Numerical Approximations and Other Structural Issues

in Practical Implementations of Kalman Filtering

Thomas H. Kerr

Abstract. Getting incorrect results at the output of a Kalman filter (KF) sim-
ulation or hardware implementation can be blamed on (1) use of faulty approxi-
mations in the implementation, or (2) on faulty coding/computer programming
or (3) may actually be due to theoretical details of what should be implemented
in the application being incorrectly specified by the analyst (especially since
some errors still persist and propagate in the published literature that the ana-
lyst may have used as a starting point). Handling situations (1) and (3) will first
be discussed here. Although situation (2) is initially impossible to distinguish
from the effects of (1) and (3) for a new candidate KF software implementation,
any residual probleras present can be ferreted out by first eliminating (1) and (3)
as possibilities for contamination and problems fa.ﬁ'ing under situation (2) may
be further isolated (for remedy) by using certain test problems of known analytic
closed-form solution for software calibration/check-out in the manner discussed
as my original unique approach to (IV&V) Independent Verification and Valida-
tion (completely compatible with DOD-STD-SDD/2167/2168A /973/499B /490B
methodology) for Kalman filter code. The techniques espoused here are univer-
sal and independent of the constructs of particular computer languages and were
honed from years of experience in cross-checking Kalman filter implementations
(both my own and those of others) in several diverse commercial and military
applications (and implementation languages).

§1 Introduction

Over the past thirty years, Kalman filters (KF) have been used in telephone line
echo-cancelers, missiles, aircraft, ships, submarines, tanks that shoot-on-the-run,
air traffic control (ATC) radars, defense and targeting radars, Global Position
System (GPS) sets, and other standard navigation equipment. In recent years,
GPS/Kalman filter combinations in conjunction with laser disk-based digital map
technology is being considered for use in future automobiles (as well as in ships
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using displays rather than paper charts) to tell the driver/pilot where he is and how
to get where he wants to be. Commercial products as well as military vehicles and
platforms rely on Kalman filters. Computers are used to implement Kalman filters
and to test out their performance (assess the speed of response and the accuracy of
their estimates) beforehand in extensive simulations. There is evidently consider-
able commercial value in understanding Kalman filters both as a developer and as
a potential user [30].

I seek to weave the thread of the story here but, due to space limitations, will
defer to my references for more elaboration (which provide pointers to the further
contributing precedents of others, thus serving as analytical stepping stones in the
evolution). I will be uncharacteristically terse when discussing a topic here that I
have previously published and already extensively discussed elsewhere in the open
literature. The techniques espoused here were honed from years of experience in
cross-checking Kalman filter implementations (both my own and those of others)
in several diverse commercial and military applications from first hand knowledge,
having worked directly with C-3 Poseidon submarines’ Ships Inertial Navigation
System (SINS) 7 state Con-B STAtistical Reset (STAR) filter, C-4 Trident sub-
marines’ 14 state Electro-magnetically Supported Gyro Monitor (ESGM) Reset fil-
ter and 15 state SINS Correction filter, earlier vintage minesweeper 19 state PINS
filter, 13 state Passive Tracking Algorithm (PTA) filter for sonobuoy target track-
ing, 15 and 18 state Singer-Kearfott and Hughes candidate Class B JTIDS filters
(filter parameters such as INS gyro drift-rates, biases, and scale-factor errors are
classified for military applications, otherwise standoff targeting and bombing accu-
racy and radio-silent rendezvous capability could be inferred; however, such gyro
and accelerometer parameter information should be reported for clarity in civil-
ian applications according to new specification standards currently being revised by
the IEEE AES Gyro and Accelerometer Panel), 12 state filter for Electronic Terrain
Board analysis, 22 state Multi-Band multi-Frequency Airborne Radio System (MF-
BARS) filter predecessor to ICNIA for the Advanced Tactical Fighter, various GPS
filters [12, Table III], angle-only tracking filters and other 6 state exoatmospheric
and 7 state endoatmospheric Reentry Vehicle (RV) tracking filters for radar, etc.

§2 Some numerical approximation issues that arise in Kalman filtering

A Kalman filter (see Figure 1) is an efficient and convenient computational scheme
for providing the optimal estimate of the system state and an associated measure
of the goodness of that estimate (the variance or covariance). In order to imple-
ment a KF, the actual continuous-time system must be adequately characterized
by a linear (or linearized) ordinary differential equation model, represented in state
space at time ¢ in terms of a vector x(t), and having associated initial conditions
specified, and availing sensor output mezsurements v(t) (functions of the state plus
additive measurement noise). It is mandatory that the KF itself actually contain
within it an analytical mathematical model of the system and sensors in order to
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perform its computations (designated as a model-based estimator), and it must
possess a statistical characterization of the covariance intensity level of the additive
white Gaussian measurement and process noises present as well to enable an im-
plementation. Here, we should remark that the Central Limit Theorem is usually
invoked from statistics [25, pp.238-240] to justify that a number of contributing
minor effects can frequently sum up to a net effect that is Gaussian in distribution,
even when the constituent components are not (i.i.d.) independent and identically
distributed. Care is sometimes needed to be aware of when a necessary condition
on the 3rd moments of the random variables contributing to the sum is in danger of
being violated [22, pp.66-73] (as occurs with the bell-shaped Cauchy distribution)
otherwise Gausianess is never attained and other approaches need to be used.
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Figure 1. Overview functional block diagram of the internal structure
of a Kalman filter.

A simplified overview of the principles of operation of a Kalman filter has been
treated in [17, Sec.V, pp.943-944], [20, Sec.IA] and, from my perspective, is what
constitutes the essence of a Kalman filter mechanization. References [3,9,5] all ad-
dress important numerical approximation issues that sometimes arise in Kalman
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filtering such as numerical sensitivities and ill-conditioning, adverse effects due to
use of quantized data, the nature of the matrix inversion algorithm or approxi-
mation utilized within a real-time KF mechanization and its subsequent effect on
convergence, respectively, each of which can corrupt KF performance and degrade
its tracking accuracy in some instances. However, the approach taken here will be
to instead consider the more prevalent 1st order issues usually encountered in a rea-
sonable (but typically clumsy) software implementation attempt and leave pointers
to references to indicate where more detailed information may be found on the more
sophisticated topics that arise less frequently but are important never-the-less.

2.1 Typical errors and/or bad approximations occurring in Kalman
filter code of otherwise good quality

Listed below are several prevalent departures from the ideal involving use of expe-
dient approximations and simplifying assumptions that one must be alert to avoid
lest they taint or corrupt KF output results. Consider the following possible short-
coming’s in KF code (each having been previously observed in both government
(DoD) and commercial KF packages and code implementations):

1. Some KF software/covariance analysis implementations don’t use the ezact
discrete-time equivalent to continuous-time white Gaussian system noise (plant
or process noise) £(t) {24, p. 171, Eq. (4-127b)] represented by:

Qk = /t - B(tes1,7)Qe(r)® " (tht1,7) dr, @

(where A = t+1 —ti and ®(¢, 7) is the associated system transition matrix) as
an operation on the continuous-time white process noise covariance intensity
matrix, Q (or Q.), as in [20, Eq. (5)], where equation (1) simplifies for time-
invariant systems (obtained by the steps depicted in [17, Sec.II]) to be:

A
Qd =€AA l:/(; e-—A-r B Q BT e-—-AT-rd,r} CATA 6kj , (2)

where the above Kronecker delta is defined as

1, ifk=j
6kj={ y 3)

0, otherwise.

An offending software code implementation (of the type being cautioned against)
instead uses the following Kalman approximation:

Qu=AQ, (4)
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which is an uncalibrated approximation [17,27) and, for implementation, Q5 or
Qq is usually further factored (via a Choleski decomposition if necessary) as
Qa = BBT, where here B is used as the process noise gain matrix, according to
the convention of [29] while the underlying white noise originally simulated is
of unit variance. It is demonstrated in [17, following Eq. (40)] (also see Nov."91
update) just how bad the effect of this approximation of equation (4) can be
by the degree of error incurred using ¢ as compared to Qg via equations (1)
or (2). However, the approximation of Eq. 4 may still be satisfactory for some
special application situations.

2. The act of taking the time step to be constant in any KF mechanization cor-
responds to external position fixes being obtained periodically (while actual
KF theory is more flexible than this and real world practicalities don’t always
strictly adhere to this periodic structure) so implementers frequently compen-
sate by resorting to data time-tags and appropriate extrapolation to the desired
time or by measurement data averaging, explained in (8, p. 291];

3. The transition matrix calculation for converting the continuous-time n-state
model description to discrete-time, historically adaptively tailors the number
of terms retained in the Taylor series by using either too coarse a norm (see [29])
or an invalid norm [17, pp.938-939]. A tighter bound for this purpose has been
derived from considerations of both column-sum and row-sum norms in [11]
and, additionally, it is prudent to also set an upper limit on the total number
of terms from the Taylor series expansion allowed to be used in calculating the
transition matrix so that the computation can’t run away (otherwise it could
incur numerous overflow's due to the effect of accumulated roundoff).

4. The transition matriz used throughout the computer run is frequently calcu-
lated only once (such as in [29]), up front as a pre-processing step, then retained
as being constant (while a variation more appropriate for many applications
but not possible with a simplistic software implementation is to relinearize
a(x) (occurring within the ordinary differential equation X = a(x,§, t) describ-
ing the system) at each new time point as A(tk) and either recalculate the
matrix exponential to provide the new transition matriz at each relinearization
or else just use the first few Taylor series terms of the matrix exponential as
I + A(tx)(tk41 — te) to approximate the transition matriz at this new time
point, an especially prevalent solution found in many real-time applications).

5. Fallacious versions of tests of matrix positive definiteness/semi-definiteness are
prevalent in Kalman filter code and in target tracker code. Two faulty algo-
rithms that have been encountered in actual use as reasonableness tests for
covariance matrices are explicitly identified and warned against in [19, Secs.
III and IV], with appropriate theoretical fixes suggested (based on use of SVD
variants or Choleski factorization).

Finally, alternative approaches that have evolved to justify the technique of
equation (4) as the appropriate approzimate discrete-time process or plant noise
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covariance intensity matrix @ to be used for computer simulations is traced in
the Nov.’91 update to [17). To clarify for actual applications, the usual rule-
of-thumb (recommended by Industry) to use for discrete-time white noise simu-
lation, is that the continuous time white process noise Qcontinuous has units of
« (numerator units)®» <o on o needs to multiply throughout by A (with time units) that

canééirrjceh‘énlézrne units in the denominator units of Qeontinuous O yield @/, with
exclusively (numerator units)?” for discrete-time sample-data white process noise.
(Note that in equation (1), the exact expression for Qg rids itself of time units in the
denominator via the indicated integration with respect to time.) This final value is
then used in actually performing a discrete-time simulation performance evaluation
on a computer as the appropriate approximate technique (verified here by a units
check and by allowing a type of correspondence for the white noise Qcontinuous, also
associated with a Dirac delta function, and the white noise @, associated with the
more benign, less pathological, Kronecker delta function (that unlike the Dirac delta
function doesn’t blow up or need special interpretation for rigor as a functional of
bounded conver support using Schwartz’s Theory of Distributions (1947)).

2.2 An approach for debugging linear Kalman filter software

The importance of this section is that subsequent software verifiers, when faced
with validating newly coded or newly procured Monte-Carlo simulator subroutine
software modules and Kalman filters of their own, can treat the entire exercise
as one of confirming the proper performance behavior of the new modules merely
as an exercise with black boxes. Time can then be saved by just confirming the
outputs corresponding to the designated low-dimensional test cases of known closed-
form solution provided herein and matching critical intermediate computational
benchmarks (without having to necessarily further probe the internal theoretical
intricacies that are already justified here, in [17] and in [15], where the veracity
and utility of these test cases is established and explained in more detail) but can
instead check the code, with helpful clues as to the real software culprits and bugs
being revealed by these recommended tests when output results don’t jibe. Thus,
the software verification/validation job is simplified by using the results presented
here and used to pinpoint or isolate any problems that exist in the code. This entire
exercise of using simple transparent test problems may be interpreted as an initial
calibration of the available software before proceeding to use the parameters of the
actual application.

However, before the KF code can be validated as performing properly, or in
case of known errors, before the source can be pin-pointed, first the inputs to the
KF must be validated as being exactly what was intended. To this end, we first
turn our attention to validating the Monte-Carlo simulator, as addressed next.
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2.2.1 Capabilities designed into the simulator

A state-variable based Monte-Carlo simulator, of the form depicted in Figure 2, was
developed to support AR process emulation for testing the performance of multi-
channel Linear Prediction algorithms (of the Maximum Entropy type) for spectral
estimation and also for testing the adequacy of KF trackers. This simulator pos-
sesses the following modern features:

e Incorporates “ezact discrete-time equivalent of continuous-time white noise”;

e Offers option of using the more efficient direct calculation of steady-state ini-
tial conditions corresponding to stationary behavior of the underlying random
process (without having to iterate to steady-state to avoid the nonstationary
initial transient);

o Offers option of having additive (stationary white Gaussian) output measure-
ment noise present (thus creating a type of ARMA process);
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Figure 2. State-variable Markov-based Monte-Carlo simulator.
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e Isn’t restricted to use of only diagonal covariances for noises or for initial con-
dition covariances;

e If covariances are not diagonal, the program internally automatically checks to
verify that the covariances possess the requisite “positive definiteness” property
(via use of the Singular Value Decomposition (SVD) in the manner indicated
in [19; 13 (p. 504); 18; 14 (Sec.IIl, p. 63)]), otherwise diagonal covariances
are merely verified not to have zerces or negative numbers on the principal
diagonal;

e Calculates transition matrix by more accurate Pade approximation (offering
two validated options along these lines [17, Sec.III]) rather than through use
of a Taylor series expansion for this purpose [17, Fig.1];

e Can handle nonzero means for both noises and initial conditions;

e Outputs final pseudo-random noise (PRN) generator seed value to enable con-
tinuity of use via allowable dovetailing of output sample functions if further
prolonged sample function history is subsequently pursued (which uses this
PRN seed during subsequent start-up).

2.2.2 Verifying the simulator proper

The overall structure of the simulator is depicted in Fig. 2. Using the input param-
eters of Test Case 1, as depicted in Table 1, the intermediate outputs provided by
the software implementation were verified to be correct. The specific features of the
software implementation that were confirmed using Test Case 1 are detailed in the
second column from the left in Table 2. The importance of using Test Case 1 and
the aspects that it reveals are described next. .

Certain matrices known as “idempotent” matrices have the unusual property
that when multiplied times itself again yields itself as the result:

AA=A. (5)

The non-trivial system matrix of Test Case 1 exhibits this property. The present
application in software verification is a neat application of idempotent matrices be-
ing used to construct test matrices for verifying the transition matrix algorithmic
implementations that are used for computer computation of e, The utility of
these test matrices is that the resulting analytically derived expression for e is
conveniently in closed-form for F = A. Hence the performance of a general e sub-
routine implementation can ultimately be gauged by how close it comes to achieving
the known ideal exact solution.

Using the representation of a matrix exponential, defined in terms of its Taylor
series , but evaluated with an idempotent matrix A having the property of equation
(5) being substituted along with time-step A; the matrix Taylor series expansion of
e4? now yields
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- Table 1. Summary of parameters of test case models used in validation tests
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as explained in [17, Sec.IV]. Thus, the closed-form exact expression for the transition
matrix corresponding to idempotent system matrices is as depicted in the last line
of equation (6) as a finite two step operation involving just a scalar multiplication
of a matrix and a single matrix addition (as compared to an infinite series that must
be truncated in the case of standard software implementations for the case of more
general matrices).

Using the result of equation (6) for idempotent matrices within the more general
expression of equation (2), allows this expression for the required discrete-time
process noise covariance to be evaluated analytically in closed-form as:

A
Qa=[I+ A - 1)] /O [I+ A(e™" —1)] BQBT
x [T+ AT(e7 —1)] dr [I+AT(e® - 1)]
A
=[I+A(e® - 1)] /0 [BQBT + (ABQBT + BQBTAT)(e™™ - 1)

+ABQBTAT (e — 27" + 1)] dr [T+ AT (e® - 1)]
=[I+A(e®-1)] [BQB"A+(ABQBT + BQBTAT)(1-e™% ~A)

+ABQBTAT (-% - %e_zA +2e7 + A)} I+ATE-1]. @

This is a new result that is also useful as a confirming check for software imple-
mentations of equation (2). Here, we remark that along a different line, something
similar to equation (2) can be computed for numerically evaluating Q4 for any con-
stant matrix 4, not just for idempotent matrices, by (1) expanding e~4" into its
matrix Taylor series, (2) by performing the indicated multiplications of the two
series within the integrand, (3) by subsequently performing term-by-term integra-
tion, and then (4) by retaining enough terms of the final series to be used to provide
sufficient accuracy in actual numerical calculations.
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Using the parameters of Test Case 2, as depicted in Table 1. The specific
features of a software implementation that can be confirmed using Test Case 2 are
detailed in the third column from the left in Table 2. Test Case 2 has an easy to
determine closed-form expression for the transition matrix, for Qq, for the steady-
state Lyapunov equation, and for the ideal output power spectrum [15, Appendix
Al

Using the parameters of Test Case 3, as depicted in Table 1 (with closed-form
expressions for the solution being a straight line with slope 4 and intercept 10 and
with such inconsequentially low magnitudes of the noises), the intermediate outputs
provided by a software implementation can be verified to be correct. The specific
features of the software implementation that can be confirmed using Test Case 3
are detailed in the fourth column from the left in Table 2. Actual extremely reg-
ular essentially deterministic sample functions obtained for the underlying known
unstable system can conveniently be used to check at a high level that the output
is exactly correct. Besides confirming the outputs of the simulator with an eas-
ily recognizable expected answer (as contrasted to Test Cases 1, 2, and 4, which
provide random noise corrupted sample functions that can be confirmed at the ag-
gregate level only from statistical properties that are a byproduct of downstream
KF tracking or spectral estimation), this Test Case 3 also allows a programmer to
calibrate (and correct) their plot routines and his scale conversion for output plots,
if necessary.

Using the parameters of Test Case 4, as depicted in Table 1, the intermediate
outputs provided by a software implementation can be verified to be correct. The
specific features of a software implementation that can be confirmed using Test
Case 4 are detailed in the fifth column from the left in Table 2. The main purpose
of this last test case is to be able to handle the situation of providing prescribed
multi-input /multi-output (MIMO) complex random process output with specified
cross-correlation between output channels. This was needed in [15] in verifying
the performance of alternative Maximum Entropy spectral estimators down-stream
of the simulator (operating on its outputs), which, like a KF, deal only with first
and second order statistics. The correct answer for 2-channel spectral estimation
should appear as in Figure 3. Certain modern tracking radars use coherent phase
processing, also known as coherent integration (where both magnitude and phase
are accounted for in the summation of signal returns but where the distinction arises
of having to keep track of real and imaginary components, instead of merely needing
to keep track of magnitude alone, as conventional radars do), which jointly treats
Primary Polarization (PP) returns in conjunction with Orthogonal Polarization
(OP) returns and utilizes the additional target information provided from the cross-
correlation of these two separate channels.
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Restating for emphasis, the modern simulator design, discussed in this section,
was pursued so that only a fairly exact mechanization would be used so that the
input to the KF is precisely known. This was sought asa reliable testbed that avoids
use of uncalibrated approximations in order to avoid confusing artifacts of simulator
approximations with possible cross-channel feed through (that multichannel spectral
estimation implementations are also known to frequently exhibit as a weakness or
vulnerability) and which can adversely affect KF testing as well for the same reasons
of uncalibrated cross-correlations being present.

2.2.3 Confirmation of software structural validity using augmented test
cases of known closed-form solution

A difficulty, as discussed in [16, Sec.I], is that most closed-form KF covariance solu-
tions are of either dimension 1 or 2 (as in [8, pp.138-142, pp.243-244, p.246, pp.255-
257, pp.318-320]) or 3 (as in [26]). To circumvent this dimensional mismatch to
higher dimensional real applications that may be hard-wired, we can achieve the
dimension n goal by augmenting matrices and vectors with a concatenation of sev-
eral existing test problems. Use of only totally diagonal decoupled test problems
is notorious for being too benign or lenient and not taxing enough to uncover soft-
ware implementation defects (when the problems exist in the portion of the code
that handles cross-term effects). Augmenting either several low-dimensional 2-state
problems or fewer 3-state problems is the way to proceed in order to easily obtain
a general n-state non-trivial non-diagonal test problem. A confirmation that this
proposed augmentation is valid in general is provided next for a closed-form steady-
state radar target tracking solution that was successfully used as a check on the
software implementation of [29].

An initial worry in adjoining the same 3-state problem with itself relates to
whether “controllability and observability” are destroyed, while the 3-state problem
by itself does possess the requisite “controllability and observability.” “Controlla-
bility and observability” conditions, or at least more relaxed but similar “stabiliz-
ability and detectability” conditions [21, pp.62-64, pp.76-78, pp.462-465], need to
be satisfied in order that the covariance of a KF be well-behaved (8 (p.70, p.142),
21]. The following mathematical manipulations establish that such an adjoining of
two 3-state test problems does not destroy the “controllability and observability”
of the resulting 6-state test problem even though it already exists for the 3-state
test problem by itself.

First consider the 3-state test problem of [26] of the following form:

position
X(ax1) = velocity , (8)
acceleration
with .
X=A1X+Blé, éNN(Oan)v
v=Cix+n, n~N(O,R1),
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and assumed to be already satisfying Kalman’s “controllability and observability”
rank test criteria (8, p.70], respectively, as

rank [B) I A1 By A2By]=n; =3, : (9)
rank [Cf 1 A]C] (1 [AT)2C] ] =ny = 3. (10)
Now the augmented system of the form

paosition
velocity
acceleration
X = T ) (11)
position :
velocity
acceleration

with

o

AS!
]
bt
[ew]
3

V=1... ... .| X+T1.. o0 L (13)
0 ¢ o 1 1

has system, process noise gain, and observation matrices, respectively, of the form

’—Al : 0

Ag=1... ... .|, (14)
L0 Al
B, I 0

By=|... ... ...|, (15)
L 0 : Bl
c:1 0

Co=1{... ... ...|. (186)
L O iC
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In testing for controllability of this augmented system, form

rank»[BQ ! AsB,  AZB,  A}B; 1 AiB, A332]=

B, © 0 ' A4B ¢ 0 ! A¥By i 0 : other
rank | ... . ... . . . . . =
Lo ! B ° 0  AB i 0 : AlBy : stuff ]
Bi : ABy ¢ AB; 1 0 i 0 i 0 : other
rank { ... - . e . . R (17)
Lo * 0 0 i B ! ABy : AiB; : stuff]
=3+4+3=6.

In the next to the last line of equation (17), the columns of the Controllability Gram-
mian are rearranged for convenience to provide the necessary insight. Permuting
columns of a matrix doesn’t alter its rank but can alter at-a-glance conclusions.
Since we are able to show that the augmented system rank is 6, this system is con-
firmed to be controllable. A similar conclusion (on the requisite observability being
satisfied) can be obtained by identical steps using the duality that exists between
controllability and observability results and the associated forms of arguments or
proofs when similar matrix structures, such as are present here, are involved. The
above described augmented system of equations (12) and (13) can be used with

Ri ¢ 0 _
Ro=|... ... ...|, (18)
L0 | R
(0, ¢ o
Qe= |-t o |, (19)
L0
P0) 0
P0)=| .. ... |, (20)
0 op(0)

since now the augmented system has been demonstrated above to be both “observ-
able and controllable” and the measurement noise covariance Ry of equation (18)
to be utilized is positive definite. This final observation allows us to use this 6-state
augmented test problem with confidence to check out the software implementation
as it is currently configured without making any further changes to the software.
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2.2.4 Summary of test coverage analytically provided here

An overview of the complete software test coverage offered here through selective
use of analytic closed-form “Test Cases of known solution” is provided in Table 2.
The utility of this coverage was discussed in Sec. 2.2.2. All items indicated in Table
2 must be successfully validated.

By using these or similar examples, certain qualitative and quantitative aspects
of the software implementation can be checked for conformance to anticipated be-
havior as an intermediate benchmark, prior to modular replacement with the various
higher-order matrices appropriate to the particular application. This procedure is
less expensive in CPU time expenditure during the software debug and checkout
phase than using the generally higher n-dimensional matrices of the intended ap-
plication since the computational burden is generally at least a cubic polynomial
in n during the required solution of a Matrix Riccati equation for the associated
covariances (also needed to specify the Kalman gain at each time-step). The main
contribution of these Test Cases is that one now knows what the answers should
be beforehand and is alarmed if resolution is not immediately forthcoming from
the software under test. Warning: correct answers could be “hardwired” within
candidate software under test, but appropriate scaling of the original test prob-
lems to be used as inputs can foil this possible stratagem of such an unscrupulous
supplier/developer. .

The benefits of using these recommended or similarly justified test cases are the
reduced computational expense incurred during software debug by using such low-
dimensional test cases and the insight gained into software performance as gauged
against test problems of known solution behavior. However, a modular software
design has to be adopted in order to accommodate this approach, so that upon
completion of successful verification of the objective computer program implemen-
tation with these low-dimensional test problems, the matrices corresponding to the
actual application can be conveniently inserted as replacements without perturb-
ing the basic software structure and interactions between subroutines. Even time-
critical, real-time applications can be validated in this manner even when using
matrix dimensions that are “hardwired” to the particular application by tailoring
to the specified dimension using the technique of Section 2.2.3.

2.2.5 Specifying a Kalman filter covariance test problem

The particular parameter values to be used for Fj, B;, and C) in equations (12)
and (13) (as laid out following equations (2) and (3) of {26]) are

1 T T2/2
$=|0 1 T |, (21)
00 1

(corresponding to A; = I3, where ®; = e17),
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209

FUNCTION

CASE 1] CASE 2

CASE 3 | CASE 4 |

Transition Matrix Computation: Pade
(Ward’s Algorithm)

v

v

Transition Matrix Computation: Pade
(Kleinman’s Algorithm)

v

Q¢ Computation: Discrete-Time
Equivalent of Continuous-Time White Noise

v

<

Steady-State Computation of Initial
Condition Mean

<

Steady-State Computation of Initial
Condition Covariance
(Lyapunov Equation Solution)

<

Verification of SVD-based Positive
Definiteness Test for Nondiagonal Matrices

Verification of Abbreviated Positive
Definiteness Test for Diagonal Matrices

Checked Process Noise Calculations
as Qutput from Random Number Generator

Checked Measurement Noise Calculations

| as Output from Random Number Generator

Checked Recursive Calculation of all
Constituent Components of Entire Random
Process Over Several [terations

AR RN RN

< N S

Checked Proper Handling of PRN Seed

Verification of Stable Sample Functions
Indicative of Stationary Process

AN

Verification of Unstable Sample Functions
Indicative of Nonstationary Process

Obvious Aggregate High Level At-A-Glance
Confirmation From Output that all
Functions Work Properly in Concert

Confirmation of Identical Results When
Complex Version of Software Enabled

Eventual Confirmation of Proper Sample
Function Statistics from Downstream
Spectral Estimation Software Module Outputs




210 T. Kerr
T%/6
Bl = T2/2 1 (22)
T
and
Ci=[100]}, (23)
with '
Ql = 0'3 3 (24)
and
Ry =02, ' (25)

where, in the above, T is the fixed time-step and o, and o, are parametrization
conventions used in [26]. Tractably determining the particular values of T', o4, and
oz to be used here is the contribution of the Appendix section that provides the
steady-state covariance via the parameterized methodology of [26]. The computed
steady-state KF covariance immediately before and after a noisy position measure-
ment update are, respectively, as provided in equation (66) (res. 67) and (74) (res.
75).

Notice where the KF residuals occur in [17, Fig.4]. In verifying and debug-
ging an actual KF software implementation, these residuals are monitored and used
as a gauge-of-goodness and indicate good tracking performance when they become
“small.” The idea being that the measurements vi match the model representation
CiRyjr—1 fairly closely when the residuals are “small.” However, since residuals are
never identically zero, the question is “how small is small enough?” (see [1] for an
appealing explicit statistical test on the residuals using Chi-square statistics with
appropriately specified degrees-of-freedom for an assortment of likely test condi-
tions that can occur.) Residuals (sometimes called innovations) will almost always
initially decrease as the initial transient settles out. “Small residuals” are necessary
but not sufficient indicators of good KF performance and similar statements can
be made for having statistically white residuals (for instance, see [4,23] which offer
an example of a KF exhibiting white residuals despite known use of an incorrect
system model but which also incurs an anomalous bias as the clue that something
is wrong). When possible, as with simulations, one should juxtapose the time evo-
lution of any critical system states along side their KF estimates to see how closely
the estimates are following the actual quantities of interest as a more encompassing
gauge of proper KF performance. The only problem sometimes encountered in cer-
tain sensitive applications is that actual estimates may be classified while residuals
may be unclassified, in which case attention centers on the residuals in unclassified
presentations as a default in justifying good filter performance. For actual real sys-
tem data, the true system state uncontaminated by measurement noise is seldom
available for confirming comparisons of proximity so use of residuals must suffice in
this situation also.
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Besides being used numerous times in the past to validate DoD KF software
implementations, the techniques espoused in Sec. 2.2 were used to test the com-
mercial KF code of [29] for the PC. This commercial package initially satisfied all
test cases invoked (Test Case 4 was skipped, as not being applicable, since this code
wasn’t designed to handle the situation involving complex number computations).
Proceeding to use the augmentation of Section 2.2.3, this commercial KF bombed
when attempting to run applications with state sizes greater than 10. Source of the
problem was traced to a software bug that was revealed to be in the Monte-Carlo
simulator AVBSIM.BAS, as one of the 13 modular subroutines. Proper declaration
of index on initial condition %X¢ had been overlooked by the supplier so the software
(in BASIC) had defaulted to 10. Note that by later using different designators to
correct: another oversight, this initial condition, as used in initializing the simulator,
had to be distinguished from its use in initializing the filter proper AVBFILTR.BAS.
This oversight was easily corrected in the source code and it then successfully han-
dled system models larger than 10. The original code was also enhanced to (1)
read P, from a file, instead of requiring excruciating hand entry from a keyboard
at run time, (2) output results to a file so a more capable plot package, such as
EASYPLOTTM  could be used for final display.

2.3 An approach for debugging nonlinear filter software implementation

An exact finite-dimensional optimal nonlinear filtering test case of the type discov-
ered by Benes [2] and extended by Daum [6] (with a recent rigorous update in [28])
may suffice for IV&V in the same manner as Section 2.2 by providing collaborative
comparison of outputs to verify performance of a general EKF implementation (in-
stantiated with the same test case) if both implementations agree (sufficiently) for
this simple test. This proposed manner of use for EKF software verification would
be in keeping with the overall software test philosophy being espoused here. We
remark that another nonlinear filtering example with a finite-dimensional imple-
mentation, not covered within the situations addressed in [2] and [6], is for scalar
system & = f(z) + g £(t), where E[£(t)E(s)] = q 6(t — s} and f(z) = — 5. The
verifiable asymptotic solution in the limit as ¢t goes to infinity of the associated
Fokker-Planck or forward Chapman-Kolmogorov equation (defined in {10, pp.126-
130)) is p(=, tlz, 8) = Ty where ¢3 = ;i; and c is the normalization constant
for this pdf.

Actual experience in developing an EKF for angle-only Reentry Vehicle (RV)
tracking via jammed (range-denied) radar using triangulation (RVTRIANG), as
modified from an earlier EKF for tracking RV’s via unjammed radar, convinced me
that such goals are best carried out in specific well thought cut stages. Examples
are, first, for a constant gravity, then for inverse-squared gravity. First, for a non-
rotating earth, then for a rotating earth. More detail on this aspect is provided in
[20, footnotes 5 and 8]. A representative plan for EKF development that I adhered
to for this endeavor is depicted in Table 3.
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Table 3. Stages and confirmation tests for phased EKF development.

STAGE | SOFTWARE | COVARIANCE | FILTER LINEARIZATION RV TRAJECTORY | PURPOSE
UTILIZED | ANALYSIS PORTION GENERATOR

1 RVTRIANG | Covariance only. | None About true Straight line. Establish

trajectory. benchmark
for later
comparisons.

2 Modified Introduce Introduce Same as above Same as above. See if
RVTRIANG | EKF Covariance | EKF Filter (so not a true Need to print/plot | covariances
(copy 1) mechanization portion {except | EKF yet). states. are similar

(except linearized | linearized about to above case.

about true true states). See if filter

states). Print/plot states. estimates follow
true trajectory
{maybe with lag).

3 Modified Introduce Same as above. Introduce Same as above. See how closely
RVTRIANG “;‘“‘:“:iﬁn . linearization EKF estimates
(copy 2) a0out estimates about estimates follow true

(s0 now a truc EKF). (so now a true EKF). trajectory.

4 Modified Same as above. Same as above, Same as above. Introduce nonlinear | See how closely
RVTRIANG equations for EKF estimates
{copy 3) conic RV follow true

trajectory. trajectory.

5 Modified Same as above. Same as above. | Introduce Same as above. See improvement
RVTRIANG relinearization. in how closely
(copy 4) EKF estimates

follow true
trajectory.

6 Modify Same as above. Same as above. Same as above. Keep separate. See that answers
EXEC to and EKF outputs
conform to are the same
goal of as above case.

3 main
modules.

§3 Appendix: A closed-form analytic solution — useful for testing
Kalman filter covariance calculation

The steady:state covariance solution before and after a measurement update (for
periodic measurement usage) corresponds to solving the following two familiar KF
mechanization equations for P and P, respectively, being:

P - BQBT =d(I - GC)P3",
P=(1I-GC)P.

While it would be desirable to just pluck the steady-state solution from [26], it turns
out to not be quite that simple and easy. As laid out in [26] after laboring through
a lot of algebra and parameter scaling, we have to solve a biquartic equation [26,
Eq.(A9)] as an intermediate calculation. In order to make this challenge somewhat
easier, instead of first specifying o, and o, in'equations (24) and (25) beforehand,
the new contribution provided here is to use a trick of convenience by finding the
value that makes the following biquartic easy to solve for S:

Numerical Approzimations of Kalman Filtering 213

5%~ 68%+108% —6(1+2r)S+(1+3r%) =0, (26)

where we recall that while quadratic equations are easy to solve, general cubics and
quartics/biquartics are extremely challenging and messy in general. The trick is to
force a convenient answer, as say,

S=6 (27)

to be a solution of equation (26) [26, Eq.(A9)] by choosing the value of 7 (appear'mg
in equation (26)) for convenience. This proper value of r can be selected by first
performing the following division exercise:

S% 4105  +(54 —12r7) remainder : +325 — 69r?
S-6/)50 —65% 4108  —6(1+2r))S +(1 4 372)
S5t -65°
105? —6(1 +2r%)S
105% —60.S
(54— 12:%)8 +(1+3r%)
(54 — 12/ —6(54 — 12r2)
1+ 3r% + 324 — 7207 (28)

So S = 6 is a root of equation (26) if the remainder in the above is zero as

325 — 69r% = 0 (29)

325 /325
2 = — = —_ = 1 2 - 30
T 9 =7 69 2.17028 (30)

Here, we remark that arbitrary solutions of equation (26) can’t be forced (as in
secking to make § = 2 be a solution) because the remainder term will corfespond
to an “imaginary” value for r, which needs to be a real variable to be viable in this
application.

Now from the equation following equation (15) in [26}, we have that

or

A 120,
r= o8 (31)
From equation (30) above,
120
21708 =1 =~ (32)
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we can now take
T=2 (33)

and

oz=4, (34)

so that rearranging equation (32) with these two assignments of equations (33) and
(34) yields
12(4) 6
S = = 2.764620 35
9a = 217028(8)  2.17028 (35)

or, referring back to equations (24) and (25), yields the following two specifications

Qi =02 =7.643125 (36)

and
Ri=02=(4)%=16 (37)

that are necessary to be pinned-down for a well-posed KF. According to [26, prior
to Fig.1], the dimensionless quantity r defined in Eq. 31 can be interpreted as a
type of noise-to-signal ratio.

Now, following equation (17) of [26],

S, 282172 = /36 + .3(;?_95 = 6.38045, (38)
Sy BVAS —1= /34 =1 =+/23 = 4.7958, (39)
A 23 =1.73205, (40)

A 1 145 97
= = 2 2 ( I 172
D r\/2+r<16+r(2+8r))
1 325 (145 325 (97 325
_2.17028\/5 + -@ <—1—6— + —69— <—2—— +81—(§)>

=2.170284/ % + 9582.91

=2.17028(97.8949) = 212.46, (41)

82 (1T _go), L _ 35 (17 835) 1
C"T<4 )t m e \7 Vet

=—179.651 + 51% = —179.614, (42)
UEMD -0y} = (21246 + 179.614)1/% = 7.3190, (43)
V &(D + C)/ = (212,46 — 179.614)/* = 3.2025, (44)
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Z8U-v+ % = 7.3190 — 3.2025 + g

=4.1165 + 1.66666 = 5.78317, (45)
bez /22 321

=5.8 —4/(5.8)2 — 3% —1=258—+46.73 = 5.8 — 6.8360

= — 1.0361, (46)
0834 V3Z "1 =3+ /3(58) — 1 = 3+ 4.04969 = 7.04969. (47)

From equation (18) of [26],

o (51-8) 6.38045-6  0.38045
Vi = 2= = =0.1752
B r [a25 2.17028 7529, (48)
69
. 25Yi3 1200
Py = ST 13 _ 120 1_7529) = 0.968096, (49)
o SpYis  4.7958(0.17529)
V=== 7 = 0.485352, (50)
N ~ _Sz(3+2S—ASQ)
Yoo = oA -5
4.7 - )
_ 479583 + 12 V3(4.7958)] 6.33045
2V3

=9.266584 — 6.38045 = 2.8861, (51)
. (S2—A) 47958—+3
Yo——g— =" = 0.88443, (52)
Vas =Y = 0.7822216. (53)

We remark that the expression used here in equation (53) is my correction, which
has been gracefully acknowledged as being correct by Ramachandra in personal
correspondence. Similarly from [26, Eq.(17)], we have that

. (51+5) _6.38045+6

Yis = = 5.704

13 - \/Ejs 5.7045, (54)
69

- 28V

1 =22Y88 g sai577, (55)

_ SVis  4.7958(5.7045)

Yio = = = 15.

12 =" 7 15.7950, (56)

- 5(3+25+ AS

Voo 2_2_(_+_i___2)_51

24
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_4.7958[3+12+ v/3(4.7958)] 6
el ~ 6.38045

=25.885822, (57)
. So4+ A) 47958 + /3
Y33 =( = =
= y e 1.884428, (58)
Va3 =¥ = 3.55107. (59)

We can now specify the stead
y-state KF covariances P and P, respect
sdmc;e wel have already evaluated all the Y1J s and Y,J s that are necessaryplitel:rtllg-’
iate calculations. Using the scalin
iz gs in [26, Eq.(16)] t ’
AT AU | q.(16)] to unravel the P’s from the

Py =02Y1; = 16(31.541577) = 504.6652, (60)

1 16(2.764620

_= 2%

Py = 50=0aT"Yig = —5——)(15.79500) =349.33738,  (61)
P13 =0,0,TY13 = 4(2.764620)2(5.704522) = 126.1666, (62)
Py ZaZT“? _ (2.764620)°16 :

Yoy = S (25.885822) = 263.79805, (63)
_ o278 (2.764620)28
Byy ==V = AT~ (3.551069) = 108.5650, (64)
Pyy =02T%V33 = (2.764620)?4(1.884428) = 57.6117. (65)

Thus, the 3 x 3 steady- i i iodi
it eady-state covariance prior to one of the periodic measurement
504.6652 349.3374 126.1666

P = . 263.79805 108.5650 | , (66)
. 57.6117
which is a symmetric partition of the symmetric 6 x 6 matrix
: P 0
Py=|... e (67)
0 : P1

to be used as an explicit check

fo be used as an plicit check on‘the output generated by the software implemen-

N JuthSIdr;gn::he icain:ﬂgs {)n [26, Eq.(16)] which can also be used in an identical fashion
onstrated above to al

e also unravel the P’s from the Y’s ([26, Eqs.(42-47)])

Py =o2¥1; = 16(0.969269) = 15.5083, (68)
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Pio —aaxoaT 15 = 8(2.764620)(0.485352) = 10.7345, (69)
Prs =050.TV13 = 8(2.764620)(0.1753) = 3.8771, (70)
N 274 2.764620)%1

L (2.764620)°16 ; 9361) = 29.4118, (1)

12 12

. o213 -

Py ==Y = (2.764620)74(0.782216) = 23.9143, (72)
Pay =02T2V33 = (2.764620)24(0.88443) = 27.0392. (73)

Thus, the 3 x 3 steady-state covariance immediately after one of the periodic mea-
surement updates is

) 15.5083  10.7345 3.8771
P = : 29.4118 2391431, (74)
: 27.0392

which is a symmetric partition of the symmetric 6 x 6 matrix

X P 0
By=|... i - (75)
R

to be used as an explicit test case check on the software implementation. The
obvious sanity checks between Py and Py are satisfied since the latter covariance
representing the uncertainty in the three states of position, velocity, and acceleration

date are in fact all smaller, as expected. The three cross-

after a measurement up
check equations following equation (19) of [26] for the main diagonal entries of both

Py and B, are satisfied as

(Ppg — P) = 02T4(—4§1§—l7

or
X 16(24 — 1
263.798 — Pag = (2.764620)2—&1—2——2 = 234.389, (76)
vor R
Pyy = 29.408871,
which agrees with the result of equation (71) so Pyy and P,y are consistent with

this cross-check; o
(P33 — Pg3) = 03T2,

or
57.6117 — Pu = (2.764620)%4 = 30.5724, (17
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or A
P33 = 27.0392,

which agrees with the result of equation (73) so Ps3 and Py3 are consistent with
this cross-check;

- A 45°
(Pi1— Pu1) = 03‘777
or 4(36)
504.6652 — Py = 16-——- = 489.1569, 78
652 = Pu 6325/69 (78)
or .
Py = 15.5083,

which agrees with the result of equation (68) so Py; and Py, are consistent with this
cross-check. Now this closed-form example test case can be used to check-out and
confirm output from any software implementation of a discrete-time KF covariance
calculation for the parameters of Section 2.2.5 or augmentation of Section 2.2.3 to
any state size that is an integer multiple of the original 3 states.
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Notation

At

A) A(t)$ Ak
A2

B7 B(t)7 B
C, C(1), Ck
Cov (X,Y)
E{X}
E{X|Y}

G

Gk

I,
N(m,o?)
Py x

Prr

p(z)
p(z1,Te)
p(x1|z2)

@k

Ry

Sk

tr

ug

Var (X)
Var (X|Y)
Vg

Wi

Wik

Xk

Xk, Rk k
Xk, k-1
x,¥)
XT, FT

pseudo-inverse of matrix A

7 X n system matrices

“square-root” of A

p X n control input matrices

¢ X n measurement matrices

covariance of random variables X and ¥
expectation of random variable X

conditional expectation of X given Y’

steady-state Kalman gain matrix

Kalman gain matrix

n X n identity matrix

Gaussian distribution with mean m and variance o2
error covariance matrix: Cov(Xkk — Xk,k)

error covariance matrix: Cov(Xg k-1 — Xk k—1)
probability density function

joint probability density function

conditional probability density function

covariance matrix of system random vector §,
covariance matrix of measurement random vector i/
covariance matrix of system and measurement vectors
trace of a matrix

deterministic control input (at the kth time instant)
variance of random variable X

conditional variance of X given Y

observation (or measurement) data (at the kth time instant)
weight (matrix) (at the kth time instant)

weight (scalar) (at the kth time instant)

state vector (at the kth time instant)

optimal filtering estimate of xx

one-step ahead optimal prediction of xi

inner product of x and y

transposes of vector x and matrix I'

Kronecker delta
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measurement noise (at the kth time instant)
system noise (at the kth time instant)
transition matrix (from the jth to the ith state)
zero (number, vector, matrix, function)

Notation

Subject Index

Adaptive filter 71,87
adaptive Kalman filter 65,98,100
Bayesian estimate 23,66
Bayesian inference scheme 23
Bellman-Gronwall lemma 179,184
Bias 15
Bounding ellipsoidal set 163,171
Central limit theorem 195
Cholesky decomposition 43
Coloured noise 96,105
Confidence value 161
Convex propagation theorem 144
Convex representation theorem 145
Cramer-Rao lower bound 10
Credal convexity 140
Credal probability 142
Credal state 142
Degree of boldness 151
Distributed filtering 161
Epistemic utility 140
maximum expected 150,151
Estimate 24,26,28,42,67,68,70,140
a priori 7,9,15,66,87,157
a posteriort 7,9,16,66,142
conditional mode 67
correlation method 68
covariance-matching technique 70
Fisher 24
classical 26
generalized 28
maximurm likelihood (ML) 42,67
joint 67
marginal 67
set-valued 140
Least squares 43,44

Extended Kalman filter (EKF) 3,15,211
ideal (IEKF) 9,10
iterated 13
modified (MEKF MGEKF) 9,11,39
standard (EKF,SEKF) 4
Fisher initialization 23
Fixed point smoother (FPS) 56
Fokker-Planck equation 7
Gaussian noise 65,89
Gaussian analogue 120
Gaussian sum 113
non-Gaussian noise 113,161
Generalized Fisher error covariance 28
Hassian (matrix) 16
Kalman extrapolation equation 25
Kalman filter 3,6,15,23,25,39,65,87,113,
114,139,161,179,193
adaptive 65,98,100
class B JTIDS filter 194
diffuse (DKF) 39,45
extended (EKF) 3,15
GPF filter 194
IV&V Kalman filter code 193
MFBARS filter 194
on-line Kalman filtering 90
PTA filter 194
PINS filter 194
robust adaptive Kalman filtering 65
robust 181
RV tracking filter 194
set-valued Kalman filtering 139,146
SINS correction filter 194
STAR filter 194
suboptimal Kalman filtering 113,114
Numerical approximation 193
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