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eddies behind the RV body before laminar flow through the atmosphere is again
reestablished (and the wake “reattaches” to the RV at the lower altitudes). Prior
to BLT, the wake is very pronounced (i.e., has so much signal content, as compared
to background noise, that it is hard to ignore), is less affected by atmospheric drag
but instead is a consequence of the interaction of the atmosphere and the ballistic
coefficient of the RV, and moves at a slightly slower velocity than the RV (to the
degree broadly indicated in Fig. 1.1).

(U)Prior to Phase 1 BRVAD, it was realized that an active decoy could not
just rely on direct playback of an RV signature because the computational storage
requirements would just be too great for onboard practicality of implementation
(within present and near term projected future technology) to realistically accom-
modate:

e Variations in radar aspect angle at various points in the ballistic trajectory
and for different candidate trajectories;

e Variations with altitude;

e Variations with various threat radar bandwiths and/or signal structure uti-
lized by the threat radar.

(U)Although the BRVAD program of course accounts for emulating the entire
RV tip, RV body, and wake behavior, this particular investigation concentrates
on realistically replicating only the RV wake and proceeds to look into possible
radar range gate-to-gate cross-correlation of radar signal spectral target returns
across contiguous gates as a consequence of being illuminated by the threat radar
(as illustrated phenomenologically in Fig. 1.2). This is a major thrust in this
investigation. Accounting for and exploiting to an advantage any cross-correlation
that exists across corresponding wake range gates between Principal Polarization
and Orthogonal Polarization (PP/OP) components is also a major objective of this
investigation. )

( i?)(’VVithin the Phase 1 BRVAD program, wake emulation proceeded from esti-
mates of auto-spectra extracted from available Minuteman IIT Mark 12A RV data,
as obtained from S-band/narrowband Tradex signal returns (at an operating fre-

quency of 2.95 GHz) having a bandwith of 10 MHz and, consequently, only a 15
meter range resolution of

c _ 3.0x108
2B, 2(10 x 108)

Ar= = 15 meters, (1.2)
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known as the Levinson-Wiggins-Robinson (LWR) algorithm and the other being
a multichannel approximate generalization o the single channel Burg Maximum
Entropy Method.(MEM) [158] algorithm, as further developed and extended to the
multichannel case by A. H. Nuttall. Both algorithms are described in Chapter 2.
Chapter 3 describes experiments done on simulated data, first to test out the soft-
waretoolsthat wereimplemented for thisinvestigation, with supporting discussions
provided in Appendices D, E, F, and G. These tools are then applied to the actual,
data. These experiments point out some d the perceived strengths and weaknesses
d these two representative algorithms that were encountered in seeking to apply
multichannel LP modeling to radar target data. Some general problemsthat were
encountered in applying these Multichannel LP algorithms are pointed out in Ap-
pendix F. Considerations for using only Autoregressive (AR) process models here
over apparently more general Autoregressive Moving-Average (ARMA) processes
are provided in Chapter 4. Chapter 5 and its auxiliary Appendix A discuss how
to effectively handle the radar ambiguity function effects that are present, which
taint the processing results and, consequently, how to temper final cross-correlation
results and conclusionsin terms d a computed coherence function representation
and associated moderating confidence regions. These techniques are applied to
the Tradex RV wake data in Chapter 5 as a further detailed investigation o the
cross-correlation present between designated channels representing either contigu-
ous radar range gates and/or PP/OP componentsd the radar signal returns. Ap-
pendix B summarizesthe methodology that can be used to explicitly erect accuracy
bounds about the AR parameter estimates, which are the focus o this investiga-
tion, and the other supporting methodology available to calculate corresponding
asymptotic Cramer-Rao lower bounds. After considering certain critical leads pro-
vided by the results o the independent 2-D modeling investigation, as reported in
Section 6.1, Section 6.2 o Chapter 6 illustrates use d the 1-D modeling approach
as it is explicitly applied to a representative sample o the available Tradex data
at a particular altitude. It isat this point that the pertinent conclusons o the
2-D processing are folded in to aid in the selection o the most appropriate 1-D
state size to use and to decide what states to includein the 1-D model. Concluding
results on specifying an appropriate wake model (that is the primary objective o
this investigation) are offered in the remainder o Chapter 6. Overall conclusions
and asummary are offered in Chapter 7.

(U)In general, technical details are relegated to the Appendices. The contents
d Appendices A and B have already been described above. Appendix C describes
the emergence o new techniques to gauge proximity to a spectral template that
are important in subsequent downstream eval uations to gauge the adequacy o the

7
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approach offered here or the results o this modeling effort in successfully approxi-
mating the signature o actual RVs. Appendix D discussesthe capabilities designed
into the new simulator as wel as elaborating on why this redesign was initiated
as a way to preserve the cross-channel sensitivity by avoiding previous approxi-
mations that tended to obscure simulated cross-channel effects. This is important
in validating software implementations o spectral estimation algorithms that are
themselves extremely sensitive to the veracity d the multichannel simulator imple-
mentation. A discussion is also provided here o each new feature introduced and
how it was checked out and validated as having been correctly implemented and
how it is presently performing to provide the correct answers. The status o each
critical software module and the structured progressiond validation and debug &f-
forts/activities are covered in Appendix F, while the specific analytic closed-form
test cases used for verification/validation are derived or described in Appendix G
along with identification and an explanation of what softwarefeature is to be ver-
ified through the use o each test case. Appendix H serves to explicitly remind
that 1-D results are not totally comparableto 2-D results even when applied to the
same data under almost identical conditions, as illustrated in Chapter 6. Finally,
Appendix | concludes by leaving a trail of several technical details being offered as
clarificationfor spectral estimation specialists.

1.3 Background on Maximum Entropy Spectral
Estimation and Radar Applications

(U)An objection that had been raised in the past [152] was that the superres-
olution techniquesd MEM would probably not be useful for radar applications.
The useful exception acknowledged in [152] as being ideal for MEM was for an
application where detailed knowledge exists about the target and where the radar
operation is not limited by noiseor by clutter. Such an unusually pleasant situation
isin fact the case for the Tradex modeling application considered here.

(U)LP in a single input/single output linear filter corresponds exactly to max-
imum entropy spectral estimation for a single channel and is wel known in this
context for its high resolution capabilities (relative to the Blackman-Tukey (1959)
or Cooley-Tukey (1965) FFT-based methods) and its ability to distinguish high
peaks that may exist in the spectra. Since all versionsd multichannel L P incor-
porating linear autoregressive parametric models must estimate a fixed number o
poles and zeroes, it isimportant to be aware that certain undesirable phenomena
can sometimes be encountered with its use such as line-splitting [233] (as a result

8
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Chapter 2

Overview of Multichannegl L P
Spectral Estimation

2.1 Fundamentals of Autoregressive (AR) Com-
plex Random Processes, and the Structure
and Propertiesof the Associated Power Spec-
tra

(U)A multichannel complex time series can be represented by a vector
( zn(1)
z,(2)
X =" (2.1)

| 2,(M) |

d M-channel samplesat time index n where each component has both a real and an
imaginary part. For a "coherent™ radar application, where phase is also accounted
for, such a representation in terms d complex variablesis necessary (see[70, Chapt.
4], [88, Sec. 141, [48], [164]). For a stationary zero-mean process, the covariance at
lag 7 is

Reo(7) = E [ Xy, XH| = RE(7) (2.2)
where the “H” superscript indicates the Hermitian conjugate (i.e., the complex
conjugate transpose).

10
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(U)The associated spectral density o the processis defined by

40
Sealw) = [ Realr)e 7 dr (2.3)
for R,(7) corresponding to a continuous-time representation, or as
+o00 .
Sea(w) = Atkz Ros(k)e«kat 22 < < & (2.4)

for R,,(k) being expressed in a discrete-time representation. Here At is the time
interval or time-step between successive samples o X,, and is chosen to satisfy a
Nyquist criterion for the transmitted radar signal o known form.

(U)A multichannel AR process o order P is generated by a random process o
the form

P
&n = — Z Az(P)ln—z + wn fOI’ n= 1, 27 3) L] (2.5&)

=1
P
o X, p =-—ZB§P)X,L_P+,-+M for n=1,2,3,... (2.5b)
=1
where AY) and B® are, respectively, the associated forward and backward predic-
tion matrices and W,, and W2 are zero mean Gaussian white noise driving terms.
For the scalar case, the collection of A{F)’s and the collection of BY)’s areidentical,
but differ, in general, for the multichannel case [71]. Via standard input/output
properties o linear systems [87, Sect. 10.21, the spectrum o the forward process o
Ea 2.5ais

P -1 P -H
Sea(2) = At [E A,(P)z—"] U [E A,(P)zf] : (2.6)
t=0 =0

where

Ao = By = |, the identity matrix,

At is the sampling interval,

U=E [M ] , the forward residual error covariance, and

z = e/¥At_and the complex conjugateis denoted byz = e~7wAt,

Equivaently, using the backward representation o Eq. 2.5b, the spectrum o the
process is

P -1 P -H
Ses(z) = At [Z B}P)z—i] 14 [E B,.(P)zi] : (2.7)
i=0

=0

11
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where the backward residual error covarianceis
v = B [Wiwsy|

The associated forward and backward prediction error series are defined to be

P
Y, = Z ASLP)_L_,L (2.8a)
n=0
P
Zy = Z By(zp)lk—Pﬂ- (2-8b)
n=0

(U)For complex Gaussian processes such as are encountered in thisinvestigation
d the PP and OP componentsd the reflected radar signal, the underlying state-
vector of Eg. 2.5 can be decomposed in terms o its constituent real and imaginary
components as

X(t) =Xt T oX2(t) for 1<k <N (2.9)
and, moreover, for a super-stacked vector
X = [X(t1), X(t2), X(t3), - X (tw)]" (2.10)
with zero mean as B
E[X]=0 (2.11)
and with
QLE [XXH] (2.12)
and
P2E [QT] : (2.13)

the underlying pdf is Gaussian o the form [164, Eq. 1] 1:
(X)) = ——— g [-x"0 4] (2.14)
PR = amgre ST A '

As in most applications d complex Gaussian processes, the underlying complex
process that arisesin this application is "circularly symmetric™” such that

P=0, (2.15)

1The corresponding Eq. 1 of [164] isevidently in error by omitting the squareroot of the deter-
minant of Q that should appear in the denominator as properly shown abovein Eq. 2.14.

12
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Further, the essentially stationary complex Gaussian processes d concern in this
application are such that

Rss(r) = RE(-r)= E [X(t)XH(t + T)] (2.16)

which again can be decomposed by virtue d Eq. 2.9 into

Rs3(7) = RG(T) + JRE(7) (2.17)
where
RZ;(7) = Rpag1(7) + Ryapa(7) (2.18)
and
RZ:(7) = Rpzp (7) — R (7) (2.19)

Due to the condition o Eqg. 2.15 holding, the following symmetries also must be
satisfied [164, Eq. 8]:

RZ.(1) = 2Rpp (1) = 2Ryp2,2(7) (2.20)

and
RE(7) = 2Rgaa (1) = —2Rpa (), (2.21)
The above expressions will be further utilized in the sequel and are also utilized

in the companion report in [187, pp. 910 o Chapter 1 and footnote on p. 24 o
Chapter 3].

2.2 Multichannd MEM Generalizations

(U)The MEM approach to spectral estimation has been utilized for a wide variety
o practical applications[98]. While dmost all variationsd single channel LP are
closdy related to single channel MEM spectral estimation (as identified following
Table 2.1), there are severa different versionsof multichannel LP that more or less
correspond to multichannel MEM. However, it is noteworthy that Burg in [100,
Intro., p. xiii] observesthat:

multichannel spectra do not have the necessary structure to permit the
correspondingly rich development as occurs in the single channel case.
Because o this (situation existing), no simple extension o the Burg
technique [158] to the multichannel case is possible

13
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as he thought in 1975.

(U)Since 1975, there has now been considerable prior work in seeking multi-
dimensional MEM generalizations. Lang [91], [94] gave a general and complete
presentation o the theoretical issuesthat arisein the multidimensional MEM spec-
tral estimation problem and suggested an algorithm. Alternatively, the Lim-Malik
algorithm for two-dimensional MEM [68] is a type o alternating projection algo-
rithm commonly used in signal processing. It achieves computational efficiency
by exploiting the speed o the FFT to an advantage. Johnson [90] reported that
for the Direction Finding (DF) application, Lang’s version of multichannel MEM
performed poorly relative to conventional Maximum Likelihood Method techniques
and especialy as compared to SVD-based approaches [88, Appendix B] (such as
MUSIC ?) which can better handle the situation for the signal of interest in the DF
application consisting o essentially two separate spectral component lines or tones
(i.e., Sinusoids). (See [92] and [95] for additional evidence of relative performance
in evaluating the outcome d alternative algorithmsfor the common test problems.)

(U)The multichannel LP algorithm o Nuttall [86] provides LP coefficient esti-
mates directly by minimizing a very reasonable error criterion defined directly in
terms o the measurement data. At the sametime, Nuttall's algorithm also provides
a simple model for eventually generating the process by using the recursive model
o Eqg. 2.5a in reverse as driven by a Gaussian white noise pseudo-random number

(PRN) generator asinput.

2.3 The LWR and the Nuttall algorithms as L P

Multichannd Generalizationsof Particular | n-

terest in this Tradex Wideband Application

(U)Multichannel LP was used in this investigation becauseits simple parametric
form is suggestived an autoregressive (AR) solution to the modeling problem, and
because efficient algorithmic implementations exist. While there are severa alter-
native methods for obtaining the multichannel LP coefficients, the two approaches
investigated here are the "Levinson-Wiggins-Robinson” (LWR) and the " Nuttall"
algorithms. LWR is the direct multichannel generalization by Whittle [126] o the
single channel Levinson recursive algorithm, which requiresintermediate estimation
o the covariancematrices by averagingthe outer products o the multichannel data

2MUltiple Slgnal Classification(MUSIC).
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inputs (expressed in vector form), before proceeding to the main goal o estimating
the (AR) coefficient matrices o Eq. 2.5 as used in forming the spectrum.

(U)The multichannel LWR algorithm [127] utilizes arecursiverepresentation of
the AR coefficients that providesa P order solutionin terms of the prior (P- 1)t
order solution. The LWR agorithm can be briefly summarized as (cf., [84], [99,
Sec. II] where dlightly different but equivalent conventions are used):

4

p—1
A, =3 AP VR,

n=0
A,(f) = —A,,(V,,_1)"1
B — ~-AH(U, )
repeat for p=1,2,...,P < U,=(- A;(ap)Bz(ap))UP—l
V, = (I _ B’()P)Az(JP))V;,_l
AP AP L APBED for1 <k pe
BP) = BP + BOAPY  for1<k<p-1

(2.22)

with initial conditions
Uo = Vo = Ryg)
A =BM =1 forall k.

(U)This algorithm solves the Yule-Walker or normal equations, which minimize
the mean squared error (provided that the covariancefunction used is exact rather
than approximate, asit is here). Hence, used this algorithm in applications where
the covariancefunction must first be estimated leads to a potential vulnerability to
error in subsequently estimating the AR prediction coefficient matrices. In order to
ensure stability in a LWR mechanization, a triangular (a.k.a. a Bartlett) window
is usually utilized 3. LWR is sometimes alternately referred to in the literature as
being the “autocorrelation method™" [82].

(U)The Nuttall algorithm invokesthe LWR recursion as specified above, except
that the reflection coefficient matrix A, isobtained as the solution to the generalized
Lyapunov-like equation:

(Vo) ' Bp) Ay + A, [(Upd) ' By = —2G, (2.23)

3Windowing, as used here, has a much less pronounced effect upon the results than it doesin
conventional FFT-based approaches to spectral estimation but is needed to ensure that a positive
semidefinite matrix sequenceisobtained, asis necessary in order to rigorously proceed.
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where
1 X =
EP = N Z kak ’
k=P+1
1 N-1
=+ Y 2,20, (2.24)
k=P
1 N-1 =
Gp=— ) Y,.Zy
? N k=P ’

and Y, and Z, in the above are again the forward and backward prediction error
series as defined in Eq. 2.8. The above matrices E,, F, and G, can be interpreted,
respectively, as being the windowed sample averages o the forward and backward
error series, and their respective cross-correlation 4. By solving for the AR coef-
ficientsin this way, the Nuttall algorithm minimizes the weighted error function
defined directly in terms o the measured data as

trace [U; 4 E, + VAF, (2.25)

(V) For acompletederivationd the Nuttall algorithm, see[86]. Comparedto the
LWR method, this Nuttall algorithm is of much greater computational complexity
since on each iteration, Ep, Fp, and Gp as wdl as a solution to a steady-state
generalized Lyapunov-like equation must be evaluated.

2.4 Overview Comparison Between the LWR and
Nuttall Algorithms

(U)Table 1 has been constructed as an encapsuled overview d properties asso-
ciated with the two multichannel algorithms o interest here. The Burg algorithm
[158] isessentially identical to the single-channel versond both the LWR and Nut-
tall algorithms. It is only included in the above table as a familiar reference gauge
for comparison purposes.

(U)Note that while windowing is used in the LWR to theoretically guarantee
stability, stability still can not be guaranteed if finite wordlength (FWL) arithmetic
is being used [93] and sufficient computational dynamic range is not available or

*While the representation of Ej, F,, and G, in [84, Section 3) averageshy afactor of 2 rather
than by % asdone herein Eq. 2.24, extensive numerical experienceisthat averaging by % has been
better behaved in providing positive semidefinite matrices as needed to rigorously proceed further.

16

Unclassified



Unclassified

(U) Table 21: Relative Comparisonaof Propertiesd Several L P Algorithms

PROPERTY LWR (M-channel) | Burg (1-channel) | Nuttall (M-channel)

WINDOWING necessary not necessary necessary

STABILITY guaranteed guaranteed guaranteed

STABILITY with FWL not guaranteed guaranteed not guaranteed

EFFICIENCY efficient expensive very expensive
10><) (M?x)

UNCLASSIFIED

Table 2.1: Relative Comparison of Properties d Several LP Algorithms (U)

unacceptable truncation and roundoff proceduresare being utilized. It is our expe-
rience that stability with FWL is also "not guaranteed” for the Nuttall algorithm.
Nuttall has proved stability o histechniqueonly in the "ideal" case when it is not
encumbered with a finite wordlength arithmetic implementation constraint as is
unlikely to be encountered in most practical applications (cf., [75], [76]). Naturally,
the situation is usually ameliorated when multiple precisionis utilized.
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Chapter 3

| nitial Results of Data Processing
to Estimate AR Coefficients and
Associated Spectra

3.1 Using Simulated Data

(U)This simulated data experiment is designed to verify that our recently mod-
ified algorithmic computer program implementations work properly. The spectral
estimation programs werefirst tested using simulated data generated by a known
strictly stable 1¢¢ order 2-channel complex Markov process o the form

_ [ 0.34-35022 —0.75+ ;0
X0 = 0.65+ 50 0.55 + jo | Zn1 W, (3.1)

where W, is vector Gaussian zero mean white noise d unit variance. Using tech-
niques identical to those demonstrated in Section 3.2, eigenvalues were explic-
itly calculated from the characteristic equation (associated with the above sys-
tem matrix displayed in Eq. 3.1) to be 0.4615t j0.5895(0.75¢7594°) and 0.4285 —
70.8095(0.917e7962-10°) " each being within the unit circle to guarantee the asserted
stability o the system o Eg. 3.1. The associated effective time constant for Eq.
3.1is At/In(0.917) = 11.54At, where At is the sampling step size and the high-
est frequency o Eqg. 3.1 ( to which the proper Nyquist sampling in specifying an
adequate At is related) is 62.10°(w/180°)/ At = 1.08/ At [251].

(U)Via Eq. 2.6, the two channel power spectrum associated with the above
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Markov processof Eq. 3.1is

-1 —H
_ 0.34—j0.22 —0.75 ] 1 0.34—j0.22 —0.75 ] _
Saa(w) = At lI“ + [ 0.65 0.5 ] Z] In [I" + [ 0.65 0.55 l zl
(3.2)

At Jzf? 22 $1.102+1 0.1z — (0.1025 — j0.165) ]
; 2
[z2 + (0.89 — j0.22)z + (0.6745 —j0.121)] [z2 +(0.89 + j0.22)z + (0.6745 + jo.121)] 0.1z —(0.1025 + ;j0.165) 2z 4+ 0.68z 4 0.5865

Computation o the result d Eqg. 3.2 involved using the routine properties that the

sum, product, and ratio d complex variables are, respectively, the sum, product,
and ratio o the conjugates.

(U)The two-channel pole-zero plot of Fig. 3.1 correspondsto Eqg. 3.2, eachterm
d which has polesin commond multiplicity twolocated at —0.462+50.590(0.75¢7128:06%)
and —0.429 — ;0.810(0.916e4117°%), well within the unit circle. All terms have a
zero o multiplicity two at the origin. The additional two zeros o the $;; term
are at —0.55 T ;j0.835(0.9998¢/12337°) and at —0.55 — ;0.835(0.9998¢/236:63°) poth
essentially on the unit circle. The additional single zero o the S, term is at
1.025 — j1.65(1.94e79%815°) and so is not d minimum phase since it is outside
the unit circle. Correspondingly, the additional single zero o the S;3; term is at
1.025 + j1.65(1.94e7%815°) and as the conjugate o the S, term zero is also out-
side the unit circle. The additional two zeroes of the S,; term are at —0.34 +
70.6862(0.7658¢7116-36°) and at —0.34 — 70.6862(0.7658¢724364°) well within the unit
circle and therefore being & minimum phase. Asindicated in [251], the "effective
bandwidth™ for each component o this random processis the reciprocal o theinte-
gral over the unit circled the square o the corresponding component o the power
spectral density function, as scaled by 273. This can be explicitly evaluated using
Cauchy's residue theorem for the double poles enclosed.

(U)The truespectracorrespondingto Eq. 3.2, asevaluated using z = exp[j2xf At]
for varying values o f, are shown in Figs. 3.2a, b, c. The superimposed dashed
line in Fig 3.2¢ represents the phase while the solid lines represent the standard
magnitude d the power spectra. Naturally, autospectra being exclusively real have
no phase component. The correspondingoutcomed LWR estimation of these sm-
ulated spectra, by operating directly on the Monte-Carlo data generated from Eq.
3.1 (following a skipping of the resultsdf thefirst 100 iterations o Eg. 3.1 to avoid
theinitial transient prior to entering into a type o steady-state, correspondingto
nine time-constants having elapsed, where the processis then sufficiently station-
ary), isshownin Figs. 3.3a, b, c. Similarly, the outcome o Nuttall estimation for
this same test case and conditionsis shown in Figs. 3.4a, b, c. All plots have the
same scale throughout for ease in unambiguous cross-comparisons.
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(U)While both algorithms correctly capture the auto-spectra thus confirming
our software implementationsd the two algorithmsinvolved, it is observed for this
examplethat the LWR technique, by moreclosdly approaching the actual inflections
exhibited in the shape and phase d the true simulated cross-spectrum, appears to
be the best performer for this first-order AR process with this length o data of
999 sampled points and a sampling rate d once every second (i.e., A=1). (This
conclusionis not inconsistent with that o [84] which found the Nuttall algorithm
to be the best performer, but that competition was against two other multichannel
algorithms). However, we refrain from designating a particular LP algorithm as
being "best" because it most likely is situation and application dependent. For a
comprehensive comparisond the LWR, Nuttall, and Morf algorithms!, see [81].

3.2 Experimentsto Gauge Algorithm Sensitivity
to the Data Length

(U)This section consistsd an investigationinto the degradation incurred by AR-
based techniques due to a foreshortened length o available data on which to base
spectral estimation. The results d several numerical experiments using simulated
data are displayed here for calibrating the anticipated degradation or diminishing
in clarity, resolution and/or general performance capabilitiesd the LWR (and/or
Nuttall) algorithms to provide adequate multichannel spectral estimates. We cal-
ibrate this effect o limiting the length of data available by roughly identifying at
what point the AR coefficient estimates no longer acceptably correspond to those
"known" coefficientsthat we explicitly used in the simulator.

(U)The complex example, Case4 of TableF.1, was used as the parameterization
for the smulator. Then the resulting single sample function that emerged as an
output from the ssimulator, consisting d 898 time samples taken every second, was
routed through the AR Estimator (with flag set for the "Nuttall" option) yielding
the following estimate o the underlying system cofficient matrix as an output:

[ —0.3623 + 50.2046 0.7624 — 70.6562 x 10~2
A= (3.3)
—0.61798 — 70.7521 x 10~ —0.5524 + 70.2338 x 10~

1This is yet another multichannel L P generalization. This version is based on minimizing the
geometric mean of the forward and backward error series. As Morf's later algorithm, it is computa-
tionally more efficient than Nuttall's earlier algorithm, as established in [84].
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The associated characteristic equation for the above matrix is:

0 = (0.66650386 — 70.12497340) + (—0.9147 + 50.22798)A + A?%. (3.4)
The above quardratic equation o the form:
aX +bA+c=0 (3.5)
has solutions o the form (still valid even in the complex case):
Aa = 52 \/222 — 4ac (3.6)

Performing the indicated operations for evaluation using the parameters for a, b,
and c from Eqg. 34 yidds:

\ —(~0.9147 + 70.22798) = |/(—0.9147 + 70.22798)? — 4(0.66650386 — 70.12497340)
1,2 —
! 2

= 0.74185799 /%°44° and 0.91407276 ¢~51.96° (3.7)

So even though the underlying A matrix presented above doesn't look identical to
the matrix that was originally used to simulate the data, the resulting eigenvalues
that were obtained are still identical (as they should be as a confirming check).
The AR Estimator does not automatically invokea preferred coordinate system and
results obtained can theoretically differ by asimilarity transformation; however, the
resulting AR estimates should still have the same eigenvaluesas correctly exhibited
here. Infact, it wasenough to stop at the point o observing that the characteristic
equations were identical since roots d the same common polynomial equation of
the same degree are necessarily identical and it is overkill to actually solveit again
but informative to do so at least once 2.

(U) Proceeding to investigate the effect o constraining the length o available
dataon the performance o the LWR versiond the AR Estimator by only using 100
equally spaced data samples this time (with the same 1 second time step), rather
than the previous 898 data samples, yields the following underlying system matrix
(when the "LWR" computational option within the softwareis utillized):

[ —0.39511782 + 70.18683845 0.73222971 — 70.03982116
A= . (38)
—0.66155690 — 70.03186497  —0.48329157 + 0.02238195

2Some grief (induced by hand computation of eigenvalues from the associated characteristic
equation with complex coefficients) can be spared by using the Fortran program offered in [46,
pp. 3353371 for factoring complex polynomials.
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The associated characteristic equation is
0 = A% 4 (—0.8784 + 50.2092)) + (0.6725 — 70.1022) . (3.9)

This is essentially the same characteristic equation as reported abovein Eq. 3.4
except that only one or two digit accuracy is now available due to the forshortened
data length. This will give rise to dight differences in the calculated eigenvalues
from those d Eq. 3.7.

(U) Proceeding to also investigate the effect d constraining the length o avail-
abledataon the performanced the Nuttall versond the AR Estimator by similarly
only using 100 equally spaced data samples, rather than the previous 898, yieds
the following underlying system matrix when the "Nuttall" computational option
is utillized:

[ —0.39514713 + ;0.18633008 0.73258209 — 70.04051232
A= . (3.10)
~0.66313660 — 7003125645  —0.484176397 + 70.02102142

The associated characteristic equation is
0 = A2 + (—0.8799 + 70.2074)) + (0.6747 — 70.1025) . (3.11)

Again, this is essentially the same characteristic equation as reported above in
Eq. 3.4 except that again only one or two digit accuracy is available due to the
foreshortened data length. Again, the resulting eigenvalueswill differ slightly from
those d Eq. 3.7.

3.3 Using Radar Target Data

(U) Asindicated in Fig. 3.5, aburst isdesignatedto be acollection of radar target
pulsereturns that are in general proximity to one another with an interpul se sepa-
ration interval or instantaneous pulse-to-pulse repetition interval (PRI) that isless
than some prescribed constant, K. On the other hand, strings o radar target pulse
returns are declared to be members o a distinctly different pulse train when the
time since reception d the last target return pulse exceeds a prescribed maximum
alowabletime interval, TMAX. The radar data initially investigated here consists
o 3 bursts (each containing 32 pulses) that occupy a total d 114 contiguous radar
range gates. This situation can be interpreted here as a worst case condition for
possible multichannel LP estimation as a vector time series consisting of 32 time
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T

Figure 3.5: Pulse Returns from Test Radar: definition o Bursts and Trains via
relative proximity of pulses as gauged by system parameters K and TMAX (U)

samples o a possible, but unlikely, upper limit extreme of 114 vector channels of
data. Becaused limitationson the amount of computer memory availableto usand
for other practical considerations to be further discussed below, no more than 10
channelsat atime are actually considered here. The radar pulse repetition interval
is 14 microseconds. Based on some prior Lincoln Laboratory radar precedents [226]
and subsequent follow-upsfor the narrowband casedf BRVAD Phase 1, a postul ated
fourth order AR random processmodel is used for this Tradex radar application to
represent the underlying RV wake target effect in each radar range gate.

(U)Fig. 3.6a showsa 1-channel LWR applied to (radar range)gate 1 of the data.
Fig. 3.6b depicts the same channel 1 autocorrelation, where a 5-channel LWR is
now used (and the other 4 channelsare from gates 2-5 o the actual process). Figs.
3.7a and 3.7b depict theresults of an identical estimation experiment using the Nut-
tall algorithm. The obvious degradation in clarity observed in the auto-spectrum
estimate as the number o channelsis increased has aso been observed and docu-
mented in [84]. The explanation is that a single-channel MEM needs to estimate
only P parameters, but the generalizationd® MEM must estimate M?P parameters
for M-channel spectral estimation, being a major increase in the scope or number
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d parameters to be estimated which occurs while the the number o supporting
data points available for information extraction is only modestly increased from
N pointsin the single channel case to M N points in the M-channel case. There-
fore, the multichannel estimator can only estimate thislarger number of parameters
while unfortunately incurring an increased degadation in variance, as pointed out
by Marple and Nuttall [84].

(U)This deleterious effect is much more pronounced when the channels consid-
ered do not have significant cross-spectral content. It is documentedin [81] that for
uncorrelated channels, a signal present in one channel may manifest itself as a can-
cdlingd pairsd zeroesin another channel; but becaused round-off error incurred
in the digital implementation o an otherwise ideal algorithm, the cancellation is
not perfect. In these cases, there may be "feed-through” or leakage of some o the
auto-spectrum from one channel to another.

(U)Figs. 3.8a, b and 3.9a, b depict the same LWR versus Nuttal algorithm
experimental comparisons as performed on another channel being Gate 2 for the
radar data that was provided. Notice that the degree of performance degradation
in going to 5 channelsis different in this case but still present none-the-less.

(U)Figs. 3.10a, b, and 3.11a, b compare 1-channel and 2-channel estimates for
primary polarized vs. orthogonally polarized data using LWR versus Nuttal ago-
rithm estimates. The use d 2-channel AR modeling appears to be very suitable
here since it is already anticipated from a physical argument and from other ex-
perimental precedents with other dual polarization radar applications that the use
o orthogonally polarized radar returns from the same target on the two separate
channels should be highly correlated. Whether use d an AR-based model struc-
ture sufficesfor RV wake modeling or whether an ARMA-based model structure is
required is considered in the next chapter.
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Chapter 4

Precedentsin ARMA Modeling of
Targets as well as Use of Standard
AR Modeing Techniques

4.1 Motivation for Considering ARMA Models

(U)A question arose as to whether the underlyingtruth model Monte-Carlosimu-
lator for exercisingthe spectral estimation algorithmsshould also contain aprovision
for including a component d additive measurement noise as wdl as the standard
process noise in the final sensor measurement so that it is more properly modeled
as consisting d the following sum of two statistically independent components as.

y(t) = yar(t) T o(t), wherev(t) ~ N(0,r). (4.1)

Typical Kaman filter ssmulators aways include a measurement noise simulation
capability, so it was initially perceived to be somewhat unusua that some AR
simulators don't include this provisionor capability. However, an AR process with
measurement noise present is essentially an ARMA process, as can be conveniently
seenfor the scalar case by consideringthe underlyingequivalent correlation function
that results from summing an AR process plusadditive independent Gaussian white
measurement noise, as demonstrated here:

¢yy(3) = ¢Z]ARZIAR(S)+¢‘UU(S)

q _ g+ rD(=s)D(s)

= D(s)D() T D=s)D()

(4.2)
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where the above left hand fraction represents the correlation function o a pure
AR process by having a constant numerator and the above right hand fraction
represents the effective equivalent ARMA process that results by having a non-
constant numerator. Used pure AR techniquesin situations involving underlying
ARMA processes could be afairly severe model mismatch [149]. A preprint paper
on this topic of MEM estimation with white Gaussian measurement noise present,
yet to appear in the open literature, is [26]. Other papers on this topic are [30],
[150], [179], with asymptotic Cramer-Rao lower bounds having been worked out for
this situation in [150].

4.2 Overview Summary of ARMA-Based Spec-
tral Estimation Considerations

(U)While as recently as 1981, Kay and Marple observed in [27] that their ver-
sion o high resolution model-based spectral estimation using an ARMA model was
tractable only when p, the order d the AR portion isidentical to q, the order o the
MA portion o the ARMA(p,q) random process. For p to beidentical to q isafairly
contrived condition not likely to be usually satisfied in practice for arbitrary situa-
tions other than that o a pure AR signal in additive "ideal" white noise. Recently,
the approach o [28] has emerged and is advertised to be tractable for arbitrary
p and g (as long as the dimensionsd p and g are specified beforehand). Nested
hypothesis tests on model order values o p and q using the Akaike Information
Criterion (AIC) [55] or canonical correlation techniques [51] such as are already
typically used in parameter identificationfor deterministic control systems, and for
model order reduction for reduced-order Kalman filter applications [106, Secs. V
and V1], [108], are appealing in this new ARMA context. However, despite some
apparent successes [169], reservationsor limitations on use o AIC for certain ap-
plications are expressed in [49, Section 5] whereit is claimed that use of AIC yields
an estimate for the model order that is not statistically consistent (cf., [173]) and
that asymptotically tends to overestimate. Earlier complaints along this same line
about use o AIC wereraised in [50] and recent critical discussionsd AlIC appear
in [163, Preface].

(U)Several alternative approaches have been proposed for rigorously handling
the order determination problem for ARMA processes [52], [151] and for AR pro-
cesses [53], [54], [57], respectively, both recently and historically [56], [58], [111],
[112], [177]. Brief, insightful commentson the fundamental problem encountered in
attempting to handle the general ARMA situation is provided in [177] and in the
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accompanying author's reply. In this classic historical dialog, the important point
that is made is that the criterion to be minimized in determining the numerator
and denominator coefficientsdf an ARMA processis highly nonlinear ‘andthat the
standard methods d parameter identificationinvolvesomeform of minimization of
this or some similar criterion, in which case the calculated values, as obtained by
most alternative computational approachesto constrained optimization or function
minimization, will likely be merely local minimarather than the global minimathat
represent the true solution. For additional perspectiveon the "nasty" nonlinear op-
timization problem oneisfaced with in seeking to pursue standard exact maximum
likelihood approachesto ARMA parameter identificationand what rigorousasymp-
totic results are guaranteed for large sample size, see [231]. There is a suboptimal
but extremely tractable approach, which starts with a given sample autocorrel ation
function (rather than with the preferred unreduced raw data as input) and uses the
modified (or extended) Y ule-Walker equationsin performing subsequent manipula-
tions. For this type o approach, the estimation o the AR and MA parameters is
separated out and the resulting estimation equations are rendered benignly linear
or at worst quadratic [215, p. 901]. The best approachesto consistent estimation
o model order appear to be [116] - [119], [218] as recently claimed in [120]. Now
that ARMA-based super-resolutionspectral estimation techniquesare considerably
more tractable and flexible in alowed assumptionsthan they had been in the past,
there may be more impetus to use them in the future but use o these techniques
are apparently unnecessary at this time for the BRVAD application o concern to
us here asfurther explained in Section 4.3.

(U)Not too surprisingly, a link has now been revealed between two parallel
branches o technology that had previoudy been developing independently. The
modern control theory specialty o parameter identification has objectives of esti-
mating parameters d state-variable models, which can further be o AR, MA, or
ARMA structure as specia cases [176, pp. 90-95]. The observationsd [172], [185]
are that the modified Yule-Walker or so-designated normal equations that arise
in estimating the AR parameter portion o an ARMA process can be viewed as
a special case d the Instrumental Variable (1V) method o parameter identifica-
tion. Once the spectral estimation intermediate objectives d obtaining adequate
AR coefficient estimates are recognized to be identical to the objectivesdf parame-
ter identificationin general, the supporting theory and cross-checksfrom parameter
identification [174], [163] can subsequently be brought to bear on spectral estima-
tion aswdl. O particular interest or relevance here are conditionsd identifiability
and structural identifiability which guarantee that such endeavorsor attempts are
in fact do-able.
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4.3 A Novel Result to Allow the Subsuming of
ARMA Models Within AR Models for Spec-
tral Estimation

(U)The particular contribution o the present author to this problem of modeling
radar target spectra having an underlying model that corresponds either to the
more tractable ! AR processes or to the less tractable ARMA processes can be
found in [187, Sections 4.5 and G.4]. In [187, Section G.4], it is demonstrated using
an extremely old, extremely ssmpletrick from ordinary differential equation (ODE)
theory (but involving an extremely tedious derivation that is not repeated herefor
the sake o brevity) in order to show that a multichannel or multi-input/multi-
output ARMA process can be equivaently reformulated as a multichannel AR pro-
cess (being o higher order than the origin ARMA process but o finite order

none-the-less).

(U)The genera propertiesd the original algorithm of [187] that can be invoked
to get rid o differentiated input (i.e., to get rid of the MA portion of an ARMA
process to result in just a pure AR processd dightly greater dimension) are now
discussed. This approach isformally generalized in [187, Section G.4 of Appendix
G] and demonstrated there to be a totally rigorous approach from which to vaidly
obtain a state variable model which is a minimal realization. The main result
that is an outcome of the manipulationsin [187, Section G.4 o Appendix G] are
summarized in the remainder o this section.

(U)Consider the scalar constant coefficient linear differential equation o order
n; represented by the following:

ni r

Yy + agry™ 7V + .t aoy =30 bjal?) (4.3)
$=0j=1
or, equivaently,
(ni—1) ni r
g™+ 3 ay® =33 b2, (4.4)
=0 =0 j=1

_ -

ITractability hererefersto the ease of performing MEM spectral estimation.
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where the superscript in parentheses denotes the order o the derivative with respect

to time, t. Defineauxiliary variablesz; (i =1,...,n;) such that:

s = Y- Zkljmj,

r T 2 T
Z = y(l) - Z k'1j$§-1) — Z kojz; = y(l) - Z Z kmj$§2_m),

j=1 j=1 m=1 j=1

’ £ T
2 = Y = 303 kel ™,

m=1 j=1
41 r 001
zi1 = YO =3 S kel

m=1j=1

Zn; = y(ni_l) szmy gn'_m)

m=1 j=1

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

where, for each j, the sequence {k.; }ni_; must yet be specified. Determining just
what the sequence {k;} =, must bein order that all the differentiated input terms
o the z;’s be removed so that the resulting differential equation in z’s may be
represented in standard state variable form is the goal. The above represents a

changed coordinate axes in the underlying state space.
(U)Notice that from the above, it can be seen that

d T
i y) — E k1 37( )=z + Z k2jzj;
J=1

indeed, the general expression can be seen to be
d £ r o T
—2y = y(e) — Z Z kmj$§£+1 ) = 241+ Z k(£+1)j$j-

dt m=1 j=1 j=1

d T
ZA T At > kenyjzj for 1< €< (ny—1)
j=1

Obtaining expressionsfor the y;’s from the equations above, we have that:

r
Yy = z1+zklj$ja

=1
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gy = 2+ Z Z kmjz™™, (4.14)
m=1 j=1
’ 41 r 041
v = 2+ 3 Y kel (4.15)
m=1 j=1
g™ = 5 4 E ka,x("""" (4.16)
m=1j=1

Using all o the above expressions for the y()’s and substituting into the original
differential equation o Eq. 4.4 , we obtain an expression involving £z,; this
expression is.

d 1o ni—1) .
Gt 2 Thna T =y = = S a0+ 355 el (7
m=1 j=1 =0 s=0j3=

Now by working with the above expression to eliminate all expressions involving
y's and to maneuver it into a more manageable form by performing changes o
the dummy index o sumination and by performing interchangesin the order o
summation, the resulting expressionis:

(e+1) -

Zey1 t+ E Zkt] (t+1-1)

t=1 j=

d (ni-1)

D PR

+ Z Z bjsmg-s) Z Z kmjl.(n&l m)

$=o0 j=1 m=1 j=1
(ni-1)

- Z Zey1 +

r (mi—1) (¢+1) n;
> [ > > aky X(HI )4 ijsx(s) > kmjx]-(ni+1—m) (4.18)
m=1

j=1 =0 t=1 s=0

From the analysisd [187, Section G.4, Eq. G.64], we have that:
bjn; = k1, foreach j. (4.19)
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Further, from [187], thefollowing recursion equation is available to completely spec-
ify all the requisite k,,;’s as:

(ni-1)

k(n,‘—s+1)j = bjs — Z agk(u_l_s)j . (4.20)
l=s
Thus each o the k,,;’s for (1 < m < n;) is now specified for each 5 via the above
finite recursion.
(U)A few representative terms are now found to illustrate how this result is
applied. For fixed j, we had found from.the derivation of [187, Section G.4] that

the starting valueis.
kij = bjn; ; (4.21)

now applying the preceeding recursion results in a complete specification for the
kn;'s as.
(ni—1)

k@ = bj(n.-—l)— Z ark(es1—n;+1);

f=n;—1
= b.’i(n.'—l)_a(n.-—l)k(l)j, (4.22)
(ni-1)
k@i = bii-z)— D ack(er1—ni+2)j
f=n;—2
bi(ni—2) — Gni—2)k(1)j — A(ni—1)k(2)j (4.23)

(U)The above procedure, as generalized herefor handling multipleinputs, alows
us to recast or re-represent the general system-describingdifferential equations of
Egs. 4.3 or 4.4 (having differentiated inputs) in the equivalent state variableform
devoid o differentiatedinputs as follows:

C ] ) 1 0 .- --- o Tr 2 ]
- 0 0 1 0 - 0 o
d 23 0 0 23
= = _ . 0 : :
0 1
| Zng ] i —ap —a; —Qag - ot —Qp— J | Zn; |
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ka1 ka2 e kar
ka1 k32 e k3r
k41 k42 e kar

, (2.24)

k"il kn"2 s kn,-r

[bm - zg:.;)—l) azk(z+1)1] [b20 - Eg:.-o—i) alk(“_l)z] [bro - ZSZ';,_I) “lk(l+1),-] ] I:r
where the k,,;’s are found as specified above (as availed in Egs. 4.19 to 4.23).

(U)An alternateinterpretation can be applied to this very old trick from differen-
tial equation manipulation as offered next. Notice that within the realm o random
processes (where the inputs to Eg. 4.4 are Gaussian white noises), the straightfor-
ward transformation offered here essentially converts a scalar ARMA process into
an equivalent vector AR process. Typicaly, AR processesare usually much simpler
to work with (especialy with regard to spectral estimation). When this result is
used in conjunction with the approach illustrated in [187, Sections 4.2, 4.3, and
441, then the method is applicablefor converting multi-input/multi-output ARMA
processesinto AR processes. This is the difference between this new more general
method offered for thefirst time here (and in [187]) and more standard methods for
getting rid o differentiated input terms such as that offered in 1987 in [214, Egs.
1 and 2]. The approach o [214] is only applicable to Single-Input/Single-Output
(SISO) transfer functions o the form

1+bz7 - 4 byz?
1+a1z—-1 +--- +apz—P
where the numerator and denominator polynomialsin Eq. 4.25 are Hurwitz and

additionally [214] assumes that p = q to yield the realization result in terms o
so-called "phase-variable" or "companionform" [220] that:

ha(z) = , (4.25)

0 v cee .- 0 byt1
1 —0p :
Tni1 = .. . T, + . €n+1 5
: : (4.26)
0 1 —ay bl

withy, =[0,...,0,1] z, ,

but unfortunately o limited utility to us here becaused the above stipulation that
p=gqand it isonly good for SISO, whilefor the application o interest here we are
considering approaches that can handle more general vector channels.

(U)Aspects not previously explicitly addressed in the open literature to this au-
thor's knowledge that cannot remain unaddressed here (since it directly pertains
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to the efficacy d using this proposed AR equivaence techniquefor the application
d interest) relates to whether the final AR modd that results isin fact a "mini-
mal realization™. This topic is important for the reasons elaborated on in the first
paragraph o Section 4.2 d [187] relating to reducing unnecessary expense d using
more integrators than are absolutely necessary and avoiding possible instabilities
o the "unobservable" or “uncontrollable” portion o an excessively nonminimal
realization, while a minimal realization is always entirely both “controllable” and
"observable" and d minimum degree (i.e., uses the least number of integratorsfor
implementation). The approach o [214] above (only being applicableto a scalar or
single channel ARMA process) can be seen to be "controllable” because it results
in an AR system matrix that isin “phase variable" canonical form (also known as
"companion form™) and this representation is reasonably well known to be *con-
trollable” ([220]) and being "controllable” and aso obvioudy “observable”, it is a
"minimal realization", as established by the Kalman/Gilbert results that are re-
viewed in this context in [187, Section 441 The approach o [176, Egs. 3.9-13 to
3.9-16] offers an equivalent AR model for the (scalar single channel SISO) ARMA
processand just "hopesfor the best” without being able to prove or establish that
the resulting model is well-behaved and satisfactory in this role. This structure,
to date, has defied establishing "controllability and observability” for the equiva
lent AR representation of [176]. The beauty of the present author's approach for
multi-input /multi-output (multi-channel) ARMA process re-representation as an
equivalent AR process hereis that the resulting AR system matrix is also demon-
strably “minimal” as ascertained using the theoretical results of [187, Appendix H].
An indication o a minor limitation to the algorithm offered here when the degree
o the MA portion exceeds that o the AR portion o an ARMA process (and its
subsequent remedy) are provided in [187, last paragraph o Appendix G] (also see
[151] for additional perspective).

(U)Again, the obvious further benefit o using the above AR reformulation is

that the smpler MEM approaches based on an assumed AR process structure can
now be validly used ? without recourse to the more involved less tractable ARMA

2This result also offers a new perspective on afairly well known historically observed phenomenon
that in numerical evaluations or numerical experiments using various hypothesized model orders on
the same data, the candidate AR models of higher order ultimately reduced the residual error in
estimation (as a figure of merit where smaller means better) even when it was obvioudly of greater
order than the known AR process model that was actually used to generate the data via Monte-
Carlo simulation. Previoudly, the observed reduction in residuals provided by use of even higher
assumed AR model order was perceived as del eterious and was attributed to the "dumb" parameter
estimation algorithm "not knowing any better” (by being unable to distinguish the true underlying
situation) than to prefer an increasein the assumed model order to better fit the characteristics of
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model-based spectral estimation techniquesthat are frequently plagued by numer-
ical senditivities due to nonlinearities inherently encountered in most ARMA ap-
proaches as reviewed abovein Section 4.2. Our approach, as augmented with these
new theoretical resultsdf [187, Section G.4], subsumesthe ARMA -based approaches
without incurring the usual intractability difficulties o ARMA-based spectral esti-
mation approachesbut at the priced a dightly enlarged dimension of system order
and matrices utilized.

the simulated additive noise. The results of this section demonstrate that the effect of having noise
present in the simulation is tantamont to having an AR system present of higher order than the
original model order used to generate sample functions. Therefore, the behaviour of the parameter
estimation algorithm in seeking a higher order system model was not so "dumb" after all and (by
the insights revealed by this analysis) is how justifiable and laudable.
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Chapter 5

How Much Gate-to-Gate
Cross-Correation is Really There?

51 Discussion of the Problem that ConfrontsUs

(U)The question arisesdf how to distinguish between "real" cross-correlationthat
may exist between some contiguous radar range gates (due to the presence o the
target's smeared out reflected returns) versus de facto correlation as a consequence
d the underlying signal structure d the particular test radar (asintroduced by the
effect o the sidelobesd Tradex’s ambiguity function) as it inadvertently diverts
some o the energy from the RV body target returns to spill over into range gate
returns associated with the wake.

(U)A two dimensional waveform amplitude distribution in both time delay
and in frequency displacement ¢ in terms o the form d the underlying transmited
radar signal waveformis

(7, ¢) = / : s(t)s*(t F T)exp [~j2met] dt (5.1)

One d severa aternative conventions [115, Chapt. 4], [123, pp. 127-1411, [124,
pp. 303-309, pp. 3103171 (cf., [166, Eq. 3]) is to denote the real quantity
[x(7, #)x*(r, +)] as the radar ambiguity function of interest. Closed-form expres-
sions for different standard forms o x(r,+), including FM chirp, are availablein
[114, Chapt. 3], [122, Eq. 6.341.

(U)Real gate-to-gate cross-correlation that should be universaly present be-
tween adjacent gates could be exploited to an advantage in performing target de-
tection and, eventually, tracking. To develop universally applicable target models,
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it is necessary to adequately evaluate the persisting residual cross-correlation that
is independent o the signal structure or ambiguity function of a particular test
radar. Therefore, it is desirable to remove the effects due to the test radar's ambi-
guity function alone. Perhaps this ambiguity function should be replaced by that o
the anticipated operational threat radar for additional realism but thisis generally
not practically feasiblefor reasons described below. Besides, the threat radar will
superimpose the effect of its own ambiguity function and to additionally include
it in the modeled emulation would double the effect as an unfortunate but likely
discriminator from an actual RV.

(U)While afairly obvious approach to removing the effect o the known ambi-
guity function would be to exploit the standard input/output spectral formulation
d Eg. 2.6 and pre- and post-multiply in the frequency domain by the inverse o
the associated transfer function matrix corresponding to the FFT o the Tradex
test radar's ambiguity function. While conceptually correct at the aggregate level,
certain random aspects o the radar signal make it difficult to exactly line up and
synchronize the pre-recorded ambiguity function with the radar pulse initiation
times that correspond to the specific recorded target returns. To attempt to strip
of the effect of the radar ambiguity function in this smple manner may actually
introduce more fictitious correlation into the successiveradar range gates beyond
what is nominally present.

(U)In particular, usedf the ambiguity function such as that depictedin Fig. 5.1
(asrecorded a year earlier), cannot be prudently used to decorrelatethe current data
without risk of severely midleading results. This situation exists because radar com-
ponentssuch as amplifiers, phase-shifters,transmitters, switches, et 5 age with time
and consequently dlightly alter the radar's performance. More confidence could be
placed in datathat was decorrelated using an ambiguity function that was obtained
via a calibration sphere measurement just prior to data recording and additionally
was confirmed to be unchanged by a subsequent calibration sphere measurement
immediately following the mission target tracking, as would all be recorded on tape.
In this way, the target data would be bracketed by calibration sphere data and the
two sets o calibration-sphere-data-eval uati on-of -ambiguity-functioncould be con-
firmed to be close enough to be essentially the same throughout the mission. Only
by doing this would the above proposed method to decorrel atethe effect o theradar
ambiguity function be defendable. Besides this effect, dight mis-synchronizations
inevitably occur that interfere with exactly cancellingout the effect o the ambigu-
ity function and to attempt to do so in this obviousway may in fact further smear
and corrupt thesignal of interest. Additionally,for good Primary Polarization (PP)
and Orthogonal Polarization (OP) calibration, the radar measurements should be
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made using calibration dipoles since spheres are least capable o stimulating OP
effects.

(U)It was mentioned above that the effect of the radar ambiguity function was
creating a problem by "muddying the water" as we seek to accurately assess the
degree o inherent cross-correlation that exists between contiguous range gates due
to the presence d a target in our particular application scenario. Recent results
that were further pursued in seeking a deeper understanding and a resolution in
this area are [31], [32] but to no avail in the problem that faces us here. Instead,
coherence-function-based tests o gate-to-gate cross-correlation, hypothesis tests,
and distributional tests will be performed and conclusionscaveated with a warning
on possibletainting o final results by the radar ambiguity function itself.

5.2 Useof Satistical Tests of Significance

(U)Use o statistical hypothesistests o significancewill be pursued to verify validity
at various stages o the modeling effort. Thefirst cut at this, asoffered below, is to
seek to use coherence functions as a measure, where gate-to-gate cross-correlation
can be tested two-at-a-time. Thisis aso to be used two-at-a-time to test for sg-
nificant target wake PP and OP cross-correlation, as are expected to be significant
based on expectations as forged by past experience. Expressionsfor the variance
and bias (cf.,[14]) to be expected in coherence function calculations, as utilized in
Section 5.3, are offered here for possible benefit to others and are derived in Ap-
pendix A. Suchinformationis useful in quantitatively caveating conclusions (as via
confidenceregions or « - probability in the outcomed statistical hypothesestests)
that may otherwise be interpreted too strongly. These recent theoretical results
offered in Appendix A can be compared to earlier 1963 SANDIA results [15] along
these same lines as wel as with more recent results by Ralph Deutsch (in the text-
book [16, Appendix]) and NUSC resultsin coherencefunction calculationby G. C.
Carter, and distributional tests (of Thomas Kailath and Mati Wax from Stanford
Univ. asoccured in a recent 1986 paper on detection o signals[49]). G. C. Carter
just cameout with astreamlined high level overview survey o pertinent results and
statistics associated with coherence function calculationin [12], so that apparently
all the following prior NUSC reports on this topic [5], [6], [7], [62] (also by Carter)
are now subsumed and superceded by his more concise overview report [12].

(U)Actually, Kailath and Wax [49, p. 388, para following Eq. 4] clam that
the more statistically sophisticated approaches to this same problem by Bartlett
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[135] and Lawley [136] based on a sequence o hypothesis tests suffer from having
to rely on "subjective” judgement in the selection o decision threshold levelsfor
the variousintermediate tests and that the approach of [49] therefore avoids this.
These complaints raised in [49] against [135] and [136] could be perceived as being
somewhat artificial if afull evaluation procedureis availablefor specifying the nec-
essary thresholds for each required test in terms of its operating characteristics a,
B (i.e., probabilities d false alarm and correct detection, respectively) and power of
thetest. While[135] and [136] are somewhat dated by having been publishedin the
middle 1950’s, more recent work in this active research area such as are discussed
next should be more germane by being more complete.

(U)While hypothesis tests involving two bivariate Gaussians are well-known
(e.g.,[137, p. 249], [141, pp. 175-1911, [140, p. 153, ff 190]), a challenging research
problem has been how to rigorously handle hypothesis tests involving multivariate
Gaussians o unequal variance as evidenced by the historical summary o painfully
dow theoretical advancesin [137, pp. 257-2581, [138], [139], [140, pp. 154-1551.
In general, the problem o known and unequal variances for the multivariable case
(eventhe bivariate case) is very formidablewnhile the case of unknown variancesthat
must be estimated is much worse and usually involves working with a distribution
o the Wishardt matrix (see [160]).

(U)In particular, the maximum likelihood estimate o multiple correlation coeffi-
cientsfor an underlying multivariate Gaussian problem has varianceand covariances
that have a Wishardt distribution [143, pp. 191-192, p. 325], [144, pp. 341,3441,
[137, pp. 113-1181, having properties that can be related to tensor products [137, p.
119]. Other approachesto this problem also exist [181, pp. 321-3821. Full statistical
rigor may perhaps need to be sacrificed in this particular application in favor d a
more tractable more expedient analytical "punt™ such as is offered below involv-
ing pair-wise tests d significant radar cross-correlationsusing coherence function
evaluation.

5.3 Results of Using Coherence Estimation on
Available Radar Data

(U)A common presentation format is adhered to for all coherence function esti-
mates to be presented in Figs. 5.2 to 5.7. The mean square coherence (M SC) results
portrayed here, as originally estimated in this investigation via Eq. A.3 using con-
ventional Fast Fourier Transform (FFT) techniques (see 224 and 3 paragraphs of
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two gates away (Fig. 5.4b), and five gates away (Fig. 5.4¢). Yet the results o Fig.
54 areless likely to be artifact effects due to target body interaction in the radar
ambiguity function sidelobes.

(U)Since Gate 5 is less likely to be adversely tainted by the above described
radar ambiguity function effects, a cross comparison o the most significant cross-
correlation indications, as occurred between Gates 5 and 6, are obvious candidates
for further cross-comparisonsat the two Altitudes Nos. 1 and 2. Thiscomparisonis
performed in Figs. 5.5a and 5.5b, where again the greater cross-correlationappears
to be at the higher altitude (Altitude No. 1) but both are significant at the lower
frequenciesd interest due to the likely leaking o RV body energy.

(U)The anticipated supplementary reinforcing effect o using both PP an OP
data within corresponding radar range gates, treated as two separate simultaneous
channels, is now investigated. Resultsfor Altitude No. 1 are portrayedin Fig. 5.6.
The coherence results for Gate 1 PP and OP are displayed in Fig. 5.6a and are
comparable to zero for low frequencies yet this time are more significant at higher
frequenciesbut aso possibly due to thelikdy tainting by the effect of the RV body
as siphoned dof to the wake gates by the ambiguity function. However, for Gates
5 and 10, the primary low frequency components o the target show up as being
significant in Figs. 5.6b and 5.6¢. The corresponding results at the lower Altitude
No. 2 show less significant cross-correlationin Gate 1 PP and OP results (Fig. 5.7a)
but more consistent high frequency componentsd significant cross-correlation for
Gates 5 (Fig. 5.7b) and 10 (Fig. 5.7c). Thus, PP and OP results appear to be
significantly cross-correlated.

(U)There was more supporting data on coherence function calculation but it
is perhaps less convincing becauseit relies heavily on arguments based exclusively
on simulation only. It involvessimulating an extremely simple additive measure-
ment noise- free two channel situation with precisely controlled known (and speci-
fied) cross-correlationusing a specified level o process noise as the common driver.
However, this situation appears to be too ssmpleor to be lacking o sufficient gen-
erality; so much so that its relevanceto the actual radar application is somewhat
guestionable due to the fact that the simulated system has no dynamics (i.e., no
numerator or denominator terms in the associated transfer function between in-
put and output). Ignoring this shortcoming for the moment, however, the further
simulation gestures are germane. The result o a controlled simulation experiment,
with known controlled cross-correlation, is convolved with the known pre-specified
ambiguity function d the radar o this application with its principal sidelobes 30
dB down. The resulting coherence function, a known constant, is estimated and
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horizontal two-sided 80%conficence regions are cal culated and erected for this situ-
ation (as depicted in Fig. 5.2a as horizontal dotted lines and as should also appear
in Figs. 5.2b to 5.3¢c). The coherence function estimate for the lower frequencies,
where the significant wake energy lies (as opposed to the higher frequencies, which
are noisedominated so they ared little significanceto us) are predominantly within
this 80%confidence interval strip. This says that the computed coherence for the
actual radar data generaly falls within the two-sded 80%confidence interval for
simulated data df known cross-correlation as affected by the actual radar ambiguity
function. In other words, the effect o the radar ambiguity function dominates the
situation.

(U)The major difficulty with the aboveresultsis that only onerun is portrayed
in each d Figures5.2 to 5.7 (rather than being the resultsdf averaging many runs)
S0 that strong conclusions on the coherence trend and therefore on the underlying
gate-to-gate cross-correlation can not be inferred from the above without strong
reservations. Theseruns d a year earlier probably need to be redone with consid-
erably more trials included (enough to obtain a representative average as, say, at
least 4 and maybeeven 10 trials). Thisisoned the motivationsfor the further 2-D
investigations o this effect that were performed with greater success and clarity
than the results o this section and that are reported in Section 6.1 d Chapter 6.

(U)This completes this preliminary investigation o coherence, which is used
both as a measure o the inherent gate-to-gate and PP-OP cross-correlation that
exists. When the cross-correlation due to just the target (and not an artifact o the
RV body effect in the sidelobes d the ambiguity function) is significant, then the
gates should be used jointly in a multichannel model o the target's signature as
pursued in Section 6.2.
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Chapter 6

Specifying and Computing
Parametersfor a Typical 1-D
Modd Proposed for Wake

Emul ation

6.1 2-D Processing Resultsthat I nfluenceour Fur-
ther |-D Modeling Decisions

(U)Historically, according to Aki and Richards [153, p. 613]:

Burg [157] points out that a 2-D frequency-wavenumber approach to
certain applications may give better physical insight..., but the multi-
channel approach is more practical for filter design.

Thissomewhat surprising point of view o beingwillingto sacrifice ™ physical insight”
for "ease o implementation™ with the analytical tools currently at their disposal
was evidently in vogue during the time frame d the early 1960's. More recent
revelations such as [167], [168], and [175] illustrate the current utility and ease d
using 2-D techniques, thusreversing the prior practice o shying away from the 2-D
approach. Moreover, evenin the 1960's accordingto Aki and Richards[153, p. 613]:

A detailed illustration of different [2-D versus multichannel] approaches
[to the same problem] was given by Schneider et al [155] for a relatively
simple two-channel problem ...
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d eliminating ghost arrivalsfrom the unrelated problem o reflection seismograms.
More recently, connections between the multichannel approaches and certain 2-D
Linear Prediction approachessuch asthat of [109] have been revealed [159] tofurther
expidite 2-D analyses.

(U)An independent sister study was performed by the Naval Postgraduate School
(NPS), as monitered, tracked, and reported on in [259], [260], [261], and [262]. A
primary observation from the sister study o [224], as representatively depicted in
Fig. 6.1, is that (except for the scale) the PP, OP, and cross-spectrum magni-
tudes are remarkably similar/comparable and, as aso depicted in Fig. 6.1, that
the PP/OP MSC indicates that asignificant level o cross-correlationexists. The
similarity o the PP, OP, and cross-power spectra at 20 km, as depicted herein, is
typical o what was observed at all altitudes.

(U)A second significant feature d the above mentioned plotsisthat the spectra
are rather broad in the wavenumber direction but not flat (completeflatness would
be indicative o white noise with no correlations). This suggests that there is a
degree o space-correlation along the gate direction.

(U)An observation that can be madeisthat the character o the wake spectra
does not change drastically over the extensive range o altitudes considered in the
study o [224] even though the expanse d altitudes bracket the BLT region. There
may be slight changesin the width o the main ridge, as illustrated, but the plots
do not depict any consistent broadening or narrowing o this ridge with altitude.
No other special features such as subsidiary peaks seem to appear. The subsidairy
peaks seen in earlier analysesstill appear at all atitudes only when gates close to
the RV (i.e., gates 1 through 5 or gates 2 through 5) are also included in the data
used for spectral estimates. (Clarification: By previoudy including gates 1 through
5, energy from the RV itsalf was, unbeknowst to us at the time, improperly spilling
over into the assessment d the wake. This has now been remediedin 2-D processing
results and for the I-D modeling/processing results reported in Section 6.2, but isa
problem that plaguesthe results depicted in Section 5.3.) Thesized the secondary
peak (in the frequency domain) is still larger at the lower altitudes (i.e., below 20
km) but is less apparent now that a logrithmic scale is being used. While pieces
did break df o the RV during the mission, the observed uniform presence d the
subsidiary peak at altitudes higher than where this flaking off occurred essentially
debunks this as a possible explanation for the occurrenced these secondary peaks.

1Unlike what may be hoped for as a path for cross-corroboration between the |-D results of Section
5.3 and the 2-D evaluations here of coherence in the frequency domain, Appendix H explains why
this type of desired cross-corroboration is not possible in general.
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Figure 6.1: 2-D Plots of PP-, OP-, and Cross-Spectraat 25 km (U)
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Since equally spaced uniform rectangular sampling was utilized throughout, there
iSno possibility of this effect having appeared because d alliasing occurring due to
any del eteriouseffect in one coordinate spillingover into the other, as had originally
been feared.

(U)Finally, the main significant observation from the study of [224] which is
immediately useful to usinour 1-D RV wake modeling effort is depicted in the 1-D
autocorrelation plot o Fig. 6.2. Here the subsidiary peaks that appear in these
range gates within the RV wake most likely represent harmonic spill-over from the
RV body due to interaction with the sidelobes of the ambiguity function. Where
magnitude dropoff from the first primary peak equals the maximum magnitude
o the secondary peak at approximately 3 to 4 gates behind the body while the
ambiguity function depictedin Fig. 5.1 decayed at afaster rate. It appears prudent
to assume an effective correlation distanced three range gates (that would be used
in conjunction with the corresponding three OP range gates) to capture the essence
of the significant correlations present asfurther pursued in a1-D model as described
in the next section.

(U)A 2-D model implementation would ordinarily have a structure as repre-
sented in Fig. 6.3. If the application structure is such that it can be demonstrated
to be separable, then significant implementation simplifications accrue and 2-D
implementation becomes much more tractable in hardware than the fully general
implementation depicted in Fig. 6.3.

6.2 DemonstratingtheMultichannel Spectral Es
timation Technique to Obtain a Representa-
tive 1-D Model

(U)The results o modeling the RV wake using the 1-D LWR spectral estimation
techniqueis depicted in Fig. 6.4. As motivated by characteristics exhibited by the
results o the 2-D investigation, a six channel or six state model was used consisting
o three contiguous PP range gates in conjunction with the corresponding three
OP range gates. An underlying fourth-order AR model was also assumed ? based
on the historical precedent that it was adequate for Phase 1 BRVAD and aso to
avoid unnecessary model complexity. The use d three wideband range gates is

2As mentioned in footnote 1 on p. 5, an AR model order as high as seven had been used in the
past but was later discarded as not being necessary.
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also comparablein length to haf o a single narrowband range gate, as apparently
sufficed for Phase 1 BRVAD. (See end of Appendix F for status o accompanying
plots d associated spectra.)

(U)A representative implementation diagram is depicted in Fig. 6.5. Since the
wake keeps moving downwards as the RV descends, it is not necessary to consider
that correlations from the farthest gate away (i T 2) affect the earlier gates (i. 11
and i), only that the earlier gates affect what occurs in the latter gates. Thisisa
phenomenol ogical argument based on the cause and effect o reentry physics, rather
than on having balanced symmetry in the statistical sense d the contents o gate i
being correlated with that d gate ¢ + 1 bei ng equally significant in both directions.

6.3 1-D Computational Burden for Implementa-
tion

(U)Once the four 6 x 6 AR coefficient matrices are estimated, they can be used
within a moddl o the form d Eg. 2.5a for the purposes d& RV wake emulation
as driven by zero-mean Gaussian white pseudo-random noise, w(k), pre-calcul ated
and inputted from a stored medium. A computational load analysisfor an imple-
mentation o this approach is considered next. The 1-D mechanization d Section
6.2 (including both PP and OP effects) for each trio o three contiguousrange gates
isd theform:

o(k) = Avz(k — 1) + Az (k — 2) + Asa(k — 3) + Agz(k — 4) +w(k),  (6.1)

where each indicated matrix-vector product term is equivalent to 36 complex mul-
tiplies and 36 complex additions which together with the indicated accumulations
acrossfour constituent componentson the rigt-hand sided Eq. 6.1is:

e 4 X (36) =144 complex multiplies,

e 4 X (36) = 144 complex adds, which accumulate from four matrix-vector
products and the driving vector, w(k), as an additional 5 X 6 = 30 complex
adds to yield a total o 174 complex adds.

Each complex multiply is equivalent to 4 real scalar multipliesand 2 real scalar adds
and similarly each complex add is equivalent to 2 real scalar adds. For emulation,
it islikely that the threat radar PRF will be matched. For Tradex, this PRF is
14 x 1078 as the time within which al o the above computations must be made for
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the emulation to be credible. Rather than being constrained to an implementation
on aclassical Von Neumannsequential machine, it islikely that adistributed or par-
ale processor architecture will be used for emulator implementation. It will likely
be able to handle at least 4 setsd 6 complex multipliesand adds simultaneously on
6 separate channels; thus, it initially appears that it must be able to calculate the
results for this model d the form of Eq. 6.1 for arround 50 to 200 separate gates
as (worst case) as 1 parallel complex multiply every = 7 x 1078 seconds and
similarly for complex additions, with an assumed "hard-wired" complex accumu-
lator also being utilized. This is pushing the leading edge o small scale portable
digital computing technology pretty hard. It will be demonstrated below that this
apparent requirement is more severe than actually necessary. The above estimates
can be mitigated somewhat if the following structural observationsare exploited.

(U)An approach that wasinitially considered to be extremely lucrative was to
reduce the estimated AR matrix to its corresponding phase-variable (companion)
canonical form [257, pp. 82-85] via the numerical techniqued [220], whichis much
less o a computational burden in the general multichannel case than computing
eigenvaues. These companion form matrices are very sparse and are o the form
d the left-most matrix o Eq. 4.26. The lure in programming up an Active Decoy
emulator using matricesd thisformisthat it appeared to involve the least number
o tap weights to be specified, as a likdly considerable savings in programming
labor, but would still yiedd the same multichannel power spectra sinceit represents
merely a "similarity” transformation, as a change d underlying basis vectors. We
now refrainfrom further pursuing use of companionform representation because we
now recognize that unlikethe cased afirst order AR process, as treated in Sections
3.1 and 3.2, the fourth order AR processd the form o Eg. 6.1 must be converted
to companion form in one fell swoop from its augmented form as represented next

ECI A T I
k-2 [0 i 0 i L i ol|lak-9] |0
z(k—1) o i 0 : o0 : I |]|%k=2) 0
L R [V a LoDl L
(6.2)
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[ 2(k—3) |
y=[o0:0:0: L|| - (6-3)
z(k —1)
z(k)

Having to now deal with a 36 x 36 matrix rather than with merely 4 6 x 6 matrices
dampens our enthusiasm for using the companion form for this wake modeling
application since it would be difficult to unravel even though the underlying lure
is still there o only having to perform the same number of nontrivial complex
multipliesin hardware implementation o the correspondingcompanionform as the
dimension d the matricesinvolved (in this case 36). The payoff is still enticing but
the burden o getting there is now more taxing sinceit now goes as 362 rather than
the previously expected 4 x 62. It was alsofeared that by havingto deal with larger
matrices, the adversecomputational effects of roundoff and truncation in converting
them to companion form would be more severe, thus diminishing the quality o the
final result.

(U)One fina structural observation further strengthens the argument against
using the companion form in this particular wake emulation application. When
converting to the companion form via a transformation that is an effective change
o coordinate basis, the original identities o the underlying states are lost. This
would ordinarily not be o much concernif just one set d three gates was being em-
ulated using the companionform techniquein the manner described, but more gates
are needed to adequately represent the RV wake. A technigeis described beow for
recursiveemulation of successive PP and OP radar range gate target return effects.
from previously emulated ones using explicit identities o the states (as associated
with particular known range gates) once the designated first three contiguous gates
behind the RV body are emulated using the structure o Eq. 6.1. The cornerstone
o the following approach exploits explicit knowledge o the physical identities d
the underlyingstates, so to convert to companionform (which looses the identities)
and then to have to convert back again to recover them would just interfere with
the procedure to be described bedow without providing the benefit o an exclusively
companion form implementation. If the same identical transformation could be used
for each sequence of three contiguous gatesto convert Eq. 6.2 to the associated com-
panion form, then this companion form techniqueand the approach to be described
below could be combined, since underlyingstate identities, whilealtered, would still
be constant. However, this constant transformation result is unlikely to occur.
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(U)A morefruitful approach to computational simplificationsfor hardware RV
wake emulation, without seeking recourseto companion form representation, is now
discussed. An equation of the form of Eq. 6.1 should be implemented in hardware
corespondingto thefirst three contiguous range gates (i, i+1, i+2), then in seeking
to handle the next three contiguous range gates o concern (i+1, i+2, i+3), notice
that PP and OP states for gate i+2 and i+3 are in common with the first three
contiguous range gates considered 3. Therefore, it is only necessary to further
emulate the new entities representing one additional gate (i.e., the PP and OP
components o i+3 using the prior emulation of i+2 and i+3) without emulating
the effect o gatesi+2 and i+3 a second time, otherwisethe effects of gatesi+2 and
i+3 would be emulated more than once and would be unredlistic for that reason.
The additional new gate i+3 can be handled without unsettling redundancy by
implementing the following subset o Eg. 6.1:

,H(k) 0 0 0 0 0 07 [zPR(k-1)]
A0 0 0 0 0 0 0| |=fh(k-1)
1+3(k) az1 @32 Q33 434 G35 G36 z+3(k—1) L.
z+1(lc) 0O 0 0O o0 o0 o0 1+1(lc -1)
er2(Ic) 0 0 0 0 0 0 ,+2(k - 1)
,+3(k) J | 61 Q62 463 QGe4 Qo5 UOe6 ,+3(k - 1)
(0 0 0 0 0 O [zRR(k-497 [ 0 ]
0 0 0 0 0 0 ,+2(k 4) 0
L] o e af et o abt | | elfh(k—4) wa(k)
0 0 0 0 0 0 ,+1(k 4) 0
0 0 0 0 0 O ,+2(k 4) 0
| ag] ag; agy agy agy agg | L efi(k—4) ] | we(k) | 6.4)

In this way, new gates are introduced one gate at a time beyond the original first
three. The augmenting calculationto handle the next additional range gate beyond
the original first three contiguous gates only requires12 x 4 = 48 additional complex
multiplications and 12 x 4+ 2 = 50 additional complex adds, and two additional
pseudo-randomvariablesto be used. OF coursethe AR coefficientsused in the above
Eq. 6.4 are as obtained off-linefor gates (i+1, i+2, i+3) rather than those obtained
for (i,i+1, i+2). Theemulation o the effect of includingeach additional range gate
can be handled similarly as a recursive extension with this reduced computational
burden o not having to perform each operation implied in Eg. 6.1 to account for

3As seen from Fig. 6.6, it wouldn't do to handle gates (i, i+1, i+2) and (i+3, i+4, i+5) as
two completely separate implementations because that would miss the important cross-correlation
between (i+1, i4+2, i+3) and (142, i+3, i+4).
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the effect in the other gates handled. Retallying the total computational burden,
as calculated from this new perspective, yieds a specification o

e 1444+N(48) complex multipliesper threat radar cycle,

e 1744 N(50) complex adds per threat radar cycle,

e 144+N(48) total memory locationsfor storing AR coefficients,

where N in the above estimates represents the number of additional gates emulated
beyond the initial three contiguousones represented by Eq. 6.1. What N should be
for Phase 2 BRVAD needs to be decided as a tradeoff between realism and practi-
cality o implementation. In Section 1.1, it was mentionedin Eq. 1.3 that for Phase
1 BRVAD only 14 gates were emulated for the earlier narrow-band case because
this number (in conjunction with the radar range gate size o 15) correspondedto a
total wakelength d 210 meters. In order that emulated RV wakesfor the wide-band
case d Phase 2 BRVAD be just as long, the number of gates to be included in an

emulation should be 2l2meters —

2.5 meters

84 or N =81. It is mentioned again for emphasis

that many d the calculationsshould be donein parallel.
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data possessing both "red™ and "imaginary™ components. After demonstrating the
utility o this particular modeling approach on a representative multichannel test
problem in providing a time-domain state variable model having prescribed auto-
and cross-power spectra, the results were documented in [187]. In considering the
benefits versus the drawbacks of this M SF-based modeling approach, it was not
subsequently applied to actual Tradex radar data because it was realized that doc-
umenting a computed solution of general complexity in terms o arbitrary numbers
would be a horrendous task ! and further a significant preliminary step requires
that all the data used be first converted into the frequency domain via FFTs in
order to proceed. The other two approachesto RV wake modeling, discussed below,
can be applied directly in the time domain to sampled data; thus, representing a
simplificationas they weare applied to Tradex mission data.

(U)The second approach to RV wake modeling (briefly discussed in Section 6.1
o Chapter 6) was pursued by the Nava Postgraduate School (NPS) subcontractor
using relatively recently emerging 2-D random process or random field techniques
in now treating the RV wake as a more general 2-D space-time process. Specia
purpose software was developed and successfully validated with test problems and
subsequently applied to Tradex misson data for five (5) different quantized alti-
tudesd interest in providing clear 2-D estimates o spectra and cross-spectra. The
benefit o explicitly modeling gate-to-gate cross-correl ationswasinvestigated as wel
as jointly handling Principal Polarization (PP) and Orthogonal Polarization (OP)
data as reinforcinginformation whose simultaneous use more realistically depicts an
actual RV wake. As aggreed upon, Mean Squared Coherence (M SC) functions were
evaluated in conjunction with this investigation as a convenient, easy to interpret
gauge o the inherent cross-correlation present. Resultsindicated that gate-to-gate
cross-correlationthat is present is just slightly more than could be reasonably at-
tributed to be due soldly to the Tradex ambiguity function alone. It was aso nec-
essary to skip five gates behind the RV body to prevent energy from the body from
spillingover into the range gates o the wake and unacceptably corrupting/tainting
evaluation results. These results are documented in the NPS Report [224]. While
the computational burden o implementing a completely general 2-D model for the
RV wake modeling application was shown to be very large and probably imprac-
tical, the structure o three novel possible simplifications were investigated under
the assumption that the RV wake signa returns are a "separable” 2-D process,
which has considerably lower implementation demands for wake emulation. It re-

1But not an obstaclefor problemswith "nice’ numbers, such aswereused for illustrative pur poses
in worked (hand calculated) and machine computed examplesin [187].
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mains to determine whether the RV wakeisin fact truly separable %; however, an
NPS graduate student is further pursuing this issue along with alternative practi-
cal implementation strategies in his thesis research, using this classified data, with
conclusionsthat should be available soon.

(U)The third approach to RV wake modeling, that is the topic o this report,
investigated the utility of twolinear AR-based 3 spectral estimation approaches, as
generalized to the multichannel case, being the Levinson-Wiggins-Robinson (LWR)
algorithm and the Nuttall and Strand algorithm (that are described in Chapter 2
with results demonstrated in Chapter 3 and in Section 6.2 o Chapter 6). Between
these two AR-based techniques, the conclusion o an earlier investigation [225] was
revised based on the evidenceto favor use o the LWR implementation as perform-
ing better in this particular wake modeling application by having fewer occurrences
d spiky cross-channel spill-through and more faithfully estimating phase o the
“complex™ cross-spectrum. This multichannel approach can be easily generaized
without change to encompass many channelsif it were demonstrated that the en-
hancing RV waketarget cross-correlation effects exhibited by adjoining additional
adjacent radar range gates are significant and worth exploiting by simultaneous
inclusion in a more massive joint model; however, to date, use o just three chan-
nels appears to sufficeand use o a larger model would be a greater computational
burden in seeking an implementation, apparently without offering any additional
benefit in accuracy or realism. In Chapter 5, variations were considered in how
statistical results summarizingthe evaluation of gate-to-gate and/or PP/OP cross-
correlation effects are best presented and, to that end, MSC function techniques
were also utilized. Bounds on expected accuracy had been derived earlier (as re-
ported in Appendix A) as one o the nove contributions o this investigation in
order to obtain accurate one-sided confidenceintervals about the theoretically ex-
pected MSC d zero that is anticipated if there were no cross-correlations between
range gates beyond that caused by the radar ambiguity function alone. Almost all
d the gate-to-gate cross-correlation evaluation results o Chapter 5 fell within this
80%-confidenceénterval bound except for the prevalent anomalouslower frequency
results attributable to RV body energy spilling over into the range gates associated

2Seeing [232] when it isfinally available may help.

3The more computationally challengingand numerically sensitive ARMA-besed spectral estima-
tion techniques were not pursued within this investigation for the reasons detailed in Chapter 4.
Instead, a novel approach was provided for reexpressing an arbitrary ARMA process as a more
tractable AR process of dlightly higher dimension and applied, as explicitly demonstrated in two
representative numerical examplesin Chapter 4 of [187], for the case o multichannel ARMA pro-
cesses in order to extract an equivalent "observable" and "controllable” AR process representation
o "minimum degree”.
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with the wake (when five gates behind the body were not skipped as they should
have been).

(U)The investigation o this third approach culminateswith theillustrativeeval-
uation of AR coefficientsin Section 6.2 o Chapter 6 for a Six state or six channel
model d the RV wake using returns for three (3) contiguous PP range gates in
conjunction with OP returns for the same three (3) range gates. An evauation
d corresponding AR-coefficients was performed using the Tradex mission data at
a representative altitude. Motivation is provided in Section 6.2 for how this par-
ticular model was selected as well as the assumed order d the underlying vector
AR process and this report further describes the complete methodology used in
the evaluation. This documentation includes a consideration of algorithm selection
(Chapter 3 and Sectionsl.1, 1.3), softwareimplementation (AppendicesD, E), soft-
ware validation history (AppendicesF, G), and all other pertinent information that
should be useful.

7.2 Detailed Congderationsand Further Recom-
mendations for the Approach of this Investi-
gat ion

(U)The computational results displayed in the earlier Chapters 3 and 5 o spectral
estimation experiments are those that were originally performed over a year ago.
Further more extensive numerical evaluation and step-by-step cross-comparisons
between comparable methods or alternative implementations confirmed their cor-
rectness o implementation (as discussed in detail in Appendices D, E, F, and G)
and also served to fill in missing data relating to signal processing particulars that
were needed such as providing the sampling rate that is used and the length of data
segments that are processed. With a more detailed scrutiny and sorting through
d prior results and placing them in convenient juxtaposition in Chapter 3 to aid
in performing a meaningful cross-comparison, the conclusion of an earlier investi-
gation [225] was revised to favor use o the LWR implementation as performing
better in this particular wake modeling application by having fewer occurrencesd
spiky cross-channel spill-through and more faithfully estimating phase o the "'com-
plex" cross-spectrum both for ssimulated data and for Tradex RV wake data. This
new resumption o the prior investigation went further to also obtain additional
results as wdl as providing a more refined simulation methodology for initial soft-
ware algorithm calibration. In particular, the specific AR coefficients, as obtained
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as intermediate results from the best performing LWR multichannel spectral esti-
mation approach, are prominently displayedin Section 6.2 o Chapter 6 as our main
modeling goal. Although joint multidimensional confidence regions on the coeffi-
cient matrices are preferred but are unavailabledue to lack of existing techniques,
confidenceintervalsfor each row o the AR coefficientscan be calculated using one
d the recent more tractable techniques o either [19] or as a C-R lower bounding
technique either as described in [150] or as a bound based on the "unknown-but-
bounded" techniqueoriginally developed by F. C. Schweppe([252], [216, pp. 21-29,
ff. 76, ff. 154], [253], [254]) and refined for AR-based spectral estimation by Norton
([213, subsections8.6.1, 8.6.2], [23]), as summarized in Appendix B.

(U)Results of coherencefunction calculation, as havealready been performed on
the availableradar data, are displayed in Sections5.3 and 6.1. Additional data-base
experiments are recommendedfor refined validation o remaining hypothesisabout
the data, such as will be described below.

(U)One way to determineif range correlationis due entirely to the effect o the
radar's transmitted signal is asfollows. If the wakeisindeed a white noise process,
then the wavenumber spectrum is proportional to the squared magnitude o the
radar transfer function. Thus, if the wakeis truly uncorrelated, we should see the
exact same wavenumber spectrum at each altitude and even for different missions!
Thisis acharacteristic whose existence can be determined or verified by computing
and examining spectra over several different altitudes and/or missions.

(U)An approach for handling the important but temporary turbulent regime o
Boundary Layer Transition (BLT) before laminar flow is reestablished and where
the associated random processis nonstationary is offered in Section 2.3 of [187] in
termsd time-varyingMatrix Spectral Factorizationsand time-varyinglinear system
realizations, but is probably not too attractive asan easily tractable implementation
for emulation. However, a handy approach for handling or faithfully modeling
genera transitions between altitudes as the RV descends is to use cubic spline
interpolation on the reflection coefficientsas determined at the quantized altitudes.
This “spline interpolation approach” is apparently beneficial even over BLT.

(U)Some considerationsand technical perspectives o fairly recent vintage are
offered in Appendix C on how to further gauge the goodnesso emulated RV wake
signatures in quantifying their degree o distinguihability from actual RVs. These
can be performed either in terms o standard K-factor evaluationor asrefinementsin
divergencemeasureevaluation or, more radically, in terms o bispectra and trispec-
tra evaluation criteria that have recently returned to signal processing/hypothesis
testing prominence. Practicalities d on-line RV discrimination using these novel
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higher moment spectra are briefly discussed in Section C.2.
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Appendix A

Compensating the Bias of
Coherence Estimates and
Providing Associated Confidence
Regions

(U)The magnitude-squared coherence (MSC) or generalized correlation o two
signalsx and y (perhapsfrom different channel srepresenting different polarizations
d PP/OP or from different range gates for this radar application) is defined by ({8,
pp. 1499-1501], [10],[11]):

C = 1S ()2
\/l?xz(f)lzlsyy(f)P

where S, (f) is the cross-spectrum and S..(f) and S,,(f) are the auto-spectra
The coherenceis a useful quantity in a variety o applications, including time delay
estimation [8], [12] so important for sonar and sonobuoy arrays.

(U)In [12, Sect. 2], a generalized framework for cross-spectral power estimation
for two stationary processesis postulated as consisting o the following seven steps:

, where0 < C <1 (A.1)

1. Partitioning each time-limited realization o both random processesinto N
segments, where segments may be overlapped;

2. Multiplying each segment by a time-weighting function (possibly unity or a
rectangular weightingor some more exotic rectangular weighting such as, for
example, a Hanning weighting);

74

Unclassified



Unclassified

3. Computing discrete Fourier coefficients(D FC) from each weighted segment via
an appropriate algorithm such as the Cooley-Tukey FFT after each segment
has been appropriately appended or padded with zeros to achieve a common
power o two data length;

4. Multiplying DFCs from one segment by the complex conjugate o the DFCs
for the corresponding time sequenced segment o the other process;

5. Averaging of resulting complex products over the N available segments;

6. Fourier transforming the resultant spectral estimates into the correlation or
lag domain where they are multiplied by a lag-weighting function (possibly
unity);

7. Transforming results back into the frequency domain.

Alternatively, the above steps 6 and 7 may be replaced by convolutionin the fre-
quency domain, depending on the application and on which alternative computa-
tional path was the lesser computational burden.

(U)Carter then pointsout in [12] how three existing alternative spectral analysis
techniques, being those o :

e Blackman and Tukey;

¢ Weighted Overlapped-Segment Averaging (WOSA) also referred to as Welch's
technique;

e Lag-Reshapingtechnique d Nuttal and Carter;

each fit into the above described generalized framework. Additionally, [12] points
out that these resulting estimates (and others) have the same statistical properties
regarding the size of means and variances.

(U)Since much is known about the statistical properties o the MSC 1, the MSC
can be used to measure the benefit of including a consideration d the cross-terms
in multichannel spectral estimation. Results from previous work by Carter and
Nuttall are based on Goodman's distribution as used in [6], which makes several
assumptions about the estimated spectra. Additional alternatives not pursued here
are discussed in [17].

1See [246] for most recent result that avoids need to assume Gaussian statistics for even one of
the two channelsof concern. Also see [244] and [245].
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(U)This Appendix discusses Carter's distribution for the MSC when measured
by the method o averaging periodograrns. We verified this implementation for
the case of short data length (32 samples — a condition which appears to be so
short as to violate the assumptions & Goodman in [6]). We chose to remove the
bias by a method that is apparently more reliable than the method in [5] because
it guarantees accuracy for al cases (although it is a more severe computational
burden). The confidence boundary used here for the MSC estimate differs from
that of [62] in that it minimizesthe width o the confidenceinterval. Thisfeature d
this confidence boundary may be a desirable aspect favoring its use in hypotheses
testing applications d the type pursued here.

A.l EstimatingM SC by Aver aging Periodograms

(U)Let zpp, yp, b=1,2,...N, p=1,2,...M be two signals. For the radar applica-
tion, b would be the burst number, and p would be the pulse number. In general,
N can be considered to be the number o independent data segments, and M is the
number o data samplesin each segment. When z,, and s, are jointly stationary,
then the coherencecan be estimated by the method o averaging periodograms|[67].
Let

27k

M
Xy(k) = z_jl W (p)zspe™ 3 (A.2)

i2mwkp

M
Yy(k) = X_:l W (p)yspe™ ™

where W(p) is a windowing function (i.e., X; and Y; are the corresponding FFTs
of the windowed zs,, ybp). The coherenceestimate is

“ 13 Xu(B)Ys (R
Clk) = —5 = R ‘ (A.3)
I#EXb(k)XZ‘(k)IIWbZ_;Yb('k)Yb*(k)l

The estimatein Eq. A.3 requiresthat N be greater than 1, however, the 3; terms
in the numerator and denominator o Eq. A.3 effectively divide out. Choosing N
and M is a tradeoff between achieving stability and having adequate resolution. A
data record divided into N segmentsd M data points each will achieve reasonable
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resolution for C(k) if M islarge, but having too large an N decreases the variance
o ¢. Nuttall recommended that segments with 50 percent overlap with adjacent
segmentsshould be used since apparently segmentseven with as much as 50 percent
overlap still behave asif they are effectively independent.

(U)Carter clarifiesthesituationin [12, Sec. III.A] with the followingexplanation
d the trade-offsinvolved:

Spectral resolutiond the estimates variesinversely with the segment
length T. Proper weighting or ‘windowing' o the T-second segment is
also helpful in achieving good sidelobe reduction. On the other hand, for
independent segments with ideal windowing, the bias and the variance
d the MSC estimate vary inversely with the number of segments, N.
Therefore, to generate a good estimate with limited data, one may be
faced with conflicting requirementson N and T. Segment overlapping
can be used to increaseboth N and T. When the segmentsare digoint,
that is, non-overlapping, we cal the number o segments n;. As the
percentaged overlapincreases, however, the computational requirement
increases rapidly, while the improvement stabilizes owing to the greater
correlation between data segments.

In Figs. 9 and 10 o [12], plots are provided, respectively, o the bias and variance
incurred in estimating coherrenceas afunction d the percentage o overlap utilized.

A.2 Statisticsof C

(U)Carter [63] gave the form of the probability density function o ¢ under the
assumption that x and y are stationary, Gaussian, and have M independent (non-
overlapping) bursts. (For additional perspective into the utility of pulse trains or
bursts in radar applications, see [121].) Assume, in addition, that the number
o samples (pulses) is large enough to ensure good spectral resolution, and that
the segments are perfectly windowed so that power from the k* frequency bin
does not leak into surrounding bins. These assumptions are the same as those
invoked by Goodman for his distribution o the spectral density estimates, and
the distribution used by Carter in [6] is further derived from Goodman's. If these
conditions are satisfied, the probability density function (pfd) for the MSC is (using
Drake's notation {64]):

- N 2
1-0)a- Co)] 1= CC")‘FI(l — N,1-N;1;CCo)

folColn, 0) = (v -1y | LG C= O
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(A.4)
where
N = thenumber d bursts,
.F1 = Hypergeometric function([59], [16, App.], [2],[15],[131, Ch.18])
for N > 2, smplifiesto
n=0 ‘
and (z), = Pochammer's symbol, defined by
(2)n = 2(z + 1)z +2)...(z+n-1) R
The corresponding cumulative distribution function (cdf) is as follows.
(A.6)
Eq. A.4 appliesto Eq. A.6 for N strictly greater than 2. Since both
0<¢,Cc<1, (A.7)

the general shape d the pdf lies between 0 and 1 and has a peak in the vicinity of

C, the true MSC. (Two additional alternative representationsd the pdf of compa

rable complexity aso involvingthe hypergeometricfunction of the same order:aré; & g
providedin [12, Table1].) Figs. A.1and A.2 depict the pdf and cdf of the eStlma.te
C for the case N = 3, and for a span o vauesd C.

A.3 Unbiasing C

(U)The 1% moment or mean o € is [63]:

E[é]=l+0(]]\\;

-1
M - 1) JFy(1,1;N +2;C) (A.8)
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The biasislargest at C = 0 (where actual Bias= 3;) and decreases monotonically
with distance from zero to a minimum o zero when C' = 1[12, Sec. IIL.B]. Nuttall
gave an approximate expression for the biasin [5]. However, we observe that the
bias can be directly removed by solvingfor C in the RHSd Eq. A.8. Thisis much
more d a computational burden, but it has the advantage that the error can be
guaranteed to be small even in cases where the assumptionsin [5] may not be valid.
Since ¢ and N are known, it followsfrom Eq. A.8 that

o1 N-1 (D)a(1)n C"
BC] —N+C(N+1),§(N+2) n!

L (N D,

N N+1/ 5 (N +1+n)

1 N-1 n!
== N-DNIY —— .
N+C(N+1)+( I)NZI(N+1+n)'C (A-9)

Since Eq. (A.9) isa polynomial in C, we can solvefor C, the unbiased estimate o
the true coherence by truncating the summation at (M — 1) termsto yield an Mt
order polynomial, and then dropping the quantifiable remaining error term so that
the absolute error incurred in using this approximation is known. To achievethis
goal, a useful decompositionis:

E[C] = —1—+N—C+(N 1)N! le — " ___C""'{ERR (A.10)
N + { (N +1+n) B
where
>, n!
ERR=(N-1)N! ———(t1 All

ERRis upper bounded by noting that

n! 1
(N+1+ n)! < (N +1)!, forn,N >0 (A.12)

Equality in Eq. A.12 only occurs when n = 0, which never happensin Eq. A.ll.
Therefore,

(N - 111)\'7 ! g; ot (A.13)

ERR <
(N +
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Since the biasis positive, C < €, so that al the more:

N-1X 4

n+1

N+1 ,glc (A.14)

— (N=1 )(G_‘M“) '
N+1 \1-¢

Eq. A.l4 isthedesiredfinal form. Solving for Eq. A.14 for M wefind that it must
be that

ERR <

N-1

InC
The M in Eq. A.15 is the minimum order o the polynomial in Eq. A.14 needed
to ensure that Eq. A.10 is dff by no more than ERR. While a measure o relative
error (as absolute error/true coherence value) is perhaps more desirable near zero
valuesd C, it is unfortunately intractable and unavailable. Fig. A.3 shows a plot
o the debiased estimate of ¢ versus that measured by actually estimating C as
averaged for various values d N, the number o bursts for this radar application.

In [12, Table 2], both exact and approximate expressions are provided for the bias
and the varianceof ¢ in termsd the number o data points N.

M >

-1 (A.15)

A.4 Verifying Carter's PDF

(U)Standard tests for the goodness-of-fit to a particular postulated pdf are the
Kolmogorov-Smirnovand the Chi-Squared test [65]. The Kolmogorov-Srnirnov test
is used here becauseit is known to sometimesyield good resultsfor smaller sample
Sizes such as we are constrained to consider for this particular radar application.
For a brief discussion d the relative merits of using the Kolmogorov-Smirnov test
versusthe use of Chi-Squaredtest, see [66]. The Kolmogorov-Smirnov test statistic
is the maximum error between the measured cumulative distribution function and
the expected cdf (corresponding to the theoretical cdf or "null hypothesis®) as

D= max |S(C’0) - Fés(éo)l; (A.16)

where

D = Kolmogorov — Smirnov statistics
S(éo) __ nunber d samples<Cy (A.17)

total number o samples

Fg(Co) =CDFd the null hypothesis
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(U) Figure A.4: Kolmogorov-Srnirnov distribution, for large N

S(Cq) can bethought o asan estimated F;(Co). Each estimate hereisan average
o N radar bursts. -

(U)Consider Fig. A.4. In the limit as N gets large, fp(Do), the pdf o the
Kolmogorov-Smirnov test statistic is observed to approach the Chi-Squared distri-
bution. For-a set d estimates, if the statistic D, (defined in Fig. A.4) corresponds
toan a<0.05, that set of estimatesissaid to havefailed the test at the 0.05-level of
significance(i.e., the conclusionis that the samples were not distributed according

to the null hypothesis).

A.5 2-Sided and 1-Sided Confidence Bounds

(U)In Fig. A.5, consider the pdf for any statistic, s, in general and any two points,
s; and s,, selected in such a way that the area d the pdf between them is (1- a).
Then thisis a valid 100(1 — a) percent confidence bound for s. In reference [62],
the confidence bound is selected so that the area d both the left and right tails is
«/2. For the purpose d relating confidence bounds to hypothesis testing, we are
interested in a confidence bound where f,(s1) = fi(s2) = p, (see Fig. A5). For
pdf’s that have one pesk, such as the pdf for ¢, this corresponds to choosing a
confidence bound that minimizes |s; — s;|. The result is shown in Fig. A6 for
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Appendix B

Alternative M ethodologies for
Gauging the Accuracies of AR
Coefficient Estimates

(U)The prudent analyst always seeks to quantify the degree o confidence asso-
ciated with final results. To this end, it is desirable to have variance estimates or
confidence regions specified for each of the coefficient matrix estimates, A", that
are associated with multichannel LP approachesto spectral estimation similar to
those existing bounds of [213, subsections8.6.1, 8.6.2], [23] for ARMAX (Autore-
gressive Moving-Average-Exogenous) models. An acceptable alternative as a "test
o the entire pudding” would be to quantify the uncertainty incurred in the subse-
quent calculation of the multichannel spectral estimates for which estimates o the
coefficient matrices were necessary intermediate results. As a class, spectral esti-
mation results obtained from one parametric model-based approach to L P should
not be drastically different from those o a similar approach to LP (viz., [27]).

(U)Historically, consideration of estimating the bias and variance of spectral
estimates has been treated in [20] and [21], respectively. For the particular LP
estimation approach o MEM, confidenceintervals ([18], [19], [263]) have been de-
veloped for the resulting intermediate AR parameter estimates but only for the
scalar single channel case. The recent extension in [19] makes such confidence in-
terval calculations more tractable by circumventing the prior requirementin [18] o
having to integrate over a two-dimensional generalized Student's-t distribution in
transitioning from the underlying joint pdf (being afunction o the true but un-
known values o the AR parameters being estimated (also see [24])) to the god o
having confidence regions. The results o [19] are aso claimed to be applicableto
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maximum entropy waevenumber estimation as wdl (of interest if the 2-D modeling
approach reported in [224] is adopted) but is still available only for the scalar case
rather than for the multichannel case as we are faced with in this multichannel
radar application.

(U)Historical approachesto using Cramer-Rao (C.-R.) lower bounds to conser-
vatively gauge the uncertainty incurred in AR parameter estimation encountered a
barrier of havingto perform multitudinous differentiationsin order to obtain thein-
termediate result of computing the associated Fisher information matrix. However,
the recent result o [22] circumventsthis prior computational burden viaa neat iden-
tity that alows mere shift-matrix operations to suffice (as long as the underlying
process is stationary). Unfortunately, the form o the C.-R. bound utilized in [22]
assumesthat the AR parameter estimator being utilized is unbiased, which perhaps
is not the casefor our radar application. (See[107], [110] for discussionsd the form
d the C.-R. bound that properly acknowledgeand handle possible biasnessin the
estimator.) Another historically exact expressionfor Cramer-Rao lower bounds on
AR cosefficient estimation is credited to Donald Tufts [250] and is derived for both
the AR and ARMA casein the recent textbook [247, pp. 211-213, 302-3051.

(U)Another augmenting experiment (involving simulated data), beyond what
weas already presented in Section 3.2, is to determine the effect by calibrating the
response d the alternative multichannel AR-based spectral estimation algorithms
with respect to varying intensities o additive Gaussian white measurement noise.
In this way, the robustnessd these high resolution algorithmsto the effect of noise
being present (and, moreover, its response to actual mismodeling in assuming an
AR-process to be present, when, in actuality, it is an ARMA process as discussed
further in Chapter 4) can now be gauged as to how wel it performs and at what
intensity level o the noise do the resulting estimates o the AR coefficients become
unacceptably degraded. Results o these numerical experiments (offered in [179],
[185], [255], and [256] so that there is no longer a need for us to perform them
ourselves!. at someexpense) can be compared for proximity to the above described
asymptotic C.-R. lower bound for additive noise being present, as calculated using
the technique o [150]. While the actual radar application of interest here is not
noise-limited since target returns have an extremely strong SNR advantage, it is
in fact time-limited or o constrained data length. It is proposed that a buy-off o
sorts can be performed to still use the C.-R. lower bounds o [150] in this RV wake
modeling application, where white additive measurement noise being assumed to

1 An awarenessof the existence of these results avoids the expense of an unnecessary duplication
of effort in repeated evaluation.
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be present makes the lower bound higher than normal, in place o not being able
to have enough data to achieve asymptotic C.-R. bounds, which also makes lower
bound results higher than normal. The correspondence could be experimentally
calibrated but awaits evaluation by the user who makesthe final decision on which
of the approaches to use, either 1-D or 2-D; otherwise, it would just be a wasted
exerciseto determine a 1-D refinement if the 1-D approch wasnot used. Additional
benefits o pursuing the evaluation technique o [150] is that an explicit formulafor
the lower bound is available that does not involve numerical integration, as most
other evaluation approachesrequire. Indeed, in some applications one is interested
not so much in the AR parameters themselvesas in some useful function of these
parameters such as in the center frequency, bandwidth, and power o narrowband
spectral lines. Another beneficia aspect o the results of [150] is in providing a
smplified methodology for computing C.-R. lower bounds on such general functions
d the AR coefficients (and additive noise intensity).

(U)The "unknown-but-bounded" approach o [252], [216, pp. 21-29, ff. 76, ff.
154], [253], [254] as converted to apply to AR coefficient estimation in [213] is not
recommended for further pursuit for the RV wake modeling application for reasons
provided in [23] relating to disappointments in performance in practice. Again
knowledge d these results avoids unnecessary duplication of effort.

(U)The topics of Appendices B and C, while germane to the task of modeling
and evaluating the moded for RV wakes, is more in the nature o R & D to be
utilized further downstream. The issuesin these two AppendicesB and C are more
like "icing on the cake" and recieve less emphasisin this report than the higher
priority primary concerns addressed throughout the remainder o this report.
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Another area d concern in the calculation o K-factors is when unequal variance
situations sometimes arise, where K-factors are not appropriate (however a stan-
dard tractable approximation is to averagethe two differing variances and take the
result to be the common variance that existsfor both situations) [239, p. 105], and
to then proceed in the usual manner.

(U)New divergencemeasures have recently been developed or modified to gauge
spectral proximity of amplitude and phase components to a specified goal or tem-
plate. Additionally, higher order spectral characteristics are now beginning to be
utilized or exploited in practice such as bispectrum and trispectrum methods which
relate, respectively, to third- and forth-order moments. Unlikemost other statistical
and random process techniques, these higher order techniques only apply to pro-
cesses that are non-Gaussian, as are morelikely to be encountered in actual target
data rather than by resorting to a perhaps untenable assumption of Gaussianess.

(U)Sophisticated measuresfor determining whether significant cross-correlation
exists between channel s (as between contiguous range gates or between primary par-
allel polarization and orthogonally polarized target returns) can be based on metrics
such as the wel-known measures o Chernoff coefficient, Bhattacharyya distance,
|-divergence measure, and J-divergencemeasure, al to be further described below.

C.l Analytic Formulation of Four New M easures

(U)While the exact evaluation o probability o error in statistical hypotheses
testing situationsisfrequently intractable!, twowell-knownboundsthat bracket the
elusiveexact probability of error, P.(m), based on m-data samples, x™, in decisions
associated with signal detection and pattern recognition applications (where f; (x™)
and f2(x™) are the underlying pdfsd x™ under hypotheses H, and H, respectively,
and = and (1- =) are the corresponding prior probabilities) are known to be [33]:

1_ 1
2 2
and

[1 = 4n(1 = ) [Ba(@5)]™"]" < Pu(m) < [r(1 - F [Ba05)]" (1)

N

Smin(r, 1~ ﬂ)exp(_TJm) < P(m) < [x(1 — )|} [-‘%ﬁ] i (C.2)

1A detection/hypothesis-testing situation that is surprisingly tractable as a departure from the
usual situation where frequently one is elated to be able to evaluate even mere coarse bounds is
reported in [248].
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where, in the above, B,,(t) is the Chernoff coefficient:

Ba(t) 2 [ [ G (e dam] " (€3)
for 0 <t <1, and the Jdivergenceis
In2 2 [ 1™ - e og [ A g (©4)

(U)The quantity —mlogB,,(0.5) in the above is denoted as the Bhattacharyya
distance and arelated distance measureis the |-divergence defined as:

o £ = = [ Aetog | 20 (5)

(U)The above described four measures have already been asymptotically sim-
plified in [33] and can be used to distinguish between two comparably dimensioned,
covariance stationary Gaussian processes on the basis o m discrete time samples
asfurther discussed in [33], while other measures are still being further refined [34],
that employ a detailed consideration of the adequacy in matching the amplitude
and phase component o the spectral function that is the goal. Moreover, higher
order spectral characteristics ([35] - [44]) and remnants can aso be checked for an
adequate match.

C.2 A Resurgence of Interest in Bispectra and
Trispectra Estimationas More Sensitive Dis
criminators than Just Spectral Estimation

(U)The bispectrum o a stationary processis the Fourier transform o its third
moment sequence [39] (which can be utilized in a measure of skewness) and, corre-
spondingly, trispectra can be related to fourth order cumulants (or semi-invariants)
[43] which, in turn (as a measure o flattening, excess, or "kurtosis"), relate to
fourth moments of the system or random process output sequence. (See [103, pp.
15-20] for a clear treatment of how to handle transitioning between moments and
cumulants.) Although these bispectrum techniques have been around since the
middle 1960’s and before ([40], [41], and [44]), such higher moment techniques
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are being increasingly advocated for use in extracting €usive phase information
about a random process and in performing more accurate parameter identification
o non-Gaussian Autoregressive (AR) processes. Such techniques are being looked
into by sonar practitioners [42]. As a reversal o the usual situation for statistical
techniques, these new higher moment techniquesdo not usually work well when the
underlying process is Gaussian, but have performance that improves markedly as
the underlying random process departs more radically from Gaussianess(as may be
explicitly revealed using the techniquesd [142], [129] in the same manner as have
already been applied via an available FORTRAN programin [132]). Unfortunately,
the variancesdf these higher order spectrafor the same length o data are consid-
erably worse by being higher than that o conventional power spectra, as would be
expected. In seeking to use higher order spectral techniques, a greater length o
datais needed in order to obtain comparable reasonableaccuracy o results.

(U)Multichannel higher moment techniques have already been developed (e.g.,
[39]) but, to date, have internal constraints imposed that the dimension of the
output must be identical to that o the input for these multi-input/multi-output
(MIMO) systems. However, this excessive constraint will probably be soon lifted in
the future sinceit is not a physical constraint but a mathematical one imposed for
the convenience d the analyst in the assumption of [39]. Additional insights and
developments on this important topic are still evolving (e.g., [38], [45], [102]). A
need apparently existsin how to modify/expand on al o the above bispectra and
trispectraresultsin the manner indicated in [48], [164] in order to obtain comparable
results for the complex processes that arisein coherent radar applications involving
complex covariance matrices and power spectra. The main obstacle to adequately
handling the complex case is to settle on a convention that can be consistently
adhered to as in, for example, the handling of conjugation for third moments as
discussed further below. While for second moments (as are exclusively used in
standard spectral estimation) there is no ambiguity in using the conjugation for
the second term in order that the result be all real; however, for third moments,
the conjugation can be anywhere between three likely candidate locations with no
real preference dictated by any other physical or mathematical constraints being
available to invoke, thus recourse must be made to adopting a common convention
instead. The appropriate conventionto useis still being debated by specialist (as
reported by Nikias at the Minisymposiumon ASSP in Boston, MA in May, 1987).
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Appendix D

Capabilities Designed into the
New Simulator

(U)Within this investigation a new state-variable based Monte-Carlo simulator
for AR processemulation wasdeveloped. The new simulator possessesthefollowing
new features:

e Incorporates " exact discrete-timeequivalent d continuous-timewhite noise”.

e Offersoption d using the more efficient direct calculation of steady-state ini-
tial conditionscorresponding to stationary behavior o the underlyingrandom
process (without havingto iterate to steady-state to avoid the nonstationary
initial transient).

e Offersoption d having additive (stationary white Gaussian) output measure-
ment noise present (thus creating a type o ARMA process).

e Doesn't require use d only diagonal covariancesfor noises or for initial con-
dition covariances.

e If covariancesare not diagonal, the programinternally automatically checksto
verify that the covariances possess the requisite " positive definiteness” prop-
erty (viause d the Singular Vaue Decomposition (SVD) in the manner in-
dicated in [105, p. 504], [178], [108, Section III, p. 713], [106, Section III, p.
63]), otherwise diagonal covariances are merely verified not to have zeroes or
negative numbers on the principal diagonal.
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e Calculates transition matrix by more accurate Pade approximation (offering
two validated options along these lines) rather than through used a Taylor
series expansion.

¢ Can handle nonzero meansfor noises and initial conditions.

e Outputs final pseudorandom noise (PRN) seed value to enable continuity of
use via alowable dovetailing o output samplefunctionsif further prolonged
sample function history is subsequently pursued (which uses this PRN seed
during subsequent start-up).

Each o the above mentioned features will be elaborated on further for clarification
and to explain why having each new feature is important in this investigation.

D.1 DiscretetimeEquivalent of Continuous-time
White Noise

(U)To avoid discrepancies between a continuous-time formulation and the (of
necessity) discrete-time implementation on the digital computer, the following re-
finement was pursued. To ignore the discrepancy or to invoke a rather well-known
approximation, discussed at theend d this subsection, would incur an uncalibrated
error that would mask the aspects o the software implementation of the spectral
estimation algorithms that we seek to verify as our intermediate god.

For atime-invariant linear continuous-timestate-variabl erepresentation in terms
o the matrix triple (F,G, C) as

dz
= = F )+ G (1) (D.1)

y(t) = C 2(t) (D.2)
with corresponding system transfer function matrix
H(s)=C(sI-F)'@G, (D.3)

the equivalent discrete-time reformulationin terms o the matrix triple (A,B,M)

2(k+1) = A z(k) + B z(k) (D.4)
y(k) = M (k) (D5)
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with corresponding system transfer function matrix
H(z)=M (zI - A B, (D.6)

where z in Eq. D.6 isthe Z-transform variablebut in Egs. D.1, D.2, D.4, and D.5
is just notation for the system state variableswith z(¢) as the input.

(U)An initial investigation o posing the continuous-time problem as an exact
formulation in discrete-time proceeds as follows. The form o the solution to the
differential equation o Eq. D.1is:

t
o(t) = eFO-9) 5(s) + / PO @ o(r)dr . (D.7)

In particular, for the upper and lower limits o the above integral being

t=(k+1)A (D.8)
s=kA (D.9)
A = constant incremental step — sze, (D.10)

the solution o Eqg. D.7 correspondsto the followingrecursiveiteration in discrete-
time:
(x+1)A
2(k+1) = [72] =(k) + /k FEA=T) G (1) dr (D.11)
A

which, under thefurther assumption that z(r) is essentially constant over the time-
step from any k A to any other (k +1) A, yields:

(k+1) A
2(k+1)= [eFA] z(k) + [/kA elF (+1) A=7) G’d’r] z(k) . (D.12)
Upon making the changed variable
r=17+kA (D.13)

and substituting into Eq. D.12, yields:

z2(k+1) = [eFA] z(k) + [/OA eFd eI dT’l G z(k)
= [e"2] 2(k) + [4] [ /0 % FTr dr’] Gz(k). (D.14)
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Theexpressionin Eq. D.14 isthemost general form o the discrete-timeformulation
that corresponds exactly to the continuous-timeformulation o Eq. D.7 except for
the minor error incurred in assuming z(7) to be essentially constant over each small
stepsize A. In the case where the continuous-timeinput z(t) is independent, white,
Gaussian process noise d continuous-time covariance intensity level, Q, to have
exact adherence without any approximation incurred, the discrete-time formulation
should be

2(kt1)=[e"2] 2(k) T [eF4] 2'(k) (D.15)

where
z'(k) = zero — mean Gaussian white noise (D.16)

having discrete-time covarianceintensity leve.([234, p. 4-127b], {176, p. 2701):
A T
Qu = E [2(k)(z'(j))"] = 72 [ / eF"GQGT e T dT] 78 6 (D7)
0

where the above Kronecker delta is defined as

1 if ks

6k = { 0, otherwise. (D.18)
The above @, in Eg. D.17 isthe appropriate discrete-time process noise covariance
level to use to have exact agreement between the discrete-time mechanization o
Eq. D.15 and the the continuos-timeformulation d Egs. D.1or D.7. A well-known
approximation for Q) [238, pp. 83-84] (due to Kalman) which is sometimes used is
to take

Qi=720Q;
however, the deleterious effect o invoking this approximation is uncalibrated and
it can easily be seen to be obvioudy unsatisfactory by considering the case of a
system with a diagonal continuous-time Q, but a nondiagonal system matrix, F.
The approximate Q/;, defined above, is consequently merely diagonal while the exact

Qq. o Eq. D.17 isdefinitely nondiagonal. See calculationsd Eq. G.5 for Test Case
2 in Appendix G as a concrete example.

D.2 Direct Calculation of Steady-State I nitial Con-
ditions

(U)A stationary linear system must not only have a system description that has
matrix parameters that are time-invariant, but must also be initialized with the
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proper initial conditions that correspond to its steady-state behaviour, otherwise
an initial transient occurs within the computations that must first be endured and
subsequently skipped before truely stationary behaviour o the system is achieved.
Rather than haveto iterate Eq. D.15 to steady-state (which is an approach that
converges to the desired answer at only a linear rate, thus being fairly expensive
in terms of computational resources expended), two different approaches are uti-
lized herefor calculating the steady-state mean and covariance associated with the
primary iterative mechanization o Eq. D.15 for Monte-Carlo simulation. The
approach implemented for the computation o the steady-state covarianceis that
developed by Kleinman [235], [236]; while the approach implemented for computa-
tion o the steady-state mean isoriginal and was developed within thisinvestigation
as a novel contribution. Both techniquesare described next.

D.2.1 Steady-State Solution of Covariance

(U)The Kleinman agorithm [235], [236] was developed to solve the following
continuous-time Lyapunov equation:

P(t) = FP(t) + P(t)FT + GQG” (D.19)
or, equivalently, the discrete-time verson o the Lyapunov equation as:
P(k+1) = [e"4] P(k) ["2]" + Qu (D.20)

(which arise as the primary obstacle that must be computationally overcomewithin
Kleinman's novel approach to steady-state Riccati equation solution) in obtaining
the steady-state constant valuefor

P(t) 2 E[(=(t) — 2(t))(=(t) — 2())7],

being the steady-state covariance associated with the linear system o Eqg. D.1 when
F is constant and strictly stable. That P(t) satisfiesa Lyapunov egquation is demon-
strated in [234, pp. 165-1671. The rate o convergence o Kleinman's approach to
the steady-state solution is better than quadratic [237] and wasimplemented as one
d the availablesoftwareroutines o [197] that wasfirst obtained and then validated
with test problems of known solution, as discussed further in Appendix F. The
resulting steady-state positive definite solution matrix isfirst checked for positive
definiteness (using the technique discussedin Section D.4), then invoked as the ini-
tial condition covariance used to start the recursionsd Eqg. D.15 that constitute
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the Monte-Carlo simulations. By initializingin this manner, the sample functions
that immediately emerge correspond exactly to stationary behaviour of the system
without havingto wait for aninitial transient period to end. A detailed explanation
o the computati onal aspects associated with using Kleinman's approach is provided
in [240].

D.2.2 Steady-State Solution of Mean

(U)The origina approach to computing the steady-state mean of Eq. D.l is
discussed now. The implementation of the recurson o Eg. D.15 in software can
be easily accommodated. However, there is a simpler alternative to iterating 1000
times to achieve steady-state operation as was done in the predecessor simulator.
Using 1000 iterations can be extremely costly for larger dimensioned state sizes
and, although simpleand straight forward, is not the computationally efficient way
to achieve steady-state operation. For some problems, even 1000 iterations would
not be enough to achieve steady-state (i.e., the step-size A must be such that 1000
iterations [1000A] is more than 5 times the effective time constant of the underlying
system o Eqg. D.l; if it's not, then steady-state is not achieved even after 1000
iterations. Similarly, if the system matrix, F, in Eq. D.l is such that it is only
marginally stable rather than being strictly stable, then no steady-state is defined
(except for the situation where there is a single pole at the origin while all noises
are zero mean; which yields a constant output in steady-state for the corresponding
state variablesaslong as no other state variablesare related to it such as being the
integral o it, otherwise a ramp results which has no steady-state).

(U)Returning to Eq. D.l to focus on the long term effects o providing the
linear system with a Gaussian initial condition, having the following statistics for
the mean and variance, respectively:

Elz(t.)] = 2, , (D.21)

Bl(x(t.) - 2)(x(ta) = 2)"] = P, (D.22)

where P, = PT > ( is positive definite and E(-) denotes total expectation. Notice
that in taking the expectation, E(-), throughout Eq. D.| yields

E[:(t)] = F E[z(t)] + El=(t)] (D.23)

=0

and under the generally valid condition that differentiation and expectation (in-
terpreted as a Riemann -Stiltjes or Lebesque-Stiltjes integral with respect to the
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monotone increasing [and therefore possessing the requisite property o being of
bounded variation as needed for this type o integral representation] cummulative
distribution function) are interchangable, Eq. D.23 smplifiesas

d
ZE[x(t)] = F E[2(?) (D.24)

or for z(t) £ E[2(¢)], equivaently,
z2(t) = Fz(t) , with z(¢,) = 2, . (D.25)

The above is the describing equation from a continuous-time viewpoint while the
equivalent discrete-timeequation (obtained by similarly taking expectations through-
out Eq. D.15) is

Z(k T 1) = [¢F2]z(k) when properly initialized with Z(0) = z,. (D.26)

For the case o a zero mean:
z, = 0 — vector , (D.27)

the need to solveeither Egs. D.25 or D.26 is circumvented entirely. For the case o
a nonzero mean:

z, # 0 — vector , (D.28)
the steady-state mean value (if it exists) is the solution o
Z(00) = [ef®] Z(c0) (D.29)

or, equivalently, the solution o
[T —ef2] 2(00) =0 (D.30)

It is worthwhileto solvefor z(oo) because this value (along with the steady-state
P) can be used to initialize the Monte-Carlo simulation so that it starts out ex-
hibiting stationary behaviour, rather than havingto wait for it to progress through
the transient portion. As mentioned above, one solution approach is by recursive
iteration asin Egs. D.25 and D.26, but with better control exercised on the number
o iterations utilized than was exhibited in the predecessor ssimulator. Rather than
blindly always using 1000 iterations !, which is generally not satisfactory for the
reasons already given above, it is better to use knowledged the system structure

IThis is satisfactory if the simulator were being used on a one shot basis, which is how it was
originally being used over a year ago for the single case of Section 3.1, but is no longer the case here.
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D.5 Updated Calculation of the Transition Ma-
trix

(U)The calculation o thetransition matrix, or matrix exponential asit reducesto
for the linear time-invariant system of Eq. D.l, was modernized to take advantage
o the most accurate computational techniquesthat have been relatively recently
advertised (and endorsed) by specialistin thisaread numerical analysis. A detailed
accounting is provided in Appendix E.

D.6 Handling Nonzero M eansfor Noises and Ini-
tial Conditions

(U)This capability was provided so that situations could be created where a bias
is present. It isfrequently instructive as a test against reality to find out how wel
an algorith performs when an unanticipated bias is present. Frequently, analysts
tacitly assume biases to be zero for convenience and tractability but the actual
physical application may not be so accommodating. Thereis no technical challenge
in including thisfeature within the simulation capabilitiesdf the new simulator, it
was just another item that had to be specified and routinely added in.

D.7 Outputting of Final Pseudorandom (PRN)
Seed Value

(U)In obtaining samplefunctions from the simulator, it may later become appar-
ent that a longer time record is desired than originally ssimulated. When the last
value o the PRN is outputted from each run as is now done in the new simula-
tor, it can be utilized to initialize a new run starting with the final value o the
previousrun as theinitial starting condition o the new run. In this way, the new
run can dovetail with the results o the previousrun as effectively one longer run
without having to throw away the results of the earlier run that was deemed too
short. With the exception o the original techniquefor specifying the steady-state
mean that is offered in Subsection D.2.2, all the other features discussed aboveare
standard techniques that are now used in modern approaches to specialized linear
time-invariant Monte-Carlo simulators, as also pursued for this investigation. How-
ever, each new feature described in this Appendix D wasfirst implemented using
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to specify explicitly the number o iterations required to achievesteady-state. This

could be achieved by using the Singular Vaue Decomposition (SVD) on F to ex-

pose the underlying eigenvalues, the longest time constant being the reciprocal of

the smallest real part o all the eigenvalues encountered. The required number of
5

iterations would be the interger portion of ——.

(U)While the above described solution should work, the preffered solution pro-
ceeds as follows. Notice from Eq. D.30 that the steady-state solution of Eg. D.29
isaright singular eigenvector o e™ as

(X1 = [eM])Z(c0) =0 (D.31)
for
X = | (D.32)

so that al that is computationally needed is to perform an SVD operation on e™
as
e =UAV*, (D.33)

where A is diagonal and contains the eigenvaluesexposed as
A = diag()\l, )\2, ey /\n) (D34)

in descending order o magnitude, and the associated matrix V* contains the corre-
sponding right singular eigenvectors. All that isfurther requiredisthat the resulting
diagonal matrix A in Eq. D.33 be searched from left to right to find that eigenvalue
that isequivaent to 1 while ssimultaneously adjusting a corresponding pointer to the
rowsd V*. If no such eigenvalue existsthat is equivalent to 1, then no steady-state
exists for Egs. D.25 or D.26. The "dot" or index vaue (i.e., valued i = i,) for
which

Ai, =1 (D.35)

corresponds exactly to the appropriate vector column slot within V* of the form
V¥*=[viivgi...:1\] (D.36)
such that the steady-state value being sought is:
#(c0) = v;, (D.37)

(corresponding to Egs. D.31 and D.32, together). This is the algorithm that is
included in the current simulator. Thus, the steady-state mean can be calculated
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(when it exists and this solution approach possesses the additional feature of aso
automatically checking on the existence d the steady-state solution). This sim-
ulator can aso be used for Kalman filter applications, where these steady-state
initialization featuresfor the mean and covariancewill likely be of even greater util-
ity by providing the capability o generating a completely theoretically stationary
random process sample function upon entering the normal iteration cycle without
the usual "wait for things to settle down".

D.3 Option of Including Corrupting Additive Out-
put Measurement Noise

(U)A question arose as to whether the underlyingtruth model Monte-Carlosimula-
tor for exercising the spectral estimation algorithms should also contain a provision
for including a component d additive measurement noise as well as the standard
process noise in the final sensor measurement so that it is more properly modeled
as consisting o the followingsum o two statistically independent components as:

y(t) = yar(t) T o(t), wherev(t) ~ N(0,r). (D.38)

Typical Kalman filter simulators always include a measurement noise simulation
capability, soit wasinitially perceived to be somewhat unusual that some AR sim-
ulators don't include this provision. However, an AR process with measurement
noise present is essentially an ARMA process, as can be conveniently seen for the
scalar case by considering the equivalent correlationfunction that results from sum-
ming an AR process plus additive independent Gaussian white measurement noise,
as demonstrated here:

¢yy(3) = ¢yAR'!IAR(S)+¢‘U'U(S)

_ q _ 9+ rD(=s)D(s)

~ Db T DG (0:39)
where the above left hand fraction represents the correlation function o an AR
process by havinga constant numerator and the aboveright hand fraction represents
the equivalent ARMA processthat results by havinga non-constant numerator. Use
o pure AR techniquesin situations involving underlying ARMA processescould be
afairly severe model mismatch [149]. The motivation for including this feature in
the new simulator for this investigationis provided in Sections 4.1 and 4.3.
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D.4 Accommodating More than Just Diagonal
Covariance Matrices

(U)Employing only diagonal covariance matrices in a ssmulator alows an easy
check to be utilized to guarantee that such diagonal covariancematrices are positive
definite(consistingmerely o averificationthat every entry on the principal diagonal
is positive). However, such a simplistic approach is not general enough for many
routine simulator applications.

(U)Because of geometric or other physically induced constraints (such as arise
in alinement applications in navigation systems, or in possessing correlated random
vector initial conditions-such asresult from the method d Section D.2 for initializing
the simulation in the steady-state condition, or in having either cross-correlated
process noiseor measurement noiseor both in multichannel applications), theinitial
condition covariance, P,, the process noise covariance intensity level, 4, o Eq.
D.17, and the measurement noise covariance intensity level, R, can be nondiagonal
and usually are nondiagonal. That this is the case can easily be seen for Q4 by
examining the structure o the defining equation o Eq. D.17, as pursued next.
From Eq. D.17, please observethat when F is not diagonal, which is the prevelant
situation, then €T is not diagonal so even if the continuous-time Q is diagonal,
which sometimes occurs, the matrix product of e~F"GQGTe=F"™ that appearsin
the integrand o Eg. D.17 is not diagonal, so the discrete-time @ is not diagonal
in general.

(U)In this general case of encountering nondiagonal covariance matrices, it is
still prudent to check that these covariance matricesdo in fact possessthe requisite
positive definiteness property in order to proceed with confidencein the knowledge
that fundamental structural requirementsare in fact satisfied. After first checking
for the presenced a degenerately smpler diagonal matrix for which the test may be
streamlined in the manner already mentioned above, the 'complex variable" form of
the SVD subroutinefrom the International Mathematical SoftwareLibrary (IMSL),
Edition 10.0,(being "LSVCR") is used to decompose any nondiagonal covariance
matrix under test (asin Eg. D.33) into

UAV*

and the eigenvaue entriesexposed on the diagonal matrix A are checked to confirm
that these entries are exclusively positive.
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the modern software development techniques d [227], then fully checked out and
verified as discussed in Appendix F.
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Appendix E

Machine Computation of the
Matrix Exponential and
Verification of its Software

| mplementation

E.l Prdiminary Perspectives

(U)As discussed in Appendix D, we have replaced an earlier Monte-Carlo sim-
ulation routine with a new verson that is upgraded in several important ways so
that we know exactly what is being produced by the smulator and to what accu-
racy. Thisisextremely important in calibrating the spectral estimation algorithms
d primary interest in thisinvestigation. Within our modifications, we had a need
to calculate the matrix exponential, which is analytically defined in terms o its
corresponding Taylor series as.

eft = ZzloFk_ftk
(E.1)

= I+5t+ B4 B4

(U)While several historical software implementations [188], [189], [198], [204]
pursue evaluation of ef! using the defining relationship of Eq. E.l, modern im-
plementations use other techniquesfor this important and fundamental evaluation
[190]- [193], [195]- [197], [198]- [203] such asVvia used the following two techniques:
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E.l.I A Chebyshev Approximation:
(U)Makes use o the matrix series analogy to the following scalar relationship:
e = L2)t 2y, I(2)Tn(z) for |z| < 1 (E.2)
= 1T > et )
where
I.(2) = modified Bessd function o thefirst kind (E.3)
= Xommrhy '
T,.(xX) = Chebyshev polylnomial
m s<m (—1)¢ -8 E.4
— mylgm U (ms ) (22)m-2 (E4)

E.1.2 Pade Approximation:

(U)Makes use d the matrix series analogy to the following scalar Pade approxi-
mation to e* as

o Nole)
~ D (e) (E.5)
where n ( 1) ( 4+ 1) i
Nn(:c)=1+§2n(2n_1)...(2n—i+1).5 (E-6)
and

The motivation for deviating from the obvious standard defining Eq. E.1 in com-
puter evaluation or computationisthelure d greater accuracy that can be achieved
either via the Chebyshev or Pade approachfor an equivalent computational burden
to that of using the moredirect Eq. E.1.

(U)The computational algorithm depicted in Fig. E.1 (which is based on the
defining Eq. E.1) was reported in [199, p. 75], as inherited from the procedure
originally used in [188], and serves as the basis o the computational technique
used at many universities and aerospace companies. However, Systems Control
Technology (previously Systems Control, Inc.) endorsesthe Padeapproach o [192],
[193] as being the preferred approach for calculating €™ sinceit hasgreater accuracy
in general for the same computer burden [196, p. 7-21]. The Taylor seriesapproach
is exact at the point o expansion (as, say, about zero) for up to the number o
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derivatives(or terms) retained but dropsdff in accuracy thefurther away (i.e.,larger)
A isfrom the original point of expansion (being zerofor this discussion). However,
theerror in Padeapproximation astheratio o two polynomials(where, for matrices,
the denominator polynomial correspondsto a matrix inversion),has an error that
oscillates between being positive and negativeal aong the baselinefrom the point
o expansionto the point o evaluation, with a net error at the time step A that is
considerably less than that measured in using a Taylor series expansion approach.

(U)A so-called "convergenceanalysis' (for the Method of Fig. E.I) appearsin
[198] that is based on claimed properties d an "aleged” norm:

] = minfmex |l , mix Y |fil) (£8)
j=1

=1

However, the revelations o Kerr [194] demonstrate that the "aleged" norm d
Eg. E.8 isin fact bogus and that the "dleged” properties being exploited in the
convergenceanalysisare subsequently compromised but can be patched up using the
suggestionsd [194], as provided. An independent substantiation or endorsement o
the observationsdf [194] on this topic o the "norm™ in vogue being bogus appeared
in [254, p. 798]. Just for perspective and historical appreciation, it is mentioned
that the misinterpretation o the intuitively appealing expression o Eq. E.8 as
incorrectly being a norm was asserted in [188], [198] and propagated by severa
others [189], [203] including seasoned numerical analysts (e.g., [205], [206]) in this
evaluation area.

(U)Correct calculation d the transition matrix, e, for time-invariant linear
systemsisd fundamental importance in the computational solution o linear differ-
ential equations, in Kalman filtering applications, in optimal control and guidance
applications, in related signal processing applications, and in those nonlinear ap-
plications where the solution approach is to first linearize over short duration time
intervalsover which the system may be reasonably approximated as having constant
parameters. Obviousdy computational considerationsare " bread and butter” issues
for companies and practioners engaged in such evaluations. Having been personally
following the development and evolution of computer algorithmsfor evaluating et
for the last twenty years, | fed compelled to archive the following neat test prob-
lems (and their derivation) as discussed in the next section for the possible benefit
o others seeking such a definitive cross-check for softwareimplementation and veri-
fication just as we had originally been faced with. We used the test problemsd the
next section, to quickly verify the accuracy d the two different algorithmic versions
o et calculation that have been implemented in the new simulator. One version
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isentitted MEXP, which is based on the Cheyshev approximation approach [190],
and was obtained from David Kleinman(University o Connecticut) asa DLK.LIB
software subroutine [197], while the other versionis entitlted PADES and is based
on the Pade approximation approach o Ward [192], [193] and the version that we
have utilized in the new simulator was implemented by Ward himself.

(U)At Lincoln Lab, certain enhancing pre- and post-processing modifications
have been made for both algorithms to make the form of input entry and output
reading be easier, more user friendly, and less human error prone, by appending
amatrix format structure (originally adopted by TASC in the 1970’s) that makes
reading large matrices more convenient from a human engineering viewpoint. An
example o thisformat for a 46 x 46 matrix is depicted in Fig. E.2. Row numbers
are indicated at the left followed by a singleright parenthesis. The row entries are
10 per line, with the excess folded around underneath. The alternative to using
this convenient format when dealing with matrices & dimension greater than 10
(as | have personally increduously witnessed) isfor people to wall paper officewalls
with the matrices they are working with! Such wall papering is highly inconvenient
for stacked-caseruns that alter some parameter values and elements within those
matricesfor asensitivity analysisof results over arange o likely parametric values.

E.2 9Sick Test Casesand Their Derivation

(U)Certain matrices known as "idempotent™ matrices have the unusual property
that
A-A=A (E.9)

WhileI'm not awared any prior really fruitful use madedf idempotent matrices, the
present application of software verification, as now described, is a neat application
of idempotent matricesas used to construct test matricesfor verifyingthe transition
matrix algorithic implementations that we are using for computer computation of
eFt. The utility o these test matrices is that the resulting analytically derived
expressionsfor et isconveniently in closed-formfor £ = A. Hence the performance
o a general et subroutine implementation can ultimately be gauged by how close
it comes to achieving the known ideal exact solution.

(U)Another benefit of dealing with idempotent test matrices, A, is that the
Kaman "rank tests" for "controllability" and " observability” also degenerate into
much more tractable expressions such as, for example, in having to check only the
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considerably smaller matrix
[A : AG] (E.10)

toseeif it isd rank n rather than having to check the generally much larger but
in this case equivalent Controllability Grammian matrix:

[A P AG: A%G s---sA"-IG] (E.21)

toseeif it isdf rank n to confirmthat the linear system under investigationisin fact
controllable; thus use d the former expression results in considerablesimplification.
A similar simplificationin testing for "observability” can be exploited in applying
Kalman's rank test to Observability Grammians.

(U)Returning to the definitiond Eg. E.1, with A in Eq. E.9 substituted for F
in Eq. E.1 and time-step A used for scalar time, t, in Eq. E.I, yeilds

etd = Zz.;olit_?Ak
2 3
= T+AA+5AZ+ 4N+
— I+A(%+%!3+%_f+"') (E.12)
= I+A(l+48+4 +4+-~-1)

= I+ A(e® -1)

where the expression within the first set o parentheses resulted by repeated ap-
plication of the property o Eq. E.9, where the quantities +1 and -1 were added
within the second set of parentheses without altering the sum, and the series within
the second set o parentheses is recognized to be e* — 1. The final expression in
thelast line o Eq. E.12 checkssincefor A = 0, the correct result o 1 is obtained.
Thus, the closed-form expressionfor the transition matrix o idempotent matrices
is as depicted in the last linedf Eg. E.12.

(U)To obtain non-vacuousidempotent matricesis the next issue. Obviously, the
zero matrix and theidentity matrix satisfy Eq. E.9, however, these are not useful for
our purposes d testing softwareroutines. Two useful examples will be given below
but first motivation is offered for how they were obtained (i.e., they definitely were
not just plucked from the air as alucky guess). Consider the problem o seeking to
solve the following algebraic equation for z(n x 1), given y(m X 1) and C(m X n):

y=Cz (E.13)

113

Unclassified



Unclassified

Independent o rank conditionson C and dimensionsd y and z, it is reasonably
well-known (see [106, Appendix A, Section A.1] and [207, p. 417]) that a solution

to Eq. E.13isd theform
z=Clyt (I, -CiC)w

(E.14)

for arbitrary w and that the term within parenthesisin Eq. E.14 isidempotent (where

Ctin Eg. E.14 is the Moore-Penrose pseudoinverse). In forming two counterexam-
plesin [108], [106], the following two matrices and their respective pseudoinverses

were obtained (as derived in [106]):

1 2 o112
Cl_[z 4] ’01_25[2 4]

and 121 . . .
-3 2 2
110 f -1 -

Therefore via Eq. E.14, the following two matrices are idempotent
A = (I-Clcy)

_Jro] L1 2][1 2
Tlo1|T®[2 4|2 4
_[ro]_.[5 10
|0 1|7 10 20
g_z]
— 5 5
- | =2 1
5 5
and
A, = (I-CiCy)
(1 0 0] -1 1 1717 21
=]0o10|-| £ 0 0]|110
(00 1 2 1L _1l]l110
R P g
“lee Il i 17|
001] l-53 3 s 75 3
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both of which check as being idempotent by satisfying Eq. E.9 as an identity. In
considering the step-sizeto usein the evaluation d Eq. E.12, conveniencein using
just a scalar multiplying factor o one haf times the matrix in Eq. E.12 would

dictate using
A = 0.405 (E.19)

since from Burlington's mathematical tables [210]
(e? —1) = (e%*% — 1) = (1.50 — 1) = 0.50 (E.20)

Therefore, the two evaluations corresponding to invoking Eg. E.12 are

|

ehd = I+%A1:[1 0]+%[_

SIS
TN

01
(E.21)
_ 1.40 —0.20
~ | —0.20 1.10
and _ _ _
1 1.166 —0.166 0.166
et =T+ -A,=| —0.166 1.166 4].166]. (E.22)
2 0.166 —0.166 1.166

The results o Eg. E.21 and E.22 are the now known closed-form solutionsto e?A
evaluation o the matrices o Egs. E.17 and E.18, respectively, with A = 0.405.
These two solutions ' aong with several other test cases from [203] were used
to successfully verify the correct performance o both PADES and MEXP (after
a few locally-induced minor transition rehosting bugs were found and removed).
Thisis thefirst time that | have seen test problemsfor validating correct software
performanced ef* calculation routines constructed in such a novel way. Hopefully,
this technique will be useful to others as well, which is why | have bothered to
document it. A further benefit in having the closed-form expresson o Eqg. E.12 for

1 Copious examples of idempotent matrices and/or important associated structural observations
are offered in [209, pp. 106-107, p. 121, and especialy on p. 340]. It is observed in [207, p. 66,
Example 7.2] that the eigenvaluesaf a "projector matrix™ such as that of Egs. E.17 and E.18 (being
constructed ason the right hand side of Eq. E.14) as symmetric idempotent matrices are alwaysall
either zero or one (and so always correspond to an unstable system). In [211, p. 277, Exercise 5]
some observations are made on representing certain special matrices as the sum of two " nilpotent™
and "idempotent” components as further introduced in a matrix exponential calculation; however,
Nering’s result is different and is not as clean and useful for computational verification/validation
as the result offered for thefirst time here as Eq. E.12. Evidently statisticians routinely encounter
idempotent matrices.
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the matrix exponential o an idempotent matrix A is offered below. Consider the
expression o Eq. D.17 that must be calculated in softwarein order to obtain the
"discrete-time equivalent o continuous-timewhite Gaussian process noise”. Using
theresult o Eq. E.12 for idempotent matrices within the more general expression
o Eg. D.17 alows this expression for the required discrete-time process noise
covariance Eq. D.17 to be evaluated analytically in closed-form as:

Qi = [I+A(e* - 1) /OA [T+ A(e™ —1)| GQGT 1+ AT(e™ — 1)| dr [T+ AT(e? - 1)

= [1+A(e® - 1)

/0 * [GQGT +(AGQGT + GQGTAT)(e™™ — 1) + AGQGT AT (7> ~ 2¢™™ +1)] dr

[I + AT(e? — 1)]

= [I+ Ale® — 1)]
[GQGTA +(AGQGT + GQGTAT)(1 —e™® - A) + AGQGTAT(—g —
1+ 47 - 1)

Thisisa new result that is aso useful as a confirming check for softwareimplemen-
tations (as used in preparing Test Case 1L o Appendix G and Table F.1).

(U)Other less complete approaches exist to constructing test problems with
nice numbers based on relationships between similarity transformation (via Eigen-
value/Eigenvector calculation [208]) to Jordan Cannonical form as

1
2

M OO
EYFE=J=|0 X 0 (E.24)
0 0 X

(wherein the above E isthe matrix o eigenvectorsof F and Ay, A2, Az, are distinct
eigenvaluesaf F) utilizes the standard reverse relationship

eMd 0 0
eFA=E| 0 e 0 [E! (E.25)
0 0 eMd

(but the appropriate expressions are even more complicated than those o Eqgs. E.24
and E.25 if the eigenvalues of F are not unique or do not break separately). A pro-
cedure is provided in [208], where Eigenvalue/Eigenvector calculations (as needed
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for the transformations o Eqgs. E.24 and E.25) can be done entirely in terms o
"nice numbers’, asisdesirablefor conveniently tractable test problemformulations.
This alternative approach o [208] still needsfurther work or augmenting use of an
exploratory computer program in order to take it to fruition, while the approach

offered in this Appendix d using idempotent matrices is complete as it already
stands.

(U)We further validated the above mentioned two eFA computational algo-
rithms, PADE8 and MEXP, on the 9 X 9 example depicted in Fig. E.3 (with
A =15) just to be conservatively certain that the accuracy in the results o these
new algorithmsis not severely degraded with increasing problem dimensions.
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(U)Through the cooperation of AFGL, Lincoln procured a free copy o Paul
Fougere's nonlinear MEM and line-split supression software although it was not
in the original task. This software had been hosted on AFGL’s CDC 7600 ma-
chine and we had to convert it to our target IBM 3081 machine. The origina
purpose for obtaining the AFGL software was merely to speed up validation d our
recently modularized software implementationsd the LWR and Nuttall algorithms
by comparisonsin benchmark tests to the outputs (for the same "real variable™ test
problems) o a respected existing program with a certified established track record
such as is possessed by this ten year old AFGL software. During the conversion
process to Lincoln's IBM 3081 as host, we became aware o the fact that many
more changes were needed than we originally expected, thus interfering with or in-
validating use o AFGL's rehosted software as a test gauge. These changes related
to:

1. use o random number generator (with output that is computer wordiength
dependent),

2. conversion to IBM double precision to approximately match the CDC’s 60 bit
word in single precision,

3. replacement d older CALCOMP Plotter usage, and
4. replacement d dummy temporary scratch pad storage with disk scatch pads,

and all this without recourseto valid CDC intermediate outputs that could perhaps
have served as a reasonable basis for “apples-to-apples” comparisons at various
critical points during the transition. Two additional aspects that contributed to a
diminishingin our enthusiasm to use Paul Fougere's Line-Split Suppression program
[96] as a cross-check in the BRVAD application are the following:

1. We had originally seen what we thought at the time was evidence o line-
splitting in the Tradex wake spectra; however, when Paul Fougere saw some
of our unidentified data (in our May 1987 draft paper for possible open lit-
erature publication) correspondingto the figures depicted within Section 3.3
o Chapter 3 (but devoid o intelligible coordinate scales), he suspected that
they were evidenceinstead o cross-channel feed-through which looks similar
to line-split to an extent. The clincher was that line-split is much more d a
worrisome phenomenain tones or sinusoidally random data (e.g., of say di-
urnal earth-rotation periods, yearly earth-revolution related periods, 11 year

rates, and lengths of data, ..., as now provided in thisreport to complete the puzzle and salvage
many previoudy evaluated results without having to duplicate them.
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sunspot activity, and 88 year sunspot cycles such as AFGL is concerned with
[98] or rotating machinery and generatorsin ASW applications such as NUSC
is concerned with) rather than in our non-sinusoidal data.

2. Paul Fougere's programs were only for "real variable” data and so were not
sufficiently general enough to accommodate the "complex™ case that we need
to handle Tradex data, with its coherrent phase processing requirements.

Inlieu o not being able to use a rehosted AFGL program to do cross-comparisons
to it as an established reference using just "red™ data in order to verify on a
relative basis the new Lincoln implementation of the LWR and Nuttall algorithms,
we instead used more test cases and relied instead on a simulator for fuller test
coverage to exercise and verify these newer programson an absolute basis.

(U)Using a backgroundin modern control and Kalman filteringand filter related
concerns (such as failure detection, event detection, and maneuver detection) but
not in spectral estimation per se, there was still considerable direct carry-over o
prior experience to the problem of spectral estimation 2. However, debug within
the exclusive regime o the spectral estimator proper (instead o in the simulator
portion, which was already familar) was difficult and challenging dispite the exis-
tence o a recent paper [184] on this aspect 3. (The technique that was eventually
homed-in on o using the consistency o eigenvalues o "what was simulated” to
"what was estimated” as a measure o goodness in validating the correctness o
«simulator/power spectrum estimator” will be discussed further below.) Debug-
ging is where prior experience really pays off. There are some obvious similarities
between debugging d Kalman filter algorithms and debugging spectral estimation
algorithms since both deal with random processes and accompanying second order
statistics. One particular difficulty in the BRVAD application that most Kalman
filter practicioners don't normally encounter and so are usually inexperienced with

2Particularly relating to the carryover and dovetailing of topics of " positive definiteness testing"
[105], [178] and "reduced-order modeling” [106], [108] as well as several other numerical algorithms
that these apparently diverse topics havein common. .

3To illustrate what a-"can-of-worms" this can be, the newer fast resolution spectral estimation
algorithms (such as Cadzow's algorithm which has had spectacularly good performance on excep-
tionally short lengths of data) can even yield counter-intuitiveindications of negative power spectral
densities as an output (as documented in [215, p. 900]) even from correctly coded versions. While
another standard check case would be toseeif the area under the PSD curve wasin fact the variance
of the process (as possibly scaled by 2, depending on the convention of FFT’s being used); however,
one of the Burg algorithm-based multichannel generalizations doesn't even theoretically satisfy this
usual sanity check [184] so we can't use this usually desirable feature as a numerical check on the
correctness of the software implementation.
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these test cases will be examined in the next section during the discussion o the
results of each test.

F.2 Results of Structured Testing for Validating
All Software Used

(U)The first test was performed on the two transition matrix cal cul ation modules
that we obtained as discussedin Appendix E. The correct answers wereobtained as
expected for both alternativeimplementationsbased on used Pade approximations
instead o use d the Taylor seriesfor calculating the matrix exponential.

F.2.1 Veifyingthe Smulator Proper

(U)The overall structure d the new simulator is simply depicted in Fig. F.1.
Using the parameters o Test Case 1, as depicted in Table F.I (briefly discussed
in Section G.I, and derived in Appendix E), the intermediate outputs provided by
the software implementation were verified to be correct. The specific features o
the software implementation that were confirmed using Test Case 1 are detailed
in the second column from the left in Table G.1. These activities for Test Case 1
are summarized in Fig. F.2. Actua sample functions obtained for the underlying
known unstable system that was convenient to use to check detailed intermediate
internal software calculationsare depictedin Fig. F.2.

(U)Using the parameters o Test Case.2, as depicted in Table F.I (discussed
in detail and derived in Section G.2), the intermediate outputs provided by the
software implementation were verified to be correct. The specific features o the
software implementation that were confirmed using Test Case 2 are detailed in
the third column from the left in Table G.1. These activitiesfor Test Case 2 are
summarizedin Fig. F.3. Actual samplefunctionsobtained for the underlyingknown
benign stable system that was also convenient to use to check detailed intermediate
internal software calculationsare depicted in Fig. F.3.

(U)Using the parameters of Test Case 3, as depicted in Table F.| (discussed
in detail and derived in Section G.3), the intermediate outputs provided by the
software implementation were verified to be correct. The specific features o the
softwareimplementation that were confirmed using Test Case 3 are detailed in the
fourth column from the left in Table G.1. These activities for Test Case 3 are
summarized in Fig. F.4. Actual extremely regular essentially deterministic sample
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functions obtained for the underlying known unstable system that was convenient
to use here to check that the output is exactly correct at a high level are depicted
in Fig. F.4. Besides confirming the outputs o the simulator with an easily recog-
nizableexpected answer (as contrasted to Test Cases 1, 2, and 4 which only provide
random noise corrupted samplefunctionsthat can only be confirmed at the aggre-
gate leve from statistical properties), this Test Case 3 also alowed the programmer
to calibrate (and correct his plot routines, his scalesfrom linear to dB, and to con-
firm or more accurately straighten out use of the WMH convention [249] for the
intermediate input/output disk files used between each separate program module.

(U)Using the parameters o Test Case 4, as depicted in Table F.| (briefly dis-
cussed in Section G.4, and derived in Section 3.1), theintermediate outputs provided
by the software implementation were verified to be correct. The specific features
d the software implementation that were confirmed using Test Case 4 are detailed
in the fifth column from the left in Table G.1. These activities for Test Case 4
are summarized in Fig. F.2. Actual samplefunctions obtained for the underlying
known unstable system that was convenient to use to check detailed intermediate
internal software calculations are also depicted in the previousy mentioned Fig.
F.3.

F.2.2 Verifying the Performanceof the Smulator and AR
Coefficient Estimator Software Together

(U)An obvioustest that comesto mind o seeking to validate proper performance
o a new spectral estimation softwareimplementation using complex sinusoids (gen-
erated from a simply simulated known signal o theform e~?) to seeif the spectral
estimator under scrutiny can identify the correct amplitude and frequency was not
pursued here for the following less obvious but nevertheless valid reasons. First,
sinusoids or simple tones are best estimated by a software implementation o al-
gorithms that differ drastically in structure from the ones used here (as described
in Chapter 2) such as by using the modified Prony methods [84, pp. 367-371], by
using the Pisarenko harmonic decomposition method [84, pp. 371-374], or by using
one d the other eigenvector decomposition methods (e.g., [242], [243]); however,
the Tradex RV wake modeling application exhibits no such sinusoidal structure but
does exhibit the Markov signal structure that matches our simulator structure and
structure of our particular spectral estimation techniques utilized. Hence, we select
both the tool and the software validation procedure that best matches the applica-
tion at hand-that & RV wake modeling. Second, it isfairly wel known that even
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VALIDATION OF SIMULATOR (Cont’d)

® DEGENERATE TEST CASE (with all noises present but cranked down to be miniscule) OF LINEAR RAMP
OF KNOWN SLOPE AND INTERCEPT YIELDED'CONFIRMING OUTPUT
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(U) Figure F. 4: Handling Test Case 3
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Correctly implemented "maximum entropy"-based spectral estimation software is
frequently plagued with line-splitting, where proper estimation o the underlying
toneisinstead split into two lines, neither of which occurs at the proper frequency,
but which do occur in general proximity o the true tone, sometimes bracketingit;
and, additionally, the associated amplitudes similarly differ from what was actually
present or simulated.

(U)A siminal investigationd the problem of line-splitting occurring when " max-
imum entropy"-based spectral estimation techniquesare used is reported by Fougere
(1977) [96] and is revisited by Fougere (1985) in a follow-up study in [233]. One
o the interesting counterintuitive aspects o line-splitting that Fougere uncovered
isthat line-splitting isfrequently aggrevated with decreasing magnitude d additive
measurement noise rather than with an increasing level o such noise and that the
phase o the underlying sinusoid also plays a role [233] in the tendency for line
splitting to occur.

(U)The validation that was actually used to confirm the performanced the AR
Cosefficient Estimation software utilized Test Case 4 o known solution as exhibited
in Section 3.1. The steps that werefollowed are as depicted in Fig. F.5. The confir-
mation Techniquefor the eigenvaluesd the Coefficient Matrix isidentical to what
was used in Section 3.2. Thus, this was a confirming check on both the simulator
and the AR Cosfficient Estimator working in concert. We had no reservationsin
using this softwareon Tradex data to evaluate AR coefficients as reported in Section
6.2.

F.2.3 Status in Verfying the Concatenated Perfor mance of
Simulator, AR Coefficient Estimator, and Spectral
Estimator

(U)While the simulator and AR Coefficient Estimator were both validated as
performing correctly, the results from all the software modul es together as depicted
in Fig. F.6 wereinitially somewhat puzzling and unsettling. There are two com-
ponents of an explanation that satisfactorily accountsfor the apparent discrepancy
exhibited here of the two power spectral density plots d Fig. F.6 not being iden-
tical. One aspect relates to the IMSL FFT routine used, the other is the way the
asserted true situation depicted in Fig. 3.2 was originally obtained over a year ago
in [225] by merely turning down the noise and making the Test Case 4 to be essen-
tially deterministic and ostensibly obtaining exactly the same structural form and
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VALIDATION OF COMBINED SIMULATOR AND AR COEFFICIENT ESTIMATOR

TEST &SsS

AIR_COEFFICIENTS
F%@\Mlﬂ‘&\‘ ESTIMATOR

__’_ AR COEFFICIENT
—r,- SIMULATOR ESTIMATOR —-r——>

|
CALCULATED |
EIGENVALUES CALCULATED

* EIGENVALUES

- — — —

e TEST CASE PARAMETERS OF "COMPLEX" EXAMPLE (of known statistical response) WERE SUPPLIED
TO SIMULATOR

e AR COEFFICIENT WAS ESTIMATED WITH HIGH ACCURACY (from long data length)

e EIGENVALUES WERE CALCULATED FOR EACH PATH AND FOUND TO BE IDENTICAL (as a confirming
consistency check) INDICATIVE OF PROPER SPECTRAL SIGNATURE CONFORMANCE

(U) Figure F.5: Validating AR Coefficient Estimator by Confirming That the Estimated
Coefficient Matrices Have Eigenvalues | dentical to What was Simulated

131

Unclassified



T ST CASE

T BT CAS=

SIMULATOR

U

INDICATED MINOR BUG IN SPEC

Lig

Ud ESTIMATOR

(U)Figure F.6: Steps Toward Validati

END-RUN

SPECTRA OF CHANNELS 1 AND 1

POWER SPECT, DB

-10.0 |-

-15.0 [~

] ] |
00 05 10 15 20 25 3.0 35

-20.0 I N

FREQUENCY. Hz

SAMPLE AR
COEFFICIENTS SPECTRA
FUNCTION AR COEFFICIENT SPECTRAL
Eorvator [P EStMATOR [
SPECTRA OF CHANNELS 1 AND 1

20.0 -

15.0

10.0
m
a
. 50
[
&
& 00
4
g 5.0
S
a

-t0.0—

-15.0

-20.0 | | | | 1 |

00 05 10 15 20 25 30 35
FREQUENCY. Hz
SPECTRA
AR COEFFICIENT SPECTRAL
SIMULATOR [ ESTIMATOR > ESTIMATOR

ng Spectral Estimation Software by Confirming

That the Estimated Coefficient Matrix and the Original Coefficient Matrix (of the
Simulator) Yidd Identical Power Spectral Density Plots . :. -

132

Unclassified



Unclassified

parameter valuesfor the estimated AR coefficient Matrix as possessed by the origi-
nal matrix o Eqg. 3.1 that wassimulated. More detail on these aspects is provided
below.

(U)Originally, a point of some consternation washow theideal curvesd Figs. 3.3
and 3.4 wereobtained in [225]. This question has now been answered. Through an
interview it wasfound that, during the prior investigation, the noise was essentially
initially zeroed out in the simulation, and the earlier verson o the multichannel
spectral estimation technique that had been implemented in software was alowed
to estimate these unknown parameters. Remarkably, the estimated AR matrix was
comparable to the orginal matrix in that all the parameters were very close to the
matrix that was entered for ssimulation. Theory specifies that the estimated AR
matrix should agree with what was started with in the ssimulator to withina "simi-
larity" transformation; but of theinfinitenumber o representation possibilities, the
AR estimation scheme evidently selected exactly the same coordinate basis as was
used in the simulator to represent the AR coefficient matrix. Thus, when both the
correspondingsimulated and estimated power spectra were plotted using a common
software implementation d Eq. 26 for the case & 4, = 1, and an aimost com-
mon A;, the results appear identical snce a common IMSL FFT routine entitled
"FFTCC" (ostensibleapplicableto any length "complex™ data sequence) * was used
throughout the softwarethat wasinherited and used although apparently less trust-
worthy than the more common IMSL FFT routine, “FFT2C”, that is usually used
in the role o FFT-ing “complex” data structures (of a length that is constrained
to be a power d two), as are encountered here, and the proper performance of
FFT2C is more generally familar to Lincoln Laboratory personnel (as ascertained
from an informal poll of several users). The recently released Edition 10.0 o IMSL
software offers only “FFTCF” as a subroutine to compute FFTsd 1-D "complex™
data thus removing the ambiguity o Edition 9.0 IMSL surrounding which complex
FFT subroutine can be safely used, but Edition 10.0 IMSL FFTs became avaible
too late to help usin this investigation.

(U)One fina aspect remains to be dicussed regarding software before the sta-
tus report on our RV wake modeling software is completed. The initial version
d the plotter “PLADY2” documented in [249] was set up to plot out only a sin-

4An initial fear in this area was that power spectra were being generated by a routine that was
originally developed to compute the spectra of purely "red™ processes and where it was normally
enough to evaluate the FFT in the expression merely for w between zero and a since the remainder
for a to 2= radians would be identical for real processes by symmetry, but not so for the "complex™
processesaf this application. However,a careful line-by-linecheck revealed no such discrepancy here
since the 1024 point FFTs are evaluated over the full 27 radians around the unit circle.
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gle output binary file (created using the so-designated WMH format described in
[249]). Correspondingly, the initial version o the spectral estimation routine "AR-
TOSP" documented in [249] was set up to only output onefile (in WMH format),
either an autospectrum or a cross-spectrum, but only one, even though all were
calculated simultaneously within the software in the computation of Eq. 2.6, with
z = expj2n fAt viaa 1024 point FFT. This was not much d a problem when we
were just investigating computations associated with the 2 channel analytic closed-
form test problem o known solutionin Sections3.1 and 3.2, sinceit wasjust a dight
waste to recalculate something (that had actually already been calculated previ-
ously) in order to plot the two 1-1 and 2-2 autospectra and the 1-2 cross-spectrum.
Being constrained to use the programsin this way forced the same intermediate
calculation of the Power Spectral Matrix to be performed each time a single scalar
matrix component entry was to be plotted out. However, this was deemed to be
an unacceptable waste when the six state model d Section 6.2 was being tackled.
The number d distinct entriesd the 6 X 6 power spectral matrix to be plotted out
is 22t 91 50 to avoid the waste of 20 unnecessary recalculationsdf a common
intermediate quantity that was now expensive to calculate in the 6 X 6 case that
had been relatively inexpensive to recalculate in the 2 X 2 case, a modification of
the software o [249] was undertaken under fairly tight time constraints o less than
a week. Additionally, all the modules discussed in [249] had a built in maximum
upper limit of 5for the matrices and vectors to be handled while the application o
Section 6.2 wasfor 6. Therefore, this maximum allowable size had to be opened up
to accommodate these larger vectors and matrices. The openning-up was initiated
and completed sucessfully to yied the 6 X 6 results depicted in Section 6.2 and the
last-minute modification df "ARTOSP" and “PLADY?2” wereinitiated but haveyet
to be demonstrated to perform properly. We were debugging this aspect when the
clock stopped. The 6 x 6 test cases o Sections G.5 and G.6 had been developed to
aid in this checkout and bebug effort.
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Appendix G

Derivation of Tet Case Examples

(U)Because the programmer was unfamiliar with spectral estimation applications
and for that matter with softwareimplementation of general matrix operations, it
was necessary to devel op closed-form examplesto be used as confirming test cases at
every critical step. In order to know what the correct answers should be (as used in
Appendix F for confirming checkson the output d the computer programs), certain
analytic closed-form results and some intermediate and final answers werk derived
to be test cases. These originally derived Test Cases 1 to 4 are documented and
explained here and all the specific parameter values used for each o these primary
test cases are summarized in Table F.| in Section F.2 o Appendix F. The second
phase augmenting test cases used just prior to the computer runs of Chapter 6 in
order to upgrade the software to handle the six channel case are also addressed here
as Test Cases 5 and 6. All these test cases may be useful to others in validating
similar softwareimplementations.

G.1 Tet Cas=1l

(U)A complete description o this continuous-time state variable system is de-
picted in the second columnd TableF.1in Section F.2 d Appendix F. As motivated
in Appendix E, Section E.2, the continuous-time system matrix, F;, o Eqg. E.18,
the time-step A = 0.405 (chosen for convenience, as explained in Section E.2, Eq.
E.20), and the corresponding continuous-time transition matrix (from Eq. E.22)
are as indicated in the second column o Table F.1. The 2 X 3 obsevation matrix,
H,, indicated in TableF.1 was chosen so that the system is properly observable(cf.,
Egs. E.10 and E.11), and the process and measurement noise covariance intensity
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levels are chosen to be unity identity matrices for conveniencein their smplicity.
Theinitial condition is taken to be zero-mean but the associated initial covariance
is taken to be nondiagonal as a known positive definite matrix ! that can be used
to excercise the new softwarethat is designed to handle nondiagonal covariancesas
well as the less challenging standard diagonal ones.

G.2 Tes Case 2

(U)A complete description of this continuoustime state variable system is de-
picted in the third column of Table F| in Section F.2 of Appendix F. The eigen-
vaues d this system can be obtained from

A+5 1

det(A I — Fy) = det [ " \

]:,\2+5/\+6=(,\+3)(,\+2) (G.1)

and therefore are A = —2, — 3 corresponding to a stable system. In the frequency
domain, the corresponding resolvent matrix is

1 s -1
I-F) = — —

(s I-5) (s+3)(s+2)[6 s+5]
3 2 1 1

(s+3) (s+2) (s+3) (s+2)

= (G.2)

-6 6 -2 3

(s+3) + (s+2) (s+3) + (s+2)

that corresponds in the continuous-time domain (by inverse Laplace transforming
elementwise each partial fraction exposed in Eq. G.2) to the following transition
function matrix:

(36_3t _ 28—21) (e—3t _ e—2t)

Bt (G.3)

(_66—31.‘ + 66—215) (—26_3t + 36_2t)

10On one occasion, the programmer included an incorrect negative sign on one of the principal
diagonal termsaf theinitial covariancewhich served to demonstrate that the new SVD-based positive
definiteness test (from [105, p. 504]) that was implemented in the new simulator aso correctly
complains when a nondiagonal covariance matrix departs from being properly positive definite.
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For thetimestep-sized A = 0.5, Eg. G.3 becomesthe correspondingexact discrete-
time transition matrix as

K (3e=% — 2¢71) (% — e-1) ]

(=63 T 6e71)  (—2e~%t3e1)

b = —

[ —0.0664 —0.1447

0.8685 0.6574

(G.4)
From Eqg. D.17, the exact discrete-timeequivaent to continuous-timewhite Gaus-
sian process noise has a covariance intensity level o

Qs = P2 [/A e_pererTf dr] cFFa
0
[ —0.0664 —0.1447} E 8.48 -9.30 } [ —0.0664 0.8685 }

| 0.8685 0.6574 -9.30 11.24 —0.1447 0.6574

[ 0.0940  0.01647
) (G-5)

| 0.01647 0.634
which is easily verified to be positive definite by Sylvester's "principal minor” test
[105], [178].

(U)Now the steady-state solution o the discrete-time Lyapunov equation (cf.,
Eq. D.20) is obtained from the following:

P = [52]P[”2]" +Q,

[—0.0664 —0.1447] [pu pm] [-—0.0664 0.8685] [0.094 0.016]

P11 D12
0.8685 0.65674 Piz P22 —0.1447 0.6574 0.016 0.634

P12 P22

(0.0044p33 +0.0192p;, + 0.0209pp2) (—0.058p;; — 0.169p;2 — 0.095p5) 0.094 0.016 G.6
0.016 0.634 : ( * )

(—0.058p11 — 0.169p35 — 0.095p35) (0.754p19 + 1.142p12 + 0.432p33)

It iseasily seen that the solution o the above steady-state L yapunov equation must
satisfy the following system o linear algebraic equations:

—0.996 0.0192 0.0209 Pu —0.094
—0.058 -1.169 -0.095 piz2 | = —0.016 | , (G.7)
0.754 1.142 —0.568 D22 —-0.634

which, by applying Cramer's rule, yields the following answer:
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=0.08747 _ 0.1163

P11 = To75436
_ 0061801 _ _
P12 = Zgrsa36 = —0-0819,
_ —0.82105 __
P2z = Sg75a3s = 1-08.

(U)A cross-check o sortsis available by solving the corresponding continuous-
time Lyapunov equation for its steady-state solution (cf., Eq. D.19) from

0 = RP+PFF+Q

= |70 1| pn B + | B P13 -5 6 n 10
6 0 P12 P2 P12 P22 -1 0 01
(—=10p11 — 2p12)  (6p11 — Bp12 — P22 10 G

8

(6p11 — 5p12 — p22) 12p;, Tlo 1] (G.8)

which has thefollowing solution (similarly obtained as the previoussol ution o linear
equations d Eg. G.7, but now not requiring use o Cramer's rule, and aso being
in basic three significant figure agreement with the above discrete-time solution
outcome): - -
0.116 —0.083

P=1_00s3 111 j (G.9)
Both o these closed-form results can be used as an independent check on the out-
come o the DLK.LIB software calculation as obtained along a different route via
therecursivealgorithm o Kleinman (discussed in Section D.2.1) to yield the steady-
state solution d the Lyapunov equation.

(U)Returning to use the upper compact form o the result o Eg. G.2 within
the following well-known continuous-timeanalog to the discrete-time input/output
power spectral density matrix relationship of Eq. 2.6 being:

Sy(8) = (sI — B)'Q(—sI — F,)™ T, (G.10)

(valid only for sytem matrices having eigenvalues with exclusively negative real
parts [241, Section 2] as is the case here) yields the output power spectral density
matrix to be

1 A ’
Suls) = (s+3)(—s+3)(5+2)(_5+2)[6 s+5H—1 —s+5
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1
(9—s%)(4—4%)

—s?2+1 7s —5
(G.11)

—7s—5 61 — s2

This result can be used to corroborate the outcome o the multichannel spectral
estimation algorithm softwareimplementation and to serve as atraining exerciseas
the plot packageis initially modified to provide final outputs in units o decibels.
To this end, the per channel numerical results (in the frequency domain) should
agree with the following results (obtained from Eqg. G.I1 by substituting s = jw):

w241

[Syy(Jw)]u = (@2 + 9)(w? + 4) ’ (G.12)
— 49(.02 + 25 Jarctan'T“’
[Syy(3w)];5 = (w; 0@ D) © : (G.13)
w? + 61
[Syy(]w)]zz = (w2 +9)(w2 +4) . (G.14)

Upon taking logarithms to the base 10 and multiplying by 10 in the above, respec-
tively, yields these final results expressed in dB for cross-comparison with compa:
rable software magnitude plots o the spectra

101logy [Syy(w)];; = 10 [log, (w? + 1) —log,, (w? + 9) — logye (W + 4)] , (G.15)

1
101ogyq [Syy(Jw)];, = 10 [5 logyo (49w? + 25) — logye (w? 4 9) — logyo (w? + 4)] )
(G.16)
1010gyq [Syy(799)],5 = 10 [logye (w? F 61) — logye (w? +9) — logyo (w? +4)| , (G.17)

and the phase o the above crossterm [Sy,(jw));, is

180° —Tw

phase([Sy,(Jw));,) = ) a,rcta,n(——5—) ) (G.18)

7 (radians)

where the above phase relationship has been converted from radians to a more fa
miliar representation in termsaf degrees by multiplyingby the appropriate standard
conversion factor.

(U)The first two test cases considered above are analytically tractable to an
extent and are useful for testing certain specific software computations such as
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transition matrix calculation, ¢4 calculation, intermediate computations within the
positive definiteness tests for diagonal and nondiagonal covariance matrices, and
computational solution of the steady-state Lyapunov equation; however, the cor-
rect output of the simulator for both Test Cases1 and 2 are just sample functions
that have a random character 2. While the correspondenced these random sample
functions to the specified underlying parameters can be verified only after further
processing to obtain spectral estimates (in the case d those samplefunctions corre-
sponding to a stationary system) and then further comparing the computed results
to the analytically derived closed-form expression that is the known answer, it is
highly desirable to have some essentially deterministic check at the output o the
simulator proper in order to confirm at-a-glance at the aggregate leve that what
is being output here is correct before going further to also encompass the next
software module o the Spectral Coefficient Estimator in conjunction with the as-
sociated software module Spectral Estimator (and its associated plotting program)
before we have al the ingredients d a confirming check. To this end, we offer the
extremely smple Test Case 3, where we seek a ssimulator output with characteris-
tics that are immediately confirmable as corresponding directly (and exactly) to a
known expected output response.

G.3 Teda Case3

(U)A complete description of this continuous-time state variable system is de-
picted in the fourth column d Table F.l in Section F.2 o Appendix F. From New-
ton's 274 Law,

cht(mv) =force, (G.19)

2While the sample functions that are obtained for Test Cases 1 and 2 are both random, only
the random processof Test Case 2 correspondsto a stationary process (since the eigenvaluesof the
system matrix have real parts that are strictly negative), and the random process of Test Case 1
is nonstationary (since the eigenvaluesof the idempotent system matrix do not have negative real
parts, as discussed in the footnote of Section E.2). Moreover, only Test Case 2 admits a steady-
state solution to the Lyapunov equation in order to obtain a steady-state initial condition via the
technique discussed in Section D.2.1. It is well-known[105, Egs. 10-12] that the Lyapunov equation
has a steady-state solution if and only if [F,I] is a controllable pair, where Q = I'T’'T and the
eigenvaluesall have negative real parts. The property of Test Case 1 that precludes a steady-state
solution of the Lyapunov equation from existing is the lack of eigenvalues with exclusively negative
real partssince Test Case 1is easily shown to possess the requisite controllability.
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wherefor constant mass, m, and a random force, u(t), Eq. G.19 simplifiesas

dv
Assigning state variables as
Ty =1, T3 =X, (G.21)

thus yielding the following two differential equations

dey _

a

d.’L'2 . _ 1

- = v(t) = — u(t), (G.22)

which in vector form is

gal-[][a]s [ e

From Eq. D.14, the recursivediscrete-time solution to Eq. G.23is
ri(k+1 k *+a L. |0
[ x:Ek+ 1; ] = ef3a [ ﬁ;gk; ] +/kA eFa(t-7) [ 1 ] u(r) dr . (G.24)

Now for F3 asin Eq. G.23 with A = 0.5, from Eq. E.l, we have that the discrete-
time transition matrix is

2
A 01 0 1 A_2
e —I+[0 0]A+[0 0] 2+

[ - ] (G.25)

(U)Notice from Eq. G.23 that the system matrix is strictly unstable since the
characteristic equation is
A2 =0, (G.26)

and has zero eigenvaluesof multiplicity two. Consequently, the solution that em-
anates from Eg. G.24 as a function o time is unstable (i.e., it grows with time)
and the random process with increasing trend is obviously nonstationary.
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(U)The mean d the solution should bed theform (correspondingto the solution
d Eq. D.24):
E[mdﬂ] = [01]E[xxm

SR

where the values a and b in the above wereinherited from the initial condition. For
concreteness, let
a=10, (G.28)

b= 4. (G.29)

In order that the output be essentially deterministic and that the above response
represent more than just the mean trend, we make the process and measurement
noises (that must be present in a Markov processsimulator o this type) essentialy
zero by making them both to have zero mean and with covarianceintensity matrices
that are extremely small (in comparison to the primary signal) by taking them to
be all diagonal with elementsthat are 10~8. The observation matrix, Hs, is taken
to be the identity matrix so that the measurementsare identical to the underlying
state variables themselvesand'y, (t) should then be

a straight line with intercept 10 and slope 4, while y,(¢) should be
(t) =4, (G.31)

a horizontal line with intercept 4. Thus these easy-to-check predictable responses
should emergefrom the simultor when the parameters o Test Case 3 are used.

G.4 Tes Case4

(U)A complete description of a discrete-time "complex™ process as Test Case 3
is depicted in the fifth and last column of Table F.1 in Section F.2 d Appendix
F. A detailed consideration o various aspects o the state variable model of Test
Case4 and the discrete-timeanal ytic closed-formexpressionfor its associ ated power
spectral density matrix are provided in Section 3.1, while the associated eigenvalue
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calculation methodology used for this "complex™" case is discussed in Section 3.2.
Except for having asmall dimensiond two, it is Test Case 4 that isclosest in struc-
ture to the anticipated "complex process’ models to be developed for this BRVAD
application (in Chapter 6) owing to the presence o coherent phase processing. Test
Case 4 directly utilizes®, and @q = | as discrete-timeinputs without requiring the
preliminary software calculation of ® and @4 as donein Test Cases1to 3.

(U)Since Test Case 4 doesn't test out any o the other new featuresd the simu-
lator that haven't already been checked other than the ability to handle the proper
calculation o “complex variables”, its use was logically postponed until after the
three prior test cases had already been run to verify all the important intermediate
softwarecomputationsfor the "real variable" case. Only after satisfactorily passing
al the previousy mentioned preliminary benchmark tests as the first hurdle was
the sotfwaresimulator upgraded to handle this complex case (and the previous Test
Cases 1 through 3 rerun and this time merely reviewed at an aggregate level [which
now suffices since detailed intermediate verification had already preceeded and the
exact same step-by-step fina results couldn't logicaly be obtained unless all the
intermediate results are exactly the same aso]) to verify that the answers were
still correct in now treating the "real variable" case as merely a special subset of
the general "complex variable" case. Completeing this confirmation, the expected
results for Test Case 4 proper, as analyticaly obtained in Section 3.1, are verified
against the software outputs.

G.5 Test Case5 (Not Shown in Table F.1)

(U)In Chapter 7, the dimension o the state variable model that is decided upon
to represent the random process o this application is six while the state variable
models o the previous simulator test cases were d considerably lower dimensions
by being either two or three. If the computer implementation language had been
PL/1, the transition between dimensionswould not have been a problem at all since

1. The matrix operations are identical in structure and completely generalize
when the dimension o the underlying matrices is larger.

2. PL/1 routinely alowsrun time dimensioningas one o its standard features.

However, Fortran was used as the design and implementation language in this in-
vestigation in order to match all subroutines utilized (e.g., Kleinman’s DLK.LIB
routines [197], IMSL routines, and the data handling convention which adopted the
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FORTRAN-based so-designated WMH format throughout all the subsequent se-
quentially run programs that had already been developed). While Lincoln's version
4.1 o FORTRAN for the IBM 3081 mainframe computer ostensibly allowsdynamic
run-time dimensioning, this was a feature that the programmer never could get to
work properly 3 so it was abandoned in the interest o saving time and fixed di-
mensions were employed instead at known specified locations so that they could be
quickly and easily changed to accommodate any later cases encountered that might
need a different dimension. This use & FORTRAN without run-time dimensioning
was also true o all the existing spectral estimation program modulesthat are to
be subsequently used on the outputs o the simulator. In converting the spectral
estimation modulesover to handle six dimensional problemsinvolving six channels
as consideredin Chapter 6, it was necessary to modify these existing spectral esti-
mation software modulesthat weinherited and that had previously been hardwired
with a maximum dimension o five to now be opened up to accommodate six chan-
nels. In order to confirm that the spectral estimation software could now correctly
accommodate six channel sfollowing this upgrade, the followingstate variable model
was derived as Test Case 5.

(U)In order to have six channel simulator data to test the spectral estimation
modules that had been recently modified by us to accommodate six channel data
(as a practice prelude before use d actual six channel Tradex data), the following
model was conceived o to give at-a-glance verification o the six channel output o
the simulator. It was decided to use a pseudo-deterministic example in the same
vein as that o Test Case 3; however, instead o using a straight line which gave a
different expected result in each o two channelsasin Test Case 3, this Test Case
Sistoconsist o aquintic polynomial which will give a different expected result in
each o six channels! For convenienced tractability, it was decided that the desired
polynomial would be easily recognizable by having five real "zeroes' or roots o
the polynomial located at -2.0, -1.0, 1.0, 3.0, and 4.0, and would be adequately
represented as the following time response:

y(@) = @E+2)¢+DE-1)E-3)(t-4)
= (t+2)(t* - 1)(t—3)(t—4)

3The use of FORTRAN run-time dimensioningappar ently required nominal use of the largest di-
mension anticipatedfor the programsand reserved this maximum storage amount for the associated
matriceseven for test caseruns of considerably smaller dimensions. Such a practicewould makethe
Test Case runs deplorably more expensive than necessary and contradictsthe appealing philosophy
espoused in Section F.| of using low dimensional Test Cases to kegp the expense of software debug

down.
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= B-D{*-t-6)(t—4)
= (P-4 —t+4)(t* —t—-6)
= -5t —3t°+ 29 + 2t — 24, (G.32)

From knowledge of standard polynomia behaviour between roots, Eq. G.32 is
recognized to haverelative maximaat t = -1.5 and 1.5 and relative minima at t =0
and 3.5, while shooting up rapidly without any further changein character beyond
t =4 and similarly shooting downrapidly belowt =-2.0. Astatevariabledifferential
equation that would offer such a solution can be obtained by differentiationto yield
the following "primitive" as offered below:

y(t) = t°—5t* — 3t 429t — 24,
y'(t) = 5t* — 208 — 9¢% 4 58t + 2,

y"(t) = 20t°— 60t* — 18t + 58,
y"(t) = 60t — 120t — 18,
y@(t) = 120t — 120,
yO(t) = 120. (G.33)

Let state variables be assigned as

T = Y,

Tz = ’yla
T3 = yll,
T4 = ylll,
5 = y(iu)’
Te = y(v),

which correspond to the following summary overview state variable matrix model
for Test Case 5 being

[ :B](t) T [ 01 0 00 0 i ( $1(t) T [ U]_(t) T
za(t) 001000 z5(t) ua(t)
gl e@® [ T100001 0]z |T|uw]” (G.34)
| $6(t) i | 0 00 OCOTUO JL Il?e(t) i | Ue(t) i

where u(t) is the zero-mean white Gaussian process noise, and the appropriate
initial condition mean in order to obtain the desired quintic polynomial solution as
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afunction o the independent variabletime, t, is

[ 21(0) T ( —24 7
Zi% - —5188 (G-35)
z5(0) —120

| z(0) | | 120

In order that this example be essentially a deterministic output yet still retain the
requisite Markov processstructure utilized in the new simulator, theinital condition
covarianceas wdl as the covarianceintensity matricesd both the process noise and
the measurement noise are made to be diagonal with principal diagonal entries
o 10~8. The Gaussian white measurement and process noises are both taken to
be zero-mean. The 6 x 6 observation matrix is taken to be the identity matrix.
In this way, all the various known derivatives o the quintic polynomia will be
exposed as measurements, y(t), as a confirming check on the six output channels
o the simulator. Finally, the time step-size should be A = 0.25 and the above
continuous-timeform o the system matrix should be entered as input and the
transition matrix for this step size should be internally computed as & = 54,
Using this Test Case 5 4, the existing spectral estimation program modules, as
altered to accommodate six channels, were sucessfully checked for compatibility
with the six channel simulator outputs.

G.6 Test Case6 (Not Shown in Table F.1)

(U)For astate sized 6 and an output dimensiond 6, the following discrete-time
model was conceived o as another simple essentially deterministic at-a-glance test
o the output of the simulator, but this timefor confirming the exercising o the full
capabilities requested in the officiad simulator specification o being able to handle
an mth-order vector autoregressiveprocess®. Inorder to simply do so, the structure
d the known solution of Test Case 3 was exploited again but in a dlightly different

4Use of this test case revealed that the associated separate modular plot package was set up to
output only two channels of data at-a time and had to be modified and enlarged to handle all six
channels. This modification wasinitiated by the programmer but never successfully confirmed.

5The attempted use of this test case revealed that the simulator program had not included the
feature requested in the official specification of being able to handle a general mth-order vector
autoregressive process (with details on how to do so also provided in the specification) but can
merely handle a 1**-order vector process, as arise in Test Cases 1 to 4. Since the purpose of the
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form. The test case consisted o a state variable model partitioned as indicated

below:

[ z1(t) ]

z2(t)
_ | =s(?)

z(k) = () | (G.36)

$5(t)
| 6(t) |

where the novel construction offered below is used this time to construct the 4t
order vector autoregressiveprocessfrom the smple model o Test Case 3 as

P o 1 o o - o i o
o 0 0 X(k—1)+ 0 %3 0 X(k—2)

[ wa(?) ]
ua(t)
o
U4t
x(k —4) + us()
| ue(t) |
(G.37)

where the matrix multiplying (¥ — 1) in the above will be interchanged with that
multiplying z(k — 4) in a subsequent run. In the meantime, the output d thefirst
two states should be the same as Test Case 3, the output o the next two states
should be the same as Test Case 3 but at twicethe step sizeasin Test Case 3, and
the output d the last two states should be again the same as Test Case 3 but at
three times the step-size, and ®; = 2 asin Eq. G.25. The appropriate initial

o

o

[=]
‘o
(=]
o

+ 0 0 0 X(k—3)+

°
o
°

0 : I 2 0 : ()} : o

simulator ismerely to checkout the revised spectral estimation softwareimplementation (which Cases
2 and 4 do test), this oversight is forgivable. Additionally, at the expense d incurring additional
vector dimensions, the continuous-time technique of [176, pp. 91-92, Egs. 3.9-13 to 3.9-16] can be
invoked to still successfully simulate an mt"-order scalar autoregressive process within this sparser
software computer program framework of only accommodating 1%¢-order vector processes.
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conditionsare again asin Test Case 3
z(0) = (G.38)

10
[ 4]

The observation matrix, Hes, should be the 6 X 6 identity matrix and the Gaussian
white noises are to again be zero-mean having diagonal covarianceintensity matri-
ces with all nonzero entries being 10~8 and similarly for the covariance matrix of
the initial condition. Thus, each o the pertinent aspects o the simulator was to
be tested for conformance to the specifications provided and was to have had its
performance validated.

G.7 Summary of Test Coverage Analytically Pro-
vided Here

(U)An overview d the completesoftwaretest coverageoffered here through selective
use d analytic closed-form "Test Cases d known solution™ is provided in Table
G.1. This completes the contribution o this Appendix. The use d these results
is illustrated in Appendix F in Sections F.2 and F.3 in establishing the status o
the software under development for this weke modeling investigation. All items
indicated in Table G.| were successfully validated.
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Appendix H

| mpedimentsto Direct
Cross-Comparison of 1-D and 2-D
Evaluation Results

(U)Relations between 2-D and 1-D power spectra are not as simple as one might
at first think (as conveyed in this section authored by C. W. Therrien). Since the
power spectrum is the Fourier transform d the autocorrelation function, not the
data itself, drawing inferencesfrom 2-D about 1-D spectra and vice versa can be
tricky. This note discusses those relations for the simple periodogram.

(U)The relations between the 2-D and 1-D amplitude spectrum o a 2-D signal
are straightforward. Let z(nq,n2) represent a discrete time-space 2-D signal where
ny isthe timeindex and n, is the spatial index (relative range or range-gate). The
frequency wavenumber spectrum is defined by

N1—-1 Np—-1 .
X2D(f, k) — Z Z w(nl,n2)e—.’l(21rfn1—kn2) ) (Hl)

n1=0 ny=0

where N; and N, are the number o samples in the time and range directions,
respectively. The 1-D spectrum for a given fixed range gate n, is defined by

Ni-1 .
Xip(fin2) = Y z(ng,ng)e”??mm (H.2)
n1=0
From Eq. H.1, we can write
Nz—-1 [N1-1 .
Xop(£,0) = D | DO z(n,ng)e™??mm | | (H.3)
ne=0 \n1=0
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thereforeit is clear that

Np-1
XzD(f, 0) = Z X1D(f; nz) . (H4)

ny=0

That is, the amplitude spectrum o the signal along the k =0 axisin 2-D is essen-
tially an average o the 1-D amplitude spectra computed at all the range gates.

(U)In like manner, we have that

Ni-1

XQD(O, k) = Z lew(nl,k) N (H5)

n1=0

where X pw are the wavenumber amplitude spectra computed at the various points
in time.

(U)For the power spectral density of a random process, the relations are not
so straightforward. Let Rqp(¢1,4:) and R;p(¥¢;n2) be the estimated 2-D and 1-D
correlation functions defined, respectively, according to

1 Ni—|t1]-1 Na—|2]-1

Rop(l1,62) = NIV, Z Z z(n1 + [b],n2 + [€2])z™(n1,n2) (H.6)
n1 =0 ny=0
1 Ny—|¢|-1
RlD(e; n2) = "]V—l Z $(TI,1 + |£|,n2):1:*(n1,n2) (H7)
11.1=0

Correspondingly, the 2-D power spectral density estimate is defined as
N;-1 Np-1 )
Sep(f, k)= Y, D Rap(by,by)eCra—HE) (H.8)

£i=—N1+14=—Na+1

By analogy with Egs. H.l to H.4, it follows that

Np-—1
Si(,0)= Y. Sip(ik), (H.9)
l2=—N2+l
where
Ni—1 .
1o 42) = Z Ryp(by,£y)e %4 (H.10)
li=—N1+1
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However, the quantity S;p does not have much physical significance. We would
prefer, instead, to relate S,p(f,K) to the 1-D spectra computed for each point in

space as
Ni-1

SlD(f; nz) = Z RID(Z; ng)e_jz”” (H.ll)
=—Ni1+1
but such a direct relationship can not be rigorously substantiated as being appro-
priate.
(U)To pursue this point further, one can use the fact that the estimates of Egs.
H.8 and H.11 (with the definitions o Egs. H.6 and H.7) are actually the same as
the periodogram estimates

1
Sap(f, k) = N, | X2p(f, k)|? (H.12)

and ;
Sip(f;n2) = Fl]Xw(f; ng)|? (H.13)

Therefore, from Egs. H.4, H.12, and H.13, it followsthat

Ny—-1

1 1
£,0) = ——|Xop(f,0)]> = =] Y Xip(f;ns)[?
S2p(f,0) oA | X2p(£,0)] N1N2|n22=0 10(f; n2)|
1 [Nt
= A n§0ﬁ|X1D(f;n2)|2+ crossterms
1 Ny-1
= J—v—{ Z S1p(f; ns) + crossterms} (H.149)
2 ny=0

Thus, the 2-D spectrum even on the k = 0 axisis not a simple combination o the
1-D spectra. The crossterms can potentially result in various phenomenathat do
not necessarily occur in the 1-D spectrum.

(U)The crosstermsin Eqg. H.14 arewhat prevent usfrom having asimpledirect
relation between the 2-D and 1-D power spectral estimates. If the signal were
independent o range (i.e., if the signals in each radar range-gate were identical
functionsd time), then each o the crosstermswould be equal to S,p and soasimple
relation would exist. However, for realistic situations where the signals at each
range gate are different, it appears that the presenced these crossterms could be
responsiblefor some differencesthat appear between the shape o the 1-D spectum
and the shape o the 2-D spectrum as viewed along the k=0 axis.
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(U)The above analysis was carried out by NPS for spectral estimates based on
periodogramsand is relevant to thisinvestigationsince differenceswer e observedin
attempted comparisonsd 2-D and 1-D periodogram spectral estimates. Note that
the analysis here does not directly apply to MEM or 2-D AR spectral estimates
per se. However, it does suggest that for any type d spectral estimates, differences
between the 2-D and 1-D spectra may occur and therefore caveats must accompany
any attempted inferences from cross-comparisonsbetween the two forms.
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Appendix |

A Concise Roadmap of Technical
Details for The Spectral
Estimation Specialist

1.1 On " Optimum Approaches' to Multichannel
Spectral Estimation

According to Ning and Nikias [99, Intro.], except for their computationally un-
wieldy "optimum approach” !, no previously existing (prior to 1987) Multichannel
Linear Prediction (LP) is an exact generalization d maximum entropy estimation
to more than one channel but merely an approximation. Since all versionsd mul-
tichannel LP incorporating linear autoregressive parametric models must estimate
afixed number o poles and zeroes, certain undesirable phenomenacan be encoun-
tered with its use such as line-splitting [233] (as a result of the algorithm assuming
that more poles are there than are actually present) and cross-channel feed-through
can occur (correspondingto imperfect pole-zero cancellation occuring near the unit
circle that underlies the processing considerations). A scalar MEM remedy to the
single channel line-splitting problem is the approach of [96] 2 which involves addi-

1Since it is claimed to be computationaly equivalent to a "Dynamic Programming" implemen-
tation, the so-designated "optimum approach™ Las been implemented for only two channels and
only for "rea" processes by Ning and Nikias, a severe limitation for the Tradex wideband signal
application which has associated signal processing that coherently sums PP and OP phase returns
as a "complex™ process having both "red™ and "imaginary" components and that requires use of
more channelsfor realistic models as further pursued in Chapter 6.

2 Also only currently implemented by Fougerefor "rea™ processes.
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tional optimization operations and, as such, isa greater computational burden.

(U)Recently, another approach to multichannel maximum entropy spectral es-
timation has emerged [258] that also claims to be an optimal implementation but
to also have tractable more practical algorithms as subroutines to be implemented.
This new approach also has not yet beeen posed for the "complex" case d interest
in this Tradex application.

(U)Since there are several algorithmsfor multichannel LP that aresimilar, both
in structure and in beneficial efficiency, to the highly regarded Levinson-Durbin
recursiontechnique, it isreasonableto use multichannel L P asa simpleway to model
a multichannel stochastic time series for either estimation or subsequent sample
function emulation of auto- and cross-spectra. This report providesa detailed look
at the results o applying Nuttall and LWR techniques, as two multichannel spectral
estimation approaches.

1.2 Cornnientson Forwardsand BackwardsM arkov
M odels Disscussed in Section 2.1

(U)While some discussionssuch as [71, Eq. 8.2.73] don't bother to use different
notation to make the fine distinctions between the underlying processesin forwards
and backwardsmodels such as is done using W2 in Eq. 2.5b, other discussionsdo.
(For more explanation o the properties and interrelationships between forwards
and backwards Markov models and an indication o historical misconceptions and
their proper resolutions, see [133], [134].%)

1.3 Moreon ARMA Spectral Estimation and its
Attendant Difficulties

(U)A recent IEEE ASSP award winning investigation [161] looked into what
order AR, MA, and ARMA model can match a specified (L + 1) length (positive
definite) correlation sequence. We are also forewarned by being cognizant o recent
revelationsin [78] that the earlier adaptivelattice implementationsd ARMA ([78],
[82]) that involve unequal forward and backward reflection coefficients suffer by

3These aspects are also important in reverse time Kalman filtering and Kalman smoothing ap-
plications [170], [171].
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not being robust in noisy situations and that it also does not conform to previous
analytically calculated bounds on anticipated output power.

(U)The problemaf estimating the AR and MA parameters o a (scalar) ARMA(p, )
model for the specia case where p = q (so there are exactly the same number o
unknown AR terms as there are unknown MA terms to be estimated and where
the model order p is assumed to be given or specified a priori) is equivalently re-
formulated in [214] in terms of a one-step predictor and utilizes Riccati equation
solutions within an associated Kalman filter context. This unusual approach (ex-
tremely palatable to Kalman filter theorists) is pursued in [214] to completely solve
this ARMA parameter estimation or modeling problem for the AR parameters (ar-
bitrarily in either transient or steady-state operating conditions) and for the MA
parameters (only in the steady-state). Unlike most other approaches to ARMA
estimation, which usually estimate the AR portion first and then the MA portion
afterwards (as a highly numerically sensitive possibly nonlinear function o the AR
portion), Alengrin and Zerubiaclam in [214, p. 1115, first bullet in remarks under
proof o Theorem 2] that the reverseis true by the AR portion in their technique
being instead dependent on the MA estimates (but the solution approach that they
recommend appears to defy or contradict this claim). At any rate, their solution
equations do exhibit nicelinearity throughout.

I.4 SomeNeedsfor ARMA Modesin Radar Pro-
cessing

(U)Upon examining samples o our radar data, the sample paths were observed
to be spiky, which is indicative d measurement noise being present as compared
to the fairly smooth trajectories o a Markov process that would be expected for
a pure AR process. Since the spikiness was small as compared to the genera
trends, it would appear that it could be subsumed as additive white measurement
noise o relatively small magnitude (i.e., small variance and zero mean) that had
been superimposed. Theoretical and physical justification for such treatment o
measurement noise being present is that a radar receiver isin fact a measurement
sensor with thermal or shot noise and a corresponding noise figure. Obvioudy,
radar receivers are not noise-free. Other measurement degradations present could
be due to minor effects o the atmosphere and other background environmental
effects which contribute a component to the effective measurement noise.

(U)There is already a precedent by Simon Haykin in [29] which asserts that:
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"ARMA processes are more appropriate as stochastic models o airport
surveillance radar returns (of cooperating benign targets in clutter),
where AlC-based selection algorithms to determine the appropriate p
and g o the associated ARMA process were utilized"

despite the warnings against AIC techniquesin [49, Section V], [50] as noted above.
These ARMA techniquesare o lessinterest to us here because RV reentry tracking
by radar is clutter-free and for a different frequency range and in a more sensitive
target resolution environment and uses the more potent special purpose Tradex
radar. We are somewhat satisfied with using just an AR mode with perhaps the
dight wrinkle d additive white measurement noise being assumed to be present.
Recent techniquesd [63], [160], and [163] are now available and may perhaps be
moreappropriatefor Haykin’s thornier problem o determining the most appropriate
ARMA model order and assumed model structurefor his C-band air traffic control
radar in heavy ground clutter.

15 On Useof IMSL at Lincoln

Regarding use o Edition 10.0 IMSL subroutines as discussed in Section F.2.3,
a somewhat unsettling aspect, recently uncovered (in June 1988), is that some
(but not all) Edition 10.0 IMSL routines on the IBM 3081 mainframe here require
use o the Lincoln Laboratory 4.1 FORTRAN compiler (which still has a status
classified as being experimental). No memo has yet been circulated as a warning to
genera userson this potentially sensitivetopic. Information on this sensitivetopic
is apparently only disseminated serendipitoudly.

1.6 Closng Remarks

Although, at times, it may appear that the'reader is thrust into the midst of
a raging technical debate, it wasfelt that, rather than cover up controversy, it is
better to take the “bull by the horns" by acknowledgingit and addressingit directly.
This approach was used in addressing certain topics, such as when discussing use
o Akake's Information Criterion (AIC) for estimating system model order. Here
we have a battle o the titans so to speak with both IEEE Felows Thomas Kailath
[49] and Simon Haykin [29] using AIC without reservations, but with careful and
thoughtful 1EEE Felow Kashyap [50] expressing concerns that others [173], [163,
Preface], [231] eventually came to share in viewing AIC as suspect. It is now

157

Unclassified



Unclassified

routine for investigators, perhaps through imitation, to use the AIC in establishing
the order o the underlying model, but we refrain from doing so here because its
useis apparently shaky. Even these algorithmic aspects o technology are evolving,
but, fortunately, with longer time constants, in general, than those o hardware
technologies. No field is static (unlessit is dead)!

It may appear that an inordinate amount o attention was lavished on devel-
oping an "exacting ssimulator” and then successfully validating it. The reason for
thisemphasisisthat all the alternative multichannel spectral estimation generaiza
tions are apparently somewhat approximate in order to be tractably implemented
and that multichannel spectral estimation isfrequently vulnerable to cross-channel
feedthrough. In performing validation o the two multichannel spectral estima-
tion approaches and in making comparisons between the processing results of each,
it would be awful if artifacts of simulator approximations and inaccuracies were
to inadvertently taint the conclusionsd this investigation into which is the more
appropriate multichannel spectral estimator to be used for the Active Decoy appli-
cation. To ensure against this unpleasant situation occurring, the new simulator
design was pursued so that only exact mechanizationswould be used that avoid use
d uncalibrated approximations. Since documentation o the features o an “exact-
ing simulator™ had not been encountered in the open literature by the author but
was forged instead from his industrial experience, it was completely documented
herein AppendicesD, E, F, and G.
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