 
Eqs. E.10 and E.11), and the process and measurement noise covariance intensity 
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levels are chosen to be unity identity matrices for convenience in their simplicity. 
The initial condition is taken to be zero-mean but the associated initial covariance 
is taken to be nondiagonal as a known positive definite matrix that can be used 
to excercise the new software that is designed to handle nondiagonal covariances as 
well as the less challenging standard diagonal ones. 

G.2 Test Case 2 

(U) A complete description of this continuous- time st ate variable system is de- 
picted in the third column of Table F.l in Section F.2 of Appendix F. The eigen- 
values of this system can be obtained from 

and therefore are A = -2, -3 corresponding to a stable system. In the frequency 
domain, the corresponding resolvent matrix is 

that corresponds in the continuous-time domain (by inverse Laplace transforming 
elementwise each partial fraction exposed in Eq. G.2) to the following transition 
function matrix: 

l 0 n  one occasion, the programmer included an incorrect negative sign on one of the principal 
diagonal terms of the initial covariance which served to demonstrate that the new SVD-based positive 
definiteness test (from [105, p. 5041) that was implemented in the new simulator also correctly 
complains when a nondiagonal covariance matrix departs from being properly positive definite. 
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For the time step-size of A = 0.5, Eq. G.3 becomes the corresponding exact discrete- 
time transition matrix as 

(3e-t - 2e-') (e-t - e-l ) -0.0664 -0.1447 
eF2 A = 

(-6e-: + 6e-') (-2e-f + 3e-') 1 = [ 0.8685 0.6574 1 .  
(G.4) 

From Eq. D. 17, the exact discrete-time equivalent to continuous-time white Gaus- 
sian process noise has a covariance intensity level of 

which is easily verified to be positive definite by Sylvester's "principal minor" test 
[105], [178]. 

(U)Now the steady-st ate solution of the discrete-time Lyapunov equation (cf., 
Eq. D.20) is obtained from the following: 

It is easily seen that the solution of the above steady-state Lyapunov equation must 
satisfy the following system of linear algebraic equations: 

which, by applying Cramer's rule, yields the following answer: 
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(U)A cross-check of sorts is available by solving the corresponding continuous- 
time Lyapunov equation for its steady-state solution (cf., Eq. D.19) from 

= [ -  -;I [ P l l  P12 P l 2 ] + [ P l l  P22 P l l ]  [I; ;] +[ ;  ;] P12 P22 

which has the following solution (similarly obtained as the previous solution of linear 
equations of Eq. G.7, but now not requiring use of Cramer's rule, and also being 
in basic three significant figure agreement with the above discrete-time solution 
out come) : - - 

Both of these closed-form results can be used as an independent check on the out- 
come of the DLK.LIB software calculation as obtained along a different route via 
the recursive algorithm of Kleinman (discussed in Section D.2.1) to yield the steady- 
state solution of the Lyapunov equation. 

(U)Returning to use the upper compact form of the result of Eq. G.2 within 
the following well-known continuous-time analog to the discrete-time input /output 
power spectral density matrix relationship of Eq. 2.6 being: 

(valid only for sytem matrices having eigenvalues with exclusively negative real 
parts [241, Section 21 as is the case here) yields the output power spectral density 
matrix to be 
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This result can be used to corroborate the outcome of the multichannel spectral 
estimation algorithm software implementation and to serve as a training exercise as 
the plot package is initially modified to provide final outputs in units of decibels. 
To this end, the per channel numerical results (in the frequency domain) should 
agree with the following results (obtained from Eq. G.ll by substituting s = JW): 

Upon taking logarithms to the base 10 and multiplying by 10 in the above, respec- 
tively, yields these final results expressed in dB for cross-comparison with compa- 
rable software magnitude plots of the spectra 

IOlog,, [Syy(Jw)],, = 10 [log,, (w2 + 1) - log,, (w2 + 9) - log,, (w2 + 4)) , (G-15) 

10loglo [SyY(~w)],, = 10 [loglo (w2 + 61) - log10 (w2 + 9) - loglo (w2 + 411 , (G.17) 

and the phase of the above cross term [Sy,(~w)]12 is 

where the above phase relationship has been converted from radians to a more fa- 
miliar representation in terms of degrees by multiplying by the appropriate standard 
conversion factor. 

(U)The first two test cases considered above are analytically tractable to an 
extent and are useful for testing certain specific software computations such as 
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transition matrix calculation, Qd calculation, intermediate computations within the 
positive definiteness tests for diagonal and nondiagonal covariance matrices, and 
computational solution of the steady-state Lyapunov equation; however, the cor- 
rect output of the simulator for both Test Cases 1 and 2 are just sample functions 
that have a random character 2. While the correspondence of these random sample 
functions to the specified underlying parameters can be verified only after further 
processing to obtain spectral estimates (in the case of those sample functions corre- 
sponding to a stationary system) and then further comparing the computed results 
to the analytically derived closed-form expression that is the known answer, it is 
highly desirable to have some essentially deterministic check at the output of the 
simulator proper in order to confirm at-a-glance at the aggregate level that what 
is being output here is correct before going further to also encompass the next 
software module of the Spectral Coefficient Estimator in conjunction with the as- 
sociated software module Spectral Estimator (and its associated plotting program) 
before we have all the ingredients of a confirming check. To this end, we offer the 
extremely simple Test Case 3, where we seek a simulator output with characteris- 
tics that are immediately confirmable as corresponding directly (and exactly) to a 
known expected output response. 

G.3 Test Case 3 

(U)A complete description of this continuous- time state variable system is de- 
picted in the fourth column of Table F.l in Section F.2 of Appendix F. From New- 
ton's 2nd Law, 

d 
- (mu)  = force, 
dt 

2While the sample functions that are obtained for Test Cases 1 and 2 are both random, only 
the random process of Test Case 2 corresponds to a stationary process (since the eigenvalues of the 
system matrix have real parts that are strictly negative), and the random process of Test Case 1 
is nonstationary (since the eigenvalues of the idempotent system matrix do not have negative real 
parts, as discussed in the footnote of Section E.2). Moreover, only Test Case 2 admits a steady- 
state solution to the Lyapunov equation in order to obtain a steady-state initial condition via the 
technique discussed in Section D.2.1. It is well-known [105, Eqs. 10-121 that the Lyapunov equation 
has a steady-state solution if and only if [F, I?] is a controllable pair, where Q = I'rT and the 
eigenvalues all have negative real parts. The property of Test Case 1 that precludes a steady-state 
solution of the Lyapunov equation from existing is the lack of eigenvalues with exclusively negative 
real parts since Test Case 1 is easily shown to possess the requisite controllability. 
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where for constant mass, m, and a random force, u(t), Eq. G.19 simplifies as 

Assigning state variables as 
21 = 2, 2 2  = x ,  

thus yielding the following two differential equations 

which in vector form is 

From Eq. D.14, the recursive discrete-time solution to Eq. G.23 is 

[ x l ( k  t i )  ] = ,F3A [ ~ 1 ( ~ )  ] +iTil)A 
x2(k + 1) x2(k) 

.nit-T) [ p ] U(T) d r  . (G. 24) 

Now for F' as in Eq. G.23 with A = 0.5, from Eq. E.l, we have that the discrete- 
time transition matrix is 

(U)Notice from Eq. G.23 that the system matrix is strictly unstable since the 
characteristic equation is 

X2 = 0, (G.26) 

and has zero eigenvalues of multiplicity two. Consequently, the solution that em- 
anates from Eq. G.24 as a function of time is unstable (i.e., it grows with time) 
and the random process with increasing trend is obviously nonstationary. 
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(U)The mean of the solution should be of the form (corresponding to the solution 
of Eq. D.24): 

where the values a and b in the above were inherited from the initial condition. For 
concreteness, let 

a = 10, (G.28) 

In order that the output be essentially deterministic and that the above response 
represent more than just the mean trend, we make the process and measurement 
noises (that must be present in a Markov process simulator of this type) essentially 
zero by making them both to have zero mean and with covariance intensity matrices 
that are extremely small (in comparison to the primary signal) by taking them to 
be all diagonal with elements that are The observation matrix, H3, is taken 
to be the identity matrix so that the measurements are identical to the underlying 
state variables themselves and' yl (t) should then be 

a straight line with intercept 10 and slope 4, while y2(t) should be 

a horizontal line with intercept 4. Thus these easy-to-check predictable responses 
should emerge from the simultor when the parameters of Test Case 3 are used. 

G.4 Test Case 4 

(U)A complete description of a discrete-time "complex" process as Test Case 3 
is depicted in the fifth and last column of Table F.l in Section F.2 of Appendix 
F. A detailed consideration of various aspects of the state variable model of Test 
Case 4 and the discrete-time analytic closed-form expression for its associated power 
spectral density matrix are provided in Section 3.1, while the associated eigenvalue 
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calculation methodology used for this "complex" case is discussed in Section 3.2. 
Except for having a small dimension of two, it is Test Case 4 that is closest in struc- 
ture to the anticipated "complex process" models to be developed for this BRVAD 
application (in Chapter 6) owing to the presence of coherent phase processing. Test 
Case 4 directly utilizes a4 and Qd - I as discrete-time inputs without requiring the 
preliminary software calculation of @ and Qd as done in Test Cases 1 to 3. 

(U)Since Test Case 4 doesn't test out any of the other new features of the simu- 
lator that haven't already been checked other than the ability to handle the proper 
calculation of "complex variables", its use was logically postponed until after the 
three prior test cases had already been run to verify all the important intermediate 
software computations for the "real variable" case. Only after satisfactorily passing 
all the previously mentioned preliminary benchmark tests as the first hurdle was 
the sotfware simulator upgraded to handle this complex case (and the previous Test 
Cases 1 through 3 rerun and this time merely reviewed at an aggregate level [which 
now suffices since detailed intermediate verification had already preceeded and the 
exact same step-by-step final results couldn't logically be obtained unless all the 
intermediate results are exactly the same also]) to verify that the answers were 
still correct in now treating the "real variable" case as merely a special subset of 
the general "complex variable" case. Completeing this confirmation, the expected 
results for Test Case 4 proper, as analyticaly obtained in Section 3.1, are verified 
against the software outputs. 

Test Case 5 (Not Shown in Table F.1) 

(U)In Chapter 7, the dimension of the state variable model that is decided upon 
to represent the random process of this application is six while the state variable 
models of the previous simulator test cases were of considerably lower dimensions 
by being either two or three. If the computer implementation language had been 
PL/l, the transition between dimensions would not have been a problem at all since 

1. The matrix operations are identical in structure and completely generalize 
when the dimension of the underlying matrices is larger. 

2. PL/1 routinely allows run time dimensioning as one of its standard features. 

However, Fortran was used as the design and implementation language in this in- 
vestigation in order to match all subroutines utilized (e.g., Kleinman's DLK.LIB 
routines [197], IMSL routines, and the data handling convention which adopted the 

Unclassified 



Unclassified 

FORTRAN-based so-designated WMH format throughout all the subsequent se- 
quentially run programs that had already been developed). While Lincoln's version 
4.1 of FORTRAN for the IBM 3081 mainframe computer ostensibly allows dynamic 
run-time dimensioning, this was a feature that the programmer never could get to 
work properly so it was abandoned in the interest of saving time and fixed di- 
mensions were employed instead at known specified locations so that they could be 
quickly and easily changed to accommodate any later cases encountered that might 
need a different dimension. This use of FORTRAN without run-time dimensioning 
was also true of all the existing spectral estimation program modules that are to 
be subsequently used on the outputs of the simulator. In converting the spectral 
estimation modules over to handle six dimensional problems involving six channels 
as considered in Chapter 6, it was necessary to modify these existing spectral esti- 
mation software modules that we inherited and that had previously been hardwired 
with a maximum dimension of five to now be opened up to accommodate six chan- 
nels. In order to confirm that the spectral estimation software could now correctly 
accommodate six channels following this upgrade, the following state variable model 
was derived as Test Case 5 .  

(U)In order to have six channel simulator data to test the spectral estimation 
modules that had been recently modified by us to accommodate six channel data 
(as a practice prelude before use of actual six channel Tradex data), the following 
model was conceived of to give at-a-glance verification of the six channel output of 
the simulator. It was decided to use a pseudo-deterministic example in the same 
vein as that of Test Case 3; however, instead of using a straight line which gave a 
different expected result in each of two channels as in Test Case 3, this Test Case 
5 is to consist of a quintic polynomial which will give a different expected result in 
each of six channels! For convenience of tractability, it was decided that the desired 
polynomial would be easily recognizable by having five real "zeroes" or roots of 
the polynomial located at -2.0, -1.0, 1.0, 3.0, and 4.0, and would be adequately 
represented as the following time response: 

3The use of FORTRAN run-time dimensioning apparently required nominal use of the largest di- 
mension anticipated for the programs and reserved this maximum storage amount for the associated 
matrices even for test case runs of considerably smaller dimensions. Such a practice would make the 
Test Case runs deplorably more expensive than necessary and contradicts the appealing philosophy 
espoused in Section F . l  of using low dimensional Test Cases to keep the expense of software debug 
down. 
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From knowledge of standard polynomial behaviour between roots, Eq. G.32 is 
recognized to have relative maxima at t  = -1.5 and 1.5 and relative minima at t  =O 
and 3.5, while shooting up rapidly without any further change in character beyond 
t  =4 and similarly shooting down rapidly below t  =-2.0. A state variable differential 
equation that would offer such a solution can be obtained by differentiation to yield 
the following "primitive" as offered below: 

Let state variables be assigned as 

which correspond to the followi.ng summary overview state variable matrix model 
for Test Case 5 being 

where u(t) is the zero-mean white Gaussian process noise, and the appropriate 
initial condition mean in order to obtain the desired quintic polynomial solution as 
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a function of the independent variable time, t, is 

In order that this example be essentially a deterministic output yet still retain the 
requisite Markov process structure utilized in the new simulator, the inital condition 
covariance as well as the covariance intensity matrices of both the process noise and 
the measurement noise are made to be diagonal with principal diagonal entries 
of The Gaussian white measurement and process noises are both taken to 
be zero-mean. The 6 x 6 observation matrix is taken to be the identity matrix. 
In this way, all the various known derivatives of the quintic polynomial will be 
exposed as measurements, y(t), as a confirming check on the six output channels 
of the simulator. Finally, the time step-size should be A = 0.25 and the above 
continuous-time form of the system matrix should be entered as input and the 
transition matrix for this step size should be internally computed as @ = eF5 A .  

Using this Test Case 5 4, the existing spectral estimation program modules, as 
altered to accommodate six channels, were sucessfully checked for compatibility 
with the six channel simulator outputs. 

G.6 Test Case 6 (Not Shown in Table F.1) 

(U)For a state size of 6 and an output dimension of 6, the following discrete-time 
model was conceived of as another simple essentially deterministic at-a-glance test 
of the output of the simulator, but this time for confirming the exercising of the full 
capabilities requested in the official simulator specification of being able to handle 
an mth-order vector autoregressive process 5. In order to simply do so, the structure 
of the known solution of Test Case 3 was exploited again but in a slightly different 

4Use of this test case revealed that the associated separate modular plot package was set up to 
output only two channels of data at-a time and had to be modified and enlarged to handle all six 
channels. This modification was initiated by the programmer but never successfully confirmed. 

5The attempted use of this test case revealed that the simulator program had not included the 
feature requested in the official specification of being able to handle a general mth-order vector 
autoregressive process (with details on how to do so also provided in the specification) but can 
merely handle a lSt-order vector process, as arise in Test Cases 1 to 4. Since the purpose of the 
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form. The test case consisted of a state variable model partitioned as indicated 
below: 

where the novel construction offered below is used this time to construct the 4th 
order vector autoregressive process from the simple model of Test Case 3 as 

where the matrix multiplying x(k - 1) in the above will be interchanged with that 
multiplying x(k - 4) in a subsequent run. In the meantime, the output of the first 
two states should be the same as Test Case 3, the output of the next two states 
should be the same as Test Case 3 but at twice the step size as in Test Case 3, and 
the output of the last two states should be again the same as Test Case 3 but at 
three times the step-size, and Q3 - eF3* as in Eq. G.25. The appropriate initial 

simulator is merely to checkout the revised spectral estimation software implementation (which Cases 
2 and 4 do test), this oversight is forgivable. Additionally, at the expense of incurring additional 
vector dimensions, the continuous-time technique of [176, pp. 91-92, Eqs. 3.9-13 to 3.9-161 can be 
invoked to still successfully simulate an mth-order scalar autoregressive process within this sparser 
software computer program framework of only accommodating lSt-order vector processes. 
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conditions are again as in Test Case 3: 

The observation matrix, H6, should be the 6 x 6 identity matrix and the Gaussian 
white noises are to again be zero-mean having diagonal covariance intensity matri- 
ces with all nonzero entries being and similarly for the covariance matrix of 
the initial condition. Thus, each of the pertinent aspects of the simulator was to 
be tested for conformance to the specifications provided and was to have had its 
performance validated. 

G.7 Summary of Test Coverage Analytically Pro- 
vided Here 

(U)An overview of the complete software test coverage offered here through selective 
use of analytic closed-form "Test Cases of known solution" is provided in Table 
G.1. This completes the contribution of this Appendix. The use of these results 
is illustrated in Appendix F in Sections F.2 and F.3 in establishing the status of 
the software under development for this wake modeling investigation. All items 
indicated in Table G. l  were successfully validated. 
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Appendix H 

Impediments to Direct 
Cross-Comparison of 1-D and 2-D 
Evaluation Results 

(U)Relations between 2-D and 1-D power spectra are not as simple as one might 
at first think (as conveyed in this section authored by C. W. Therrien). Since the 
power spectrum is the Fourier transform of the autoco~relation function, not the 
data itself, drawing inferences from 2-D about 1-D spectra and vice versa can be 
tricky. This note discusses those relations for the simple periodogram. 

(U)The relations between the 2-D and 1-D amplitude spectrum of a 2-D signal 
are straightforward. Let x(nl, n2) represent a discrete time-space 2-D signal where 
nl is the time index and n2 is the spatial index (relative range or range-gate). The 
frequency wavenumber spectrum is defined by 

where Nl and N2 are the number of samples in the time and range directions, 
respectively. The 1-D spectrum for a given fixed range gate n2 is defined by 

nl =O 

From Eq. H.l, we can write 
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therefore it is clear that 

That is, the amplitude spectrum of the signal along the k = 0 axis in 2-D is essen- 
tially an average of the 1-D amplitude spectra computed at all the range gates. 

(U)In like manner, we have that 

where XIDw are the wavenumber amplitude spectra computed at the various points 
in time. 

(U)For the power spectral density of a random process, the relations are not 
so straightforward. Let R2D(ll,t?2) and RID(l; n2) be the estimated 2-D and 1-D 
correlation functions defined, respectively, according to 

Correspondingly, the 2-D power spectral density estimate is defined as 

By analogy with Eqs. H.l to H.4, it follows that 

where 
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However, the quantity SiD does not have much physical significance. We would 
prefer, instead, to relate SzD(f, k) to the 1-D spectra computed for each point in 
space as 

Nl -1 

but such a direct relationship can not be rigorously substantiated as being appro- 
priate. 

(U)To pursue this point further, one can use the fact that the estimates of Eqs. 
H.8 and H.ll (with the definitions of Eqs. H.6 and H.7) are actually the same as 
the periodogram estimates 

and 
1 

SlD(f; n2) = -IXlD(f; n2)I2 
Nl 

Therefore, from Eqs. H.4, H.12, and H.13, it follows that 

- - l!~ {y S~D(S n2 ) + crossterms (H.14) 
N2 n2=0 

Thus, the 2-D spectrum even on the k = 0 axis is not a simple combination of the 
1-D spectra. The crossterms can potentially result in various phenomena that do 
not necessarily occur in the 1-D spectrum. 

(U)The crossterms in Eq. H.14 are what prevent us from having a simple direct 
relation between the 2-D and 1-D power spectral estimates. If the signal were 
independent of range (i.e., if the signals in each radar range-gate were identical 
functions of time), then each of the crossterms would be equal to SID and so a simple 
relation would exist. However, for realistic situations where the signals at each 
range gate are digerent, it appears that the presence of these crossterms could be 
responsible for some differences that appear between the shape of the 1-D spectum 
and the shape of the 2-D spectrum as viewed along the k=O axis. 
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(U)The above analysis was carried out by NPS for spectral estimates based on 
periodograms and is relevant to this investigation since differences were observed in 
attempted comparisons of 2-D and 1-D periodogram spectral estimates. Note that 
the analysis here does not directly apply to MEM or 2-D AR spectral estimates 
per se. However, it does suggest that for any type of spectral estimates, differences 
between the 2-D and 1-D spectra may occur and therefore caveats must accompany 
any attempted inferences from cross-comparisons between the two forms. 
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Appendix I 

A Concise Roadmap of Technical 
Details for The Spectral 
Estimation Specialist 

I. 1 On "Optimum Approaches" to Multichannel 
Spectral Estimation 

According to Ning and Nikias 199, Intro.], except for their computationally un- 
wieldy "optimum approach" l ,  no previously existing (prior to 1987) Multichannel 
Linear Prediction (LP) is an exact generalization of maximum entropy estimation 
to more than one channel but merely an approximation. Since all versions of mul- 
tichannel LP incorporating linear autoregressive parametric models must estimate 
a fixed number of poles and zeroes, certain undesirable phenomena can be encoun- 
tered with its use such as line-splitting [233] (as a result of the algorithm assuming 
that more poles are there than are actually present) and cross-channel feed-through 
can occur (corresponding to imperfect pole-zero cancellation occuring near the unit 
circle that underlies the processing considerations). A scalar MEM remedy to the 
single channel line-splitting problem is the approach of [96] which involves addi- 

lSince it is claimed to be computationally equivalent to a "Dynamic Programming" implemen- 
tation, the so-designated "optimum approach" lias been implemented for only two channels and 
only for "real" processes by Ning and Nikias, a severe limitation for the Tradex wideband signal 
application which has associated signal processing that coherently sums PP and OP phase returns 
as a "complex" process having both "real" and "imaginary" components and that requires use of 
more channels for realistic models as further pursued in Chapter 6. 

2Also only currently implemented by Fougere for "real" processes. 
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tional optimization operat ions and, as such, is a greater computational burden. 

(U)Recently, another approach to multichannel maximum entropy spectral es- 
timation has emerged [258] that also claims to be an optimal implementation but 
to also have tractable more practical algorithms as subroutines to be implemented. 
This new approach also has not yet beeen posed for the "complex" case of interest 
in this Tradex application. - 

(U)Since there are several algorithms for multichannel LP that are similar, both 
in structure and in beneficial efficiency, to the highly regarded Levinson-Durbin 
recursion technique, it is reasonable to use multichannel LP as a simple way to model 
a multichannel stochastic time series for either estimation or subsequent sample 
function emulation of auto- and cross-spectra. This report provides a detailed look 
at the results of applying Nuttall and LWR techniques, as two multichannel spectral 
estimation approaches. 

1.2 Cornnients on Forwards and Backwards Markov 
Models Disscussed in Section 2.1 

(U)While some discussions such as [71, Eq. 8.2.731 don't bother to use different 
notation to make the fine distinctions between the underlying processes in forwards 
and backwards models such as is done using W~ in Eq. 2.5b, other discussions do. 
(For more explanation of the properties and interrelationships between forwards 
and backwards Markov models and an indication of historical misconceptions and 
their proper resolutions, see [133], [I341 .3) 

1.3 More on ARMA Spectral Estimation and its 
Attendant Difficulties 

-. . ~ 

(U)A recent IEEE ASSP award winning investigation [I611 looked into what 
. . . . -. . 

order AR, MA, and ARMA model can match a specified (L + 1) length (positive 
definite) correlation sequence. We are also forewarned by being cognizant of recent ,. -~ ~. 

revelations in [78] that the earlier adaptive lattice implementations of ARMA ([78], . . 

[82]) that involve unequal forward and backward reflection coefficients suffer by 

3These aspects are also important in reverse time Kalman filtering and Kalman smoothing ap- 
plications [170], [171]. 
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not being robust in noisy situations and that it also does not conform to previous 
analytically calculated bounds on anticipated output power. 

(U)The problem of estimating the AR and MA parameters of a (scalar) ARMA(p, q )  
model for the special case where p = q (so there are exactly the same number of 
unknown AR terms as there are unknown MA terms to be estimated and where 
the model order p is assumed to be given or specified a priori) is equivalently re- 
formulated in [214] in terms of a one-step predictor and utilizes Riccati equation 
solutions within an associated Kalman filter context. This unusual approach (ex- 
tremely palatable to Kalman filter theorists) is pursued in [214] to completely solve 
this ARMA parameter estimation or modeling problem for the AR parameters (ar- 
bitrarily in either transient or steady-state operating conditions) and for the MA 
parameters (only in the steady-state). Unlike most other approaches to ARMA 
estimation, which usually estimate the AR portion first and then the MA portion 
afterwards (as a highly numerically sensitive possibly nonlinear function of the AR 
portion), Alengrin and Zerubia claim in [214, p. 1115, first bullet in remarks under 
proof of Theorem 21 that the reverse is true by the AR portion in their technique 
being instead dependent on the MA estimates (but the solution approach that they 
recommend appears to defy or contradict this claim). At any rate, their solution 
equations do exhibit nice linearity throughout. 

Some Needs for ARMA Models in Radar Pro- 
cessing 

(U)Upon examining samples of our radar data, the sample paths were observed 
to be spiky, which is indicative of measurement noise being present as compared 
to the fairly smooth trajectories of a Markov process that would be expected for 
a pure AR process. Since the spikiness was small as compared to the general 
trends, it would appear that it could be subsumed as additive white measurement 
noise of relatively small magnitude (i.e., small variance and zero mean) that had 
been superimposed. Theoretical and physical justification for such treatment of 
measurement noise being present is that a radar receiver is in fact a measurement 
sensor with thermal or shot noise and a corresponding noise figure. Obviously, 
radar receivers are not noise-free. Other measurement degradations present could 
be due to minor effects of the atmosphere and other background environmental 
effects which contribute a component to the effective measurement noise. 

(U)There is already a precedent by Simon Haykin in [29] which asserts that: 
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"ARMA processes are more appropriate as stochastic models of airport 
surveillance radar returns (of cooperating benign targets in clutter), 
where AIC-based selection algorithms to determine the appropriate p 
and q of the associated ARMA process were utilized" 

despite the warnings against AIC techniques in [49, Section V], [50] as noted above. 
These ARMA techniques are of less interest to us here because RV reentry tracking 
by radar is clutter-free and for a different frequency range and in a more sensitive 
target resolution environment and uses the more potent special purpose Tradex 
radar. We are somewhat satisfied with using just an AR model with perhaps the 
slight wrinkle of additive white measurement noise being assumed to be present. 
Recent techniques of [63], [160], and [I631 are now available and may perhaps be 
more appropriate for Haykin's thornier problem of determining the most appropriate 
ARMA model order and assumed model structure for his C-band air traffic control 
radar in heavy ground clutter. 

1.5 On Use of IMSL at Lincoln 

Regarding use of Edition 10.0 IMSL subroutines as discussed in Section F.2.3, 
a somewhat unsettling aspect, recently uncovered (in June 1988), is that some 
(but not all) Edition 10.0 IMSL routines on the IBM 3081 mainframe here require 
use of the Lincoln Laboratory 4.1 FORTRAN compiler (which still has a status 
classified as being experimental). No memo has yet been circulated as a warning to 
general users on this potentially sensitive topic. Information on this sensitive topic 
is apparently only disseminated serendipitously. 

1.6 Closing Remarks 

Although, at times, it may appear that the'reader is thrust into the midst of 
a raging technical debate, it was felt that, rather than cover up controversy, it is 
better to take the 'Lbull by the horns" by acknowledging it and addressing it directly. 
This approach was used in addressing certain topics, such as when discussing use 
of Akaike's Information Criterion (AIC) for estimating system model order. Here 
we have a battle of the titans so to speak with both IEEE Fellows Thomas Kailath 
[49] and Simon Haykin [29] using AIC without reservations, but with careful and 
thoughtful IEEE Fellow Kashyap [50] expressing concerns that others [173], [163, 
Preface], 12311 eventually came to share in viewing AIC as suspect. It is now 
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routine for investigators, perhaps through imitation, to use the AIC in establishing 
the order of the underlying model, but we refrain from doing so here because its 
use is apparently shaky. Even these algorithmic aspects of technology are evolving, 
but, fortunately, with longer time constants, in general, than those of hardware 
technologies. No field is static (unless it is dead)! 

It may appear that an inordinate amount of attention was lavished on devel- 
oping an "exacting simulator" and then successfully validating it. The reason for 
this emphasis is that all the alternative multichannel spectral estimation generaliza- 
tions are apparently somewhat approximate in order to be tractably implemented 
and that multichannel spectral estimation is frequently vulnerable to cross-channel 
feedthrough. In performing validation of the two multichannel spectral estima- 
tion approaches and in making comparisons between the processing results of each, 
it would be awful if artifacts of simulator approximations and inaccuracies were 
to inadvertently taint the conclusions of this investigation into which is the more 
appropriate multichannel spectral estimator to be used for the Active Decoy appli- 
cation. To ensure against this unpleasant situation occurring, the new simulator 
design was pursued so that only exact mechanizations would be used that avoid use 
of uncalibrated approximations. Since documentation of the features of an "exact- 
ing simulator" had not been encountered in the open literature by the author but 
was forged instead from his industrial experience, it was completely documented 
here in Appendices D, E, F, and G. 
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