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Abstract—New methodologies for target tracking and for
evaluating its efficacy have recently emerged, all potentially
being a “magic bullet”. The questionable accuracy benefits,
missing rigor (in some cases), and definitely large CPU-time
computer loading drawbacks of the new estimation approaches
are discussed as compared to conventional Extended Kalman
Filters (EKF’s) and the novel Batch Maximum Likelihood Least
Squares algorithm, as the well-known previous candidates for
use in land-based Early Warning Radar (EWR) target tracking.
A reminder is that the existing 40 year old Cramer-Rao lower
bound evaluation methodology is already rigorous and adequate
for evaluating target tracking efficacy in Pd < 1 situations
when confined to exo-atmospheric target tracking, as arises in
EWR for NMD/GMD. We also discuss the more challenging and
numerically sensitive angle-only filter methodologies, needed to
handle target tracking when enemy escort jamming denies radar
range measurements and impedes target tracking unless two or
more radars cooperatively triangulate synchronously to thereby
enable joint tracking of enemy jammers within the tight target
threat complex. (Sometimes merely one sensor suffices for AOT,
as discussed.) Finally, supporting technologies (some old, some
new) are discussed for enhancing the performance of these EKF’s
with only a modest increase in computational burden. Motivation
for these pursuits is the quest to gain more veracity in on-
line filter covariance calculation to mitigate any tendency to be
overly optimistic or pessimistic (which could otherwise adversely
affect multi-target track associations which typically utilize such
EKF covariances within its initial gating stage) occurring further
downstream in the standard sequence of processing steps.

Index Terms—EWR Target Tracking, Filter Models, Approx-
imate Nonlinear Filter, EKF, IEKF, Batch Least Squares, Un-
scented Filter, IMM & MMM Filters, Particle Filter, Covariance
Fidelity, Covariance Intersection, Probability 1, Multi-target
Tracking Alrernatives.

I. INTRODUCTION AND OVERVIEW

S
TRATEGIC target tracking typically employs a (public

domain) system dynamics target model that is nonlinear

(with inverse square gravity along with the earth’s second

zonal harmonic [including J2] appearing in its associated

ODE description, similar to system and measurement models

described in detail in [26], [107], [218], [284], [298] with

parameter values as usually provided, but updated in [114]).

The EWR target model is also nonlinear in the algebraic

sensor observation equation, where range-Doppler ambiguity

is compensated for within the plane of the antenna face [11],

[295], using a transformation algorithm [133] (that should

be updated [134], [356] to reduce the maximum error that
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can be incurred). Among the first cogent modern treatments

of Reentry Vehicle (RV) target modeling for radar target

tracking were1 [290]-[292], [59]-[61] (and, afterwards, quickly

followed by several others [62], [293]-[295]).

Fig. 1. Gating after each incremental EKF output enables MTT associations

EKF’s are typically used for tracking the target state in a

ballistic trajectory; but over the last 30+ years, some form

of nonlinear batch least squares (BLS) algorithm has also

been used for this purpose ([135], [14], [15]) on fast par-

allel processing machines by dynamically allocating and de-

allocating memory, as needed. However, EKF’s are still relied

upon for the measurement intensive routine data associations

arising in first forming the initial hypotheses within multi-

target tracking (MTT) before switching to BLS for later track

enhancement of mature targets as part of the overall MTT pro-

cess prior to Fire Control dispatching a (non-nuclear) kinetic-

kill vehicle 2 to eliminate the hostile RV threat entirely during

its exo-atmospheric midcourse transit 3. Typical behavior of

target-associated Confidence Regions (CR) during tracking are

conceptually depicted in Fig. 1, as they go from initially

being “a pancake” (at horizon break, upon first entering

the radar fence (consisting of proprietary pre-programmed

patterns of radar up-down pulse-pair chirps within multiple

pencil beams sweeping and scanning for initial detections and

subsequent confirmation) to later being “a football” as even

more confirming radar sensor return “hits” are accumulated

for this designated target. Target ID’s are assigned by the

radar controller/manager that subsequently “schedules” radar

resources to systematically return to continue “viewing” these

initially identified moving targets to enable further improved

following of these objects of interest that are suspected to be

1Paralleling similar precedents, circa 1967, by earlier initial trailblazers:
James R. Huddle (Litton), Stanley Schmidt & George Schmidt (Draper Lab.),
and Arthur Gelb (TASC) in first recognizing the Kalman Filter’s utility for

Inertial Navigation Systems (INS).
2Possibly with a terrestrial-based command guidance or more likely with

some form of on-board self-contained proportional navigation guidance.
3Successful Terminal Phase intercept during atmospheric reentry requires

more than merely 6 filter states to account for the effect of lift and drag on

the targets and sometimes considerations of micro-motions, all of which are
beyond the scope of this paper. This paper considers only aspects historically

related to UEWR, which has a goal of mid-course exo-atmospheric intercept.
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potential threats (after having already passed a comparison test

weeding them out from known background satellites and space

debris listed in an up-to-date Space Object Catalog of 13,000+

entries 4).

Fig. 2. Assumed Gaussian CR goes from being a pancake (at horizon break)
to a football afterwards

Fig. 3. Functional overview of the MTT Data Association Aspect of Track

Maintenance [53]

Among the new approaches to target tracking and for

evaluating its efficacy are unscented filters [1]-[4]; Covariance

Intersection (CI) filters [5], [6] (discussed in depth in Sec. II);

Particle Filters (PF) [388], [8], [177]; and Farina et al’s new

formulation of Cramer-Rao Lower Bound evaluation for non-

unity probability of detection (for Pd < 1) [9], all offering the

lure of potentially being a “magic bullet”. One of the clearest

discussions of both historical and recent estimation algorithms

(including EKF, UKF, MMM, INN, and Particle Filters [PF’s]),

their underlying assumptions/mechanization equations and that

also provides extremely useful insight into important aspects

and distinctions in their implementations is offered in [177,

Chapts. 1-3]. We offer additional new practical observations

herein in further considering how these algorithms relate to

the EWR application. The questionable accuracy benefits, the

missing rigor (in some cases), and definitely large computer

loading drawbacks of the new estimation approaches all need

to be considered (as discussed further in Secs. II to V) before

deciding to push forward to implementation for new EWR

applications. We also review the older α−β filters as they have

again been recently reconsidered for EWR tracking [151].

Two of the new approaches were evaluated and cross-

compared as being among the four reported in [10], but all with

accuracy results obtained under a somewhat artificial scenario

of use (viz., invoking only 4 tracking filter states and assuming

only planar motion despite not being under the influence of

central forces exclusively but projectile treated as if it were

and the observing radar is only at the launch point and within

the same plane as the target trajectory) thus leaving accuracy

quantifications in [10] somewhat questionable as they relate

to actual missile defense since this overly benign scenario

apparently lacks realism, as explained in Sec. III. These

approaches are discussed as compared to the standard load

of two conventional Extended Kalman Filters such as Range

4In 2016, NASA and FAA seek to takeover compilation of Space Object

Catalog from U.S. DoD, as now headed up by Dr. Moriba Jah, Director,
Space Object Behavioral Sciences. Amount of “space junk” is now estimated

at 22,000 objects to be tracked and cataloged.

Velocity Cartesian Coordinates (RVCC), and R-U-V [11]-

[13], and to novel Batch Maximum Likelihood Least Squares

(BLS) algorithms [14], [15], [189, App. 2], as three well-

known historical candidates for use in radar target tracking

within land-based EWR. (Recall that Ref. [113] has already

demonstrated that partitioned filters can be unsatisfactory in

some situations and are therefore undesirable even for crossing

targets.)

In Sec. V, the existing 40+ year old Cramer-Rao lower

bound evaluation methodology [16]-[24] is shown to be rigor-

ous and flexible enough to adequately evaluate target tracking

efficacy in Pd < 1 situations for specified detection threshold

settings when confined to exo-atmospheric midcourse inter-

ception of a target and its prior tracking, as arises in EWR,

where truth model process noise is theoretically zero. The

filter model can have nonzero process noise tuning 5 and still

abide by this Q = 0 constraint dictated by the truth model’s

structure. However, Farina et al’s formulation [9] (based on

[25]) is useful for evaluating Indo-atmospheric tracking, which

is a more challenging situation, where system truth model

process noise is definitely nonzero (reflecting atmospheric

buffeting associated with reentry drag, or maneuvering, or with

a projectile undergoing late stage thrusting).

As discussed in Sec. VI, motivation for these pursuits is

the quest to gain more veracity in on-line filter covariance

calculation to mitigate their tendency to be overly optimistic

(or, much more rarely, pessimistic) since any hand-over or

multi-target (MTT) associations rely on their veracity (Figs. 2,

6) and errors in the values of these covariances (being the

only ones actually available in one-shot real world trials)

are sensitive. In Sec. VII, we recommend pursuit of good

tracking accuracy with probability one success (as pioneered

by the late Frank Kozin in the 1960’s and 1970’s) over current

Monte-Carlo-based mean square averaging techniques, which

captures only aggregate behavior. In Sec. VIII, we mention

the relevance of solutions for the Lambert Problem to EWR

and summarize its status.

In Sec. IX, we discuss the more challenging and more

initial-condition-sensitive angle-only tracking (AOT) filter

methodologies [28]-[33], needed to handle target tracking

when enemy escort jamming denies the radar its target range

measurements and thus impedes tracking.

After reviewing the limitations of earlier trackers, sup-

porting technologies (some old, some new) are discussed in

Secs. IX and X for enhancing the performance of EKF’s,

which incur only a modest increase in the computational

burden (all applicable as evolutionary low risk enhancements

to the EKF’s already present in EWR) as variations that more

easily satisfy hard real-time constraints.

We offer our views here based on past experience in the

5A quantitative rationale is offered in [285] for the appropriate magnitude
of compensating fictitious process noise utilized in tuning an EKF filter model

that seeks to track exo-atmospheric ballistic targets.
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TABLE I
RELATIVE CPU BURDEN OF 4 FILTERS [59, P. 44]

EKF α − β − γ EKF 2nd order Iterated
Filter (adaptive) Filter (IEKF)

1 0.1 1.3 1.5 2.0

theory 6 and applications of estimation, tracking, and Kalman

filtering [43]-[58], [68], [75], [76] and by using the strong

tradition of quantifying the relative computer burdens of

various filter alternatives beforehand [59]-[63] for sequential

implementations 7 using an awareness of the characteristics

of what constitute acceptable exact and approximate solutions

to nonlinear estimation problems [64] (cf., [65]), [73], [283],

[286], [287]). We reference older surveys here [260], [259] 8

as respected precedents because of their correctness (see

Table 1). A newer published survey [69] by Lincoln Lab in

1984 (specifically for RV target tracking) found no significant

changes from the same approaches and 1970 principles of

[59] other than looking at evolutionary changes and that the

1970 ranking of candidate tracking filter approaches had not

changed much (or expanded, despite hundreds of subsequent

researchers tackling the problem). Evidently, others also fear

that many of the very recent new alternative approaches to

the use of EKF’s for target tracking are over-hyped (see [86,

Sec. VI], [102], [112]). Further evidence supporting this view

is offered here in Secs. III, IV, and X but we are receptive

enough to also report their benefits. Constructive evolutionary

EKF developments that have occurred in the last decade to

improve performance are pointed out (especially in Sec. X)

and we also point out other improvements, some as mundane

as merely identifying new best parameter values [107], best

practices for radar target tracking [114] (and sometimes as

best models for INS/GPS navigation 9 [272] that also plays

a useful role in locating moving antennas or in serving as

a source of true position and velocity for targets equipped

with GPS translators during validation tests), and in making

the derivation of results simpler and more straight forward

6My perspective, which aligns with what Prof. Sanjoy J. Mitter (MIT) has
publicly said, is that the theory of nonlinear filtering, in general, requires

familiarity with Ito, Stratonovich, and McShane integrals as well as an un-
derstanding of measure-theoretic probability (including nested expanding sub-

sigma algebras and conditional expectations with respect to them, martingales
and their associated inequalities, and the law of the iterated logarithm). For
more detail, see [125]. However, my article here is kept at a higher level.

7The CPU burden for sequential implementation is used merely as a

baseline cross-check for eventual parallel implementation in modern day
hardware consisting of either embedded processors or powerful parallel
processing mainframes, where it is expected that considerable speed-up should

accrue (but does not always initially occur because of processing bottlenecks
that first need to be identified and then removed until the expected speed-

up is achieved). Historically, many so-called fast parallel versions of famous
algorithms were initially unexpectedly slower than their predecessor sequential
counterparts until fixed.

8While Prof. Thomas Kailath (Stanford) is almost always in the right, a

notable exception was [263] vs. [264].
9A new approach for computationally processing gravity mesurement data

was recently availed [384] and we offered two counterexamples to the
proposed procedure [385]. A way of squeezing more information out of a

GPS receiver by utilizing more of its existing frequencies has also been offered
[386] and we streamlined and simplified the calculations [387]. Both of our

improvements were unsolicited.

[181], [271]. Novelty and creativity are always encouraged but

we also strongly desire that the test conditions for algorithm

evaluations be realistic and actually representative of the

application scenario.

Fig. 4. Our newer approach reduces the computational burden of Iterated

Extended Kalman Filtering (from [35])

In 1989, we were able to make a slight improvement in

the ranking of an Iterated EFK [35] 10 by simplifying its

computer burden (Fig. 3). Instead of an IEKF being twice

the computed load of a comparable EKF, as [59] reported

(see Table 1), we offered an evolutionary modification and

improvement that made our IEKF just 1.333̄ the computer

load of a comparable EKF yet yielded identical results of the

same accuracy as the earlier more computationally intensive

version. Also see [122]. (Carlson’s 1973 version of Squareroot

filtering now beats Gerald Bierman’s later 1975 U -D-UT

formulation merely by the way computer processor hardware

and its associated firmware algorithms are now implemented

[58, App.]; prior to the mid 1990’s, the maximum CPU tally

was vice-versa. However, while prudent to use, squareroot

filters may not even be needed [359, Sec. 9.5] for tracking

RV’s since a specific designated target is only in view for

less than 30 minutes and the discrete measurements received

may be somewhat sparse and relatively fewer than is usually

the case for comparable Navigation applications, where fre-

quent periodic measurements warrant use of computationally

stable squareroot filters to compensate for the round-off error

incurred with the relatively more frequent opportunities for

measurement incorporation into navigation filter updates.)

10The main focus in [35] is the structure and performance of an IEKF
vs. an EKF for RV tracking, even though the oversimplified model common
to both is acknowledged to not include J2 (which, when present, accounts

for the earth’s oblateness) nor is Doppler compensation in the face of the
antenna present, as is now known to be desirable to include both of these
terms in a tracker’s model since they are needed for more realism in modeling

Missile Defense situations [14], [15], [53] because greater tracking accuracy
is reaped as a consequence of their presence in the model. These modeling

simplifications were corrected later in [14].
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Profs. R. E. Mortensen [355], [202], H. W. Sorenson, E. B.

Stear, A. B. Stubberud, and R. C. Kolb hosted the (U.S. Air

Force sponsored) Nonlinear Estimation and Its Applications

Conference from 1970 until it ended in 1975. Although many

innovative, well-funded researchers were working hard on

the nonlinear filtering problem, this conference was canceled

because significant new results usually do not accrue yearly 11

for the hard problem of nonlinear filtering. Even today, some

of the best insights and early leads for tackling nonlinear

filtering are found in these past proceedings (e.g., [129],

[130]). Recommendation for future work in Secs. X and

XI logically continue where our predecessors left off by

emphasizing existing barriers that still need to be tackled

and conquered rather than suggesting a search for new ap-

proaches just because they are new (while apparently ignoring

past problems already identified as needing solving before

further progress could be made). A brief summary and fur-

ther perspective on goals accomplished here are provided in

Sec. XII. For those readers desiring a refresher or more of an

introduction, a brief summary of Kalman Filtering is in the

Appendix, which emphasizes software architecture needed to

appropriately match the structure of a particular application.

II. WHY COVARIANCE INTERSECTION?

A counterexample is presented to a result claimed in a proof

in [6], pertaining to using this new approach to Covariance

Intersection (CI). Other researchers have already demonstrated

certain problems that exist with earlier versions of CI, as

summarized from a survey [74] of the previous CI approaches

encountered in Target tracking applications. We alert readers to

investigations along similar lines from the field of navigation

that were apparently overlooked in [74] that convey similar

but different results for ascertaining ellipsoidal overlap and

for combining the estimates from two or more Kalman filters,

each representing a different sensor’s output that has been

previously processed. In all cases, CI is practically useless

despite having beautiful analytic proofs.

11With the notable exception of F. E. Daum’s new nonlinear filtering results
in ’86 (IEEE AC), ’86 (ACC), ’86 (20th Conf. on Inform. Sciences and

Systems, Princeton), ’87 (IEEE AC), ’88 (Ch. 8, ed. by J. C. Spall, Marcel
Dekker) ’94 (SPIE, Orlando, FL), ’97 (SPIE, San Diego, CA), ’01 (Proc. of
Tribute to Y. Bar-Shalom), ’03 [8] but none yet applied (as of 2006) except for

an application with only 4 planar states [311] that, perhaps, may be considered
too overly simplistic to be practical and Daum’s later important results are
still infinite dimensional (viz., in general, requiring full integration of a non-

Gaussian pdf constituting a Propagation Step up to the time anticipated for the
next Update Step) so they are not computable in real-time (unless computed

beforehand and stored off-line, a procedure found undesirable in the 1970’s,
by Sperry Systems Management, when measurements did not arrive exactly
when expected, as had been previously planned). An exception is that all of

these results simplify to a tractable real-time Kalman filter when both process
and measurement noises are Gaussian and the system is merely linear, as do
several other existing historical 40+ year-old nonlinear filtering approaches

as a precedent, notably (1) solving the Fokker-Planck Partial Differential
Equation (also known as the forward Kolmogorov equation) for the evolution
in time of the conditional pdf of the system state directly or, equivalently, (2)

taking its Fourier Transform to obtain a conditional Characteristic Function,
from which the random processes’ conditional moments can be generated via
differentiating it a requisite number of times (where both these approaches

benefit from the additional structural simplification of encountering certain
noises from an exponential family possessing Gaussian conditional pdf’s

[180]).

The CI-based sensor fusion methodology of [6] usually

degenerates to cases where µ = 0 or µ = 1, rather than the

more useful situations where 0 < µ < 1. Some of the blame

should be shared by IEEE reviewers of [6], who allowed it to

be published even though there were no numerical parameters

specified for the single diagram that appeared within, which

was merely conceptual, and the single numerical example only

illustrated the degenerate case of µ = 0 or µ = 1 (and not the

useful case where 0 < µ < 1, which is seldom met)12.

A. A more recent approach to CI

This technical note offers a counterexample to the use

of the results of [6] in this new Covariance Intersection

(CI) approach. An expression for the estimate that results

from combining two prior (assumed) independent estimates

consisting of (x̂1, Paa) and (x̂2, Pbb) is of the following well-

known form ([165], and as summarized from Eq. 2 to the end

of Sec. II of [6]):

x̂c = K1x̂1 + K2x̂2 = PbbP
−1
cc x̂1 + PaaP−1

cc x̂2

= P−1
aa Pccx̂1 + P−1

bb Pccx̂2. (1)

The corresponding exact covariance for the above, with the

assumption of possessing unbiased estimates throughout, is:

P̃cc
4
= E[x̃cx̃

T
c ], where x̃c

4
= xtrue − x̂c. (2)

The above expression of Eq. 1, consisting of the indicated

weighted combination of the two prior linear estimates and uti-

lizing the accompanying covariances Paa and Pbb, seeks to use

an acceptable approximate covariance Pcc that conservatively

suffices in its role of making Eq. 1 be a useful single combined

estimator if and only if Pcc is a consistent covariance (in the

matrix positive semi-definite sense) by satisfying the following

required upper bound criterion ([6, Eq. 4]):

Pcc ≥ P̃cc, (3)

(notice the distinction made using the tilde on the right in

Eq. 3) and the quest for a satisfactory consistent covariance

upper bound motivated use of this particular expression:

Pcc(ω) = [ωP−1
aa + (1 − ω)P−1

bb ]−1, (4)

(advocated for use in Eqs. 9 and 10 of [6]), which when

substituted back into Eq. 1 yields:

x̂c = K1(ω)x̂1 + K2(ω)x̂2

= ω[ωP−1
aa + (1 − ω)P−1

bb ]−1Paax̂1

+(1 − ω)[ωP−1
aa + (1 − ω)P−1

bb ]−1Pbbx̂2. (5)

Ref. [6] then advocates optimizing ω in the above to minimize

the trace of Eq. 4 (cf., [6, Eq. 14]):

tr (Pcc(ω)) = tr
(
[ωP−1

aa + (1 − ω)P−1
bb ]−1

)
, (6)

and goes further to provide Theorem 2 [6, p. 1881] that

claims the global minimum occurs for ω∗ ∈ [0, 1]. The

resulting optimized ω∗ is then substituted back, respectively,

12Analogous to illusionist Uri Geller’s claim to the “Great Randy” that

situations where Uri’s magic did not work proved that it was real. It was not.
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into the expressions of Eqs. 4 and 5 (even when the constituent

component estimates are no longer independent and the cross-

covariance Pab may be unknown or inaccessible) to be the best

fused estimate of the form:

x̂c = K∗

1 x̂1 + K∗

2 x̂2 = ω∗[ω∗P−1
aa + (1 − ω∗)P−1

bb ]−1Paax̂1

+(1 − ω∗)[ω∗P−1
aa + (1 − ω∗)P−1

bb ]−1Pbbx̂2, (7)

with the corresponding accompanying associated covariance:

P ∗

cc
4
= Pcc(ω

∗) = [ω∗P−1
aa + (1 − ω∗)P−1

bb ]−1. (8)

Since the original two estimates and accompanying covari-

ances are all real quantities, clearly, the two expressions of

Eqs. 7 and 8 also need to yield exclusively real results. If one

were to obtain a complex answer for ω∗ as the solution that

globally minimizes the criterion of Eq. 6, this would constitute

a counterexample to what is claimed and ostensibly proved in

Theorem 2 [6, p. 1881], namely, that the optimizing ω∗ either

lies on the two boundary points 0 or 1 or lies within the interior

of [0, 1]. Once this was definitively established according to

[6], they could then turn their attention in [6] by just searching

over the compact interval [0, 1] for the minimum that is

guaranteed to exist from first principles of real analysis for this

continuous cost criterion of Eq. 6 (as the composite of the trace

and the matrix inverse) since, from elementary mathematical

analysis, scalar continuous functions always achieve both a

maximum and a minimum on a compact set. However, only

Theorem 2 of [6] asserts that such a minimum is also the

global minimum (otherwise it would not be of interest since

this criterion of using the trace of the associated covariance

was specifically chosen within [6] to be consistent by dove-

tailing with what was already correspondingly used in the

derivation of the underlying Kalman filters from which the

prior constituents (x1, Paa) and (x2, Pbb) were obtained). If

this local minimum were indeed also the global minimum, we

would have no further objections here. However, example 1

below serves as a counterexample to the global optimization

assertion [6, Thm. 2] since it yields a complex answer for ω∗.

Similarities and connections to other tests for ellipsoid

overlap and pre-existing warnings regarding other earlier Co-

variance Intersection approaches are discussed in Sec. II.D.

B. A numerical counterexample

A closed-form evaluation will now be provided for this new

version of CI [6] for the simple numerical example below that

exposes a difficulty with using this CI approach that has not

been previously publicized.

Example 1:

Paa =

[
2 0.5

0.5 2

]

; Pbb =

[
2 0.5

0.5 2

]

;

Pbb − Paa =

[
1 1
1 7

]

> 0, and [Pbb − Paa] has λ = 2, 6.

(9)

Notice that both Paa and Pbb above are positive definite, as

with all non-degenerate covariances.

To explicitly demonstrate this new CI technique of [6], we

seek to apply the solution of Problem 2 (of [6]) to Eq. 9

above yielding the following abbreviated intermediate steps

as we seek to directly solve for the optimizing ω∗ that should

minimize the trace of Pcc below (according to the procedure

of [6, Eq. 16] using the derivative convention stated in the

footnote below):

P−1
aa =

[
8
15

−2
15

−2
15

8
15

]

; P−1
bb =

[
12
33

−2
33

−2
33

4
33

]

; (10)

Pcc =

[
8ω
15 + 12(1−ω)

33
−2ω
15 − 2(1−ω)

33
−2ω
15 − 2(1−ω)

33
8ω
15 + 4(1−ω)

33

]−1

=
[

84ω+180
495

−36ω−30
495

−36ω−30
495

204ω+60
495

]−1

=
165

[
(68ω + 20) (12ω + 10)
(12ω + 10) (28ω + 60)

]

DENOM
;

(11)

tr[Pcc] =
165[(68ω + 20) + (28ω + 60)]

DENOM
, (12)

where DENOM
4
= (28ω + 60)(68ω + 20)− (12ω + 10)2. The

critical points of the above trace are obtained from setting
∂

∂ω
tr[Pcc] = 0 and, after simplifying, solving for the zeros of:

0 = 42, 240ω2 + 70, 400ω + 61, 600, (13)

a quadratic equation; with solutions being:

ω∗ =
−70, 400

+
−

√

(70, 400)2 − 4(42, 240)(61, 600)

2(42, 240)

=
−70, 400

+
− √−5, 451, 776, 000

2(42, 240)
. (14)

The above Eq. 14 possesses no solutions 13 over the real

field and, in particular, has no solution within the predicted

interval [0, 1] and so the new CI approach of [6] is apparently

stymied here and can proceed no further for this numerical

example corresponding to [Pbb − Paa] being strictly positive

definite. We did not anticipate that this new CI approach of [6]

would exhibit such problems when the containment condition

demonstrated in Eq. 9 (i.e., Pbb − Paa > 0 or, equivalently,

Pbb > Paa) was strictly met (a condition that was present but

down played in the proof of [6]); so we were surprised when

it failed to yield an adequately real solution for ω∗.

While it is indeed true that a continuous function of ω (such

as the matrix inverse, constituting the RHS of Eq. 4, composed

with the trace operation of Eq. 6) over a compact interval like

[0, 1] achieves its minimum there, we reject the suggestion that

we merely confine optimization to be over [0, 1] since such a

constraint would, in general, only yield a local minimum. The

proofs of [6] supposedly guarantee that by merely optimizing

the expression of the RHS of Eq. 6 over just the interval [0, 1],
the result would also be the global minimum. However, this

non-pathological Example 1 above demonstrates this claim of

[6] to be false.

According to [6], only after minimizing the above Eq. 12

can the two optimal gains and resulting associated optimal

13We formed d
dw

(
u
v

)
=

v du
dw

−u dv
dw

v2 and set v du
dw

−u dv
dw

= 0 ⇔ u dv
dw

−
v du

dw
= 0, and so Eq. 13 here was effectively multiplied throughout by −1,

but that still preserves the location of the roots of the resulting quadratic

equation.
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covariance Pcc be explicitly evaluated (by substituting the

result of Eq. 14 back into Eqs. 7 and 8, respectively, where

Eq. 8 has already been simplified to be Eq. 11) using CI. The

above numerical example exhibits a result that is therefore

inconsistent with what the CI approach of [6] asserts (contrary

to what is expected as supposedly proved in [6, Thm. 2]) so

[6] appears to not work as it should in all cases.

By insights availed from [67, p. 1141], it is recognized that

for two ellipsoids sharing a common center, the covariance

inclusions (such as that depicted in Eq. 18) serve as a test for

full containment of one ellipsoid within another if and only if

the matrix difference between two covariance matrices is pos-

itive definite. Numerical tests for positive definiteness/semi-

definiteness are well known [48] and can serve as a warning

of this same condition where the approach of [6] will likely

fail, as depicted here in the numerical example above.

While it can be argued that, initially, there is no apparent

physical reason why these initial covariance matrices should

exhibit any partial ordering between them. Two synchronized

decentralized estimates of the same target state vector, as

viewed from different sensors with, perhaps, different perspec-

tive views, different segments of the electro-magnetic spectrum

utilized (to exploit inherent target characteristics), and different

noise contamination intensities is but one example of why

unaltered initial covariances would not necessarily exhibit

such a partial-ordering in a completely general sensor fusion

application but, instead, likely be skewed off from each other

in tilt and overall size. However, use of conventional radar

along with a collocated laser radar may yield one target

ellipsoid contained entirely within another due to the greater

resolution (due to shorter wavelength) and generally smaller

azimuth error incurred for laser optics.

C. A simpler CI interpretation based on a different inequality

A simpler approach is now explored here, based on convex-

ity of the matrix inverse over positive definite matrices [66],

as:

[ωA + (1 − ω)B]−1 ≤ ωA−1 + (1 − ω)B−1

for all 0 ≤ ω ≤ 1.
(15)

When this result is applied to the expression of Eq. 4 above in

seeking a covariance upper bound as in Eq. 3, the following

results, requiring no matrix inversions at all for the RHS vs.

a LHS (from [6, Eq. 4]) that does:

Pcc
4
= [ωP−1

aa + (1 − ω)P−1
bb ]−1 ≤

ωPaa + (1 − ω)Pbb
4
= P ′

ccfor all 0 ≤ ω ≤ 1.
(16)

Notice that P ′
cc on the RHS represents an upper bound that

is easier and more convenient to obtain and, moreover, by

performing trace operations throughout Eq. 16, also yields a

corresponding simple upper bound on the trace of Pcc as:

tr[Pcc] = tr[ωP−1
aa + (1 − ω)P−1

bb ]−1 ≤
ωtr[Paa] + (1 − ω)tr[Pbb] = tr[P ′

cc]for all 0 ≤ ω ≤ 1.
(17)

However, although it is rigorous, this path is not a panacea

since the resulting bound is likely to be slightly coarser

(i.e., larger), in general than what would be provided by

the optimizing CI approach of [6] (in situations where the

approach of [6] in fact works, which is exceedingly rare). The

benefit of this alternate approach is that (1) it requires no

matrix inversions at all in its numerical evaluation and (2) it is

always true for all without any qualifications. The convexity

property itself delineates the interval of primary interest to

be [0, 1] and not because of some tenuous auxiliary theorem,

as with [6]. The procedure of [6] cannot be applied for this

example since [6, Thm. 2] is evidently violated.

D. Status of CI: insights & conclusions

Uncertainty being summarized as covariance ellipsoids nor-

mally only rigorously arises for the case of standard linear

systems with Gaussian initial conditions independent of the ad-

ditive Gaussian process and measurement noises (with known

covariance intensities) and outfitted with a pure Kalman filter

as an optimal linear estimator, mechanized either in a decen-

tralized or centralized manner. Ellipsoidal confidence regions

of constant pdf would also reasonably represent the class of

elliptical distributions 14 and the conditional and marginal

distributions of the exponential family of distributions but they

typically do not arise (so far) in the standard estimation and

filtering context of most normal target tracking or navigation

applications.

Caution is conveyed here regarding the result of [6] ap-

parently not applying when one ellipsoid is wholly contained

within the other. An apparent hole in the applicability of the

Covariance Intersection (CI) approach of [6] was illustrated

here using an explicit numerical example. We were so adamant

about pointing out the inherent problem with CI because

at least two researchers [358], [389] built their circa 2006

approach to Particle Filter implementation upon intermediate

internal use of the CI approach (being disputed here in perhaps

more detail than otherwise warranted for this topic but, in our

opinion, no one else had yet hit CI-revisited hard enough as

a necessary warning).

A coincidence is that the two participating covariances being

related as

P1 < P2 (18)

was historically encountered by this author in [43] as a

necessary condition that had to be satisfied before being able to

specify a test for ellipsoid overlap (in n-dimensions) when the

centers of the respective ellipsoids differ, where the particular

covariance matrix, P1, in [43], the solution of the Riccati

equation is so related to the other covariance matrix, P2, in

[43], the solution of the Lyapunov equation. Remarkably, the

result of [43] parallels (but is not identical to) what is done in

[6]. However, the proof of Eq. 18 holding for the application

of [43] was easily accomplished in Lemma 5.1 of [43] by

just taking the synchronous difference of the two respective

matrix differential equations that describe their evolution in

time (in either continuous- or discrete-time) by demonstrating

that the difference is always positive definite (as it evolves for

14Elliptical distributions have recently been used by Muralidhar Ran-
gaswamy (IEEE Fellow, AFRL/RYRT, WPAFB, OH) in attempting to com-

pensate for the ground clutter seen by airborne radar.
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all time steps k > 0) as the positive definite matrices, as pre-

and post-multiplied by an indicated non-singular matrix and

its transpose (yielding a positive semi-definite intermediary

matrix) and added to a positive definite matrix yielding a

positive definite matrix result as in [43, Lemma 5.1] and in

[245] (cf. [288, Lemma 2]).

The associated optimization problem in [6] has great simi-

larity to that in [43] since the associated Lagrange multiplier

was also merely a scalar. In the case of posing the simpler

problem of a one dimensional test for the overlap of scalar

Gaussian confidence intervals in [55] to show how the same

test then generalizes to n-dimensions in [43], as a test for

the overlap of Gaussian Ellipsoidal Confidence Regions, the

version of the test in [55], [140] (being simpler than that

in [43]) reveals other aspects that are similar in form to

the structure encountered in [6] in enabling a closed-form

answer to the optimization that also proceeds in both [43] and

[55], after just optimizing the selection of λ∗ along a scalar

direction (i.e., the essence of the main result of [6]). When

the containment condition is strictly satisfied, the numerical

example of Sec. II.B failed to satisfy the expected condition on

the optimum value of ω∗ that it fall somewhere within the real

interval [0, 1]. (Ref. [6] also lacks any corresponding numerical

description or, alternatively, any explicit reference for the

illustrative planar examples presented in Figs. 1 and 2 of [6],

respectively, of the intersection inscribing and circumscribing

ellipses whose purpose is to motivate how their approach

should behave.)

A scalar example is now offered that should convince the

reader of the inherent problem with CI. For a scalar case

situation, the ideal formula for the associated covariance of

two fused estimates (when the two underlying constituent

estimates are independent) looks like the familiar formula from

electric circuit theory for combining two resistances in parallel

(and is known to result in an answer that is less than the

smaller of the two). This result is intuitively appealing and

consistent with the tenets of Kalman Filtering. The following

two algorithms: (1) the CI covariance of [6] using any ω, and

(2) the alternative expression for the covariance, offered in

Eq. 17 as a new result (using convexity of the matrix inverse

over positive definite matrices) both yield a covariance that is

larger than the smallest of the two original covariances unless

ω is either 0 or 1, in which case it has a resulting covariance

that is identical to the smaller one.

Case I: For two ideal independent estimates, the resulting

covariance for the combined estimates would be:

p̃cc = 1
1

p1
+ 1

p2

= 1
(p2+p1)

p1p2

= p1p2

(p2+p1)
=







p2(
p2
p1

)
+1

≤ p2 , for p1 > 0, p2 > 0

p1(
p1
p2

)
+1

≤ p1 , for p1 > 0, p2 > 0






≤ min{p1, p2}

(19)

Case II: For the new CI algorithm of [6] in Eq. 4 for 0 < ω <

1, the covariance for the fused estimates would be:

p̃cc = 1
ω
p1

+ (1−ω)
p2

= 1
(ωp2+(1−ω)p1 )

p1p2

=
{

p1p2
(ωp2+(1−ω)p1 )

≤
p1p2

(ωp2+(1−ω)p2 )
≤ p1 , when 0 < p2 ≤ p1

p1p2
(ωp2+(1−ω)p1 )

≤
p1p2

(ωp1+(1−ω)p1 )
≤ p2 , when 0 < p1 ≤ p2

}

≤ max{p1, p2}
(20)

Case III: For the CI alternative path of Eq. 16, based on

convexity of the matrix inverse over positive definite matrices,

for 0 ≤ ω ≤ 1, the covariance for the fused estimates would

be:

p̃cc = 1
ω
p1

+
(1−ω)

p2

≤ ωp1 + (1 − ω)p2 =
{

ωp1 + (1 − ω)p2 ≤ ωp2 + (1 − ω)p2 = p2, when 0 < p1 ≤ p2
ωp1 + (1 − ω)p2 ≤ ωp1 + (1 − ω)p1 = p1, when 0 < p1 ≤ p1

}

≤ max{p1, p2}
(21)

So both these latter two CI covariance calculation paths

yield the same answer for the scalar case! (Convexity of the

inverse for positive definite matrices is rigorously established

elsewhere, with many precedents in the engineering and math-

ematical literature cited in [66].)

From the above Cases II and III with similar manipulations,

it is also easy to show that min{p1, p2} ≤ pcc ≤ max{p1, p2}
and, likewise, that min{p1, p2} ≤ p′cc ≤ max{p1, p2}. Please

compare the last two results above to the tighter result of Case

I above for 2 independent Kalman filter estimates. This is not

a very satisfying outcome of applying either of these two CI

strategies. Thus we illustrate the lack of appeal of either of

these CI expressions to data fusion.

Ref. [74] is an excellent overview, in depth numerical rank-

ing, and clear interpretation of all of the various approaches to

sensor fusion that have occurred in the target tracking literature

over the two decades rhat preceeded it and culminates in

an algorithmic improvement to CI that [74] attributes to the

pioneering work of the late Fred C. Schweppe’s “unknown

but bounded” approach [77], where, instead of embracing

the assumption of Gaussian noises being present throughout,

uses an entirely deterministic approach of circumscribing the

set of potential outcomes arising at each discrete-time step

of a linear system’s output within an ellipsoid. Schweepe’s

bounding ellipsoid approach, although creative, was notori-

ously conservative and was never used in applications nor

was it admired as frequently as what is reported on in [42],

as more representative of Schweppe’s genius. (Overlooked

in [74], parallel developments were occurring in navigation,

as similar techniques were being examined, e.g., [68], [75],

[76]; some criticized by Larry Levy [JHU/APL] [78]; but

refuted in [52] as pertains to Jason Speyer’s exact 1979

version of decentralized estimation [193] (also see [79]).

Ref. [74] demonstrates that the approximate algorithms of

the CI approach should only be used with extreme caution

since uncertainty increases as more measurements are used

(and fused) as a counterintuitive, extremely unsettling result

stated and proved simply and convincingly in [74, following

Eq. 22]. Apparently CI also has round-robin Web sites [5] in

2005, where one site refers to the other for missing details and

vice versa, yet the specific details are never supplied.

Please see Ref. [80] for an elegant solution to the problem

of assessing whether two 3-dimensional ellipsoids overlap that
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is both easy to understand and apparently straightforward

to test for numerically. 15 Problems with [80] and a more

straightforward approach to applying its results to determine

overlap are in follow-up discussions in [245] and [246].

Before proceeding, a distinction is made here between

what is offered in [80] and what is offered in [66] as a

test for ellipsoid containment before making other historical

connections and observations. Ref. 2 provides a test for full

containment of one ellipsoid within another only when they

share a common center, x̄, as between
(x−x̄)T P−1

1 (x−x̄)

2
≤ 1

and
(x−x̄)T P−1

2 (x−x̄)

2 ≤ 1 and the second is fully contained

within the first if and only if the condition of Eq. 18 holds

as a strict positive definiteness condition on matrices which

themselves are each positive definite (as are all well behaved,

non-degenerate covariance matrices [48]).

The overlap test of Ref. [80] needs matrix positive

definiteness/semi-definiteness tests along with an implied

eigenvalue-eigenvector calculation. Ref. [80]’s test is obtained

by exploiting features of a (3-D)-ellipsoid translation repre-

sented as a rotation in 4-D space, a technique familiar in

computer graphics applications [166, pp. 479-481].

By not needing any condition of Eq. 18 to be satisfied,

Ref. [80] is for a more general case than treated in [43],

[55], [140], [167]; however, the numerical calculations of [43],

[55] are tailored for a stand-alone real-time decision (that

was used aboard U.S. submarines). If one were to attempt to

generalize the results of [80] beyond 2- and 3- to n-dimensions

(as already done in [169] for just the theory and proofs),

a modified version of the computational approach of [43],

[55], [245] may be useful in this endeavor (and perhaps even

for 2- and 3-D as well) since the iterative algorithm used

is a contraction mapping with a provably geometric rate of

convergence (but needing double precision for all matrices and

vectors involved). The use of an iterative solution technique is

not necessarily at odds with providing real-time answers and

may be the simplest path to follow. A navigation application

using an even easier criterion of ellipsoid containment in

dimensions higher than 3-D is discussed in [10]. Cross-

sectional processing [175] may likely be useful as another

technique to use for sensor fusion.

III. UNSCENTED FILTERS, PARTICLE FILTERS, AND

CRAMER-RAO LOWER BOUNDS

We are aware of the following approach that evolved (Nahi

’69, Jaffer and Gupta ’71, Hadidi and Schwartz ’79, Monzingo

’75, ’81, Askar and Derin ’84, and Tugnait and Haddad ’75)

15Observe that a solution to the well-known generalized eigenproblem
λAx = Bx [168, Sec. 7.7] is also a solution of the fundamental Eq. 12 of [80]

since λAx = Bx ⇔ [λA−B]x = 0 ⇒ xT [λA−B]x = 0. Use of Choleski
factorization and the symmetric QR algorithm are offered in [168, Sec. 8.7.2]
as a stable solution for the case of A, B being symmetric and A being

positive definite, as is in fact the case for the matrices encountered in [80]
and herein. Observe that [80] deduces overlap by focusing and dwelling on
how pairs of the eigenvalues of non-symmetric A−1B behave. This extra step

in [80] of decomposing into cases was not needed and actually complicates the
problem unnecessarily (as pointed out in [245]). Symmetric matrices have all
real eigenvalues and just a consideration of symmetric matrices apparently

suffices in a complete test while non-symmetric matrices frequently have
complex eigenvalues and lead to more structural considerations that “muddy

the water” in deducing whether there is overlap or not.

to handle situations where there is data dropout or missing

data but we will not dwell on it here (other than to point

out its pitfall) because it sought to complicate the situation

well beyond what was needed. The above seven references

attempted to fit an inappropriate computational architecture

that sought to force use of a constant uniform step-size and

anticipated periodic measurement availability throughout the

implementation 16, where any lack of measurement returns at

an anticipated time-step k would be modeled using a scalar

independent multiplicative random variable γk that takes two

possible values, either 0 or 1, within the standard expression

for the received measurement data:

zk = γkh(xk) + vk. (22)

In the above expression, the missing measurements correspond

to γk = 0 for only noise being received. When γk = 1, the

desired signal is present in the measurements. The problem

with this formulation is that no real structure is available

for predicting the behavior of γk as a function of discrete-

time index k and, because of its presence, even applications

possessing linear systems and linear measurements become

horribly nonlinear and intractable as an infinite dimensional

nonlinear filtering problem 17 even though it originally appears

to only be finite dimensional since the system dynamics

model is linear and it was hoped, at that time, to be a

slight perturbation of a standard Kalman filter. Use of a more

appropriate architecture that just processes measurements after

they have been detected to be present by the received signal

exceeding the prescribed mandatory detection threshold avoids

these problems and is more straightforward to implement [174]

(by not assuming or relying on having a constant step-size

between measurements but just using the existing time-tag 18

of the last received measurements to propagate to the next

available one). When handled this way, no measurement is

ever “missing” but merely postponed by just having to wait

for the next available one to arrive (as a perfect architecture to

match the radar target tracking problem as an easy solution).

The above approach to estimation somewhat parallels what

is attempted at first in the beginning of [9], as sketched

for optimal Cramer-Rao Lower Bound calculation (but is

subsequently dropped in [9] after it was realized that it would

be much too unwieldy to figure out beforehand which combi-

nation of times will actually exhibit radar returns received).

Moreover, the Pd < 1 situation is not needed since the

absolutely lowest CRLB evaluation is obtained when all radar

16This architecture arises in academic simulations so the problem occurring
was in not recognizing at the time how to properly transition from the

construct currently being used for INS navigation, with its well known
periodic measurements, to the proper construct to be used for radar, where

the time of actual measurements being available for inclusion within the KF
as an update are not known beforehand.

17Exact solutions in nonlinear filtering are infinite dimensional, in general,
although certain extremely simple finite dimensional special cases exist [192]

(1979) and as extensions to those of Benĕs (’81, ’85, ’87); as Daum (’86);
and as Tam, Wong, and Yau [120] (and their many further subsequent
generalizations [126]); also see Stafford (’84) and [51, Sec. 2.3], [190], [191,

Chap. 5 & Appen.], [196], [197], [233, Chap. VII], [235].
18For perspective, National Instruments’ commercially available recent M-

series c©Data Acquisition devices all routinely provide such time-tags or time-

stamps automatically. Military turnkey applications have done so for decades.
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measurement returns are utilized (i.e., Pd = 1). When any

measurements are missing because they were not detected,

then the evaluation error incurred is worse (i.e., bigger). This

evaluation represents the best that can be achieved with the

existing geometry consisting of radar orientation of faces,

distances away from target, and sensor location on the earth as

all affect entire geometric perspective of target-to-radar. Actual

estimation algorithms can now be evaluated by how close

their performance accuracy gets to this CRLB representing

“ideal behavior”. If even the ideal situation is unsatisfactory,

we then immediately know that no estimation algorithm will

suffice. Improvements are only possible if illumination power

is increased or if pulse repetition frequency (PRF) is increased,

or radar scheduler allots more radar resources in order to

illuminate the target more frequently. A tractable approach

is instead invoked later in [9] (as in [17], [18, Lemma 6.5,

Ex. 7.2, Sec. 7.10]-[20, Sec. 6.2], [22]-[24], [53]) of using

the known times at which radar returns were actually received

before calculating the CRLB for that situation. This simpler

approach is believed to be quite acceptable since CRLB

calculation is usually done a posteriori and super-imposed

on performance graphs afterwards. Using the analogy of the

Fisher Information Matrix in the “denominator” before matrix

inversion flips it up so it may be directly compared for

proximity to computed covariance evaluations obtained by

Monte-Carlo sampling, this inverted denominator is used in the

same role as Kalman filter covariance analysis for the linear

case (where the post- and prior covariances are identical for

stipulated times of sensor measurement receipt). Comparisons

of proximity of aggregate covariance statistics to the corre-

sponding CRLB is also the accuracy evaluation technique used

throughout [177] for gauging how well the various approaches

accomplish their goal of adequately tracking their respective

targets

On-line covariances can be calculated a priori if one has

a perfectly known linear model, knows the covariance of the

noises, and knows the exact times at which the measurements

are received without actually needing the measurement realiza-

tions themselves. Since radar RV target tracking is nonlinear,

we need to know the actual measurement realizations in

performing the EKF estimation in order to estimate the state,

about which the linearization is to be performed at each time

step. However, in evaluating CRLB’s given the parameter

(being the state, which is perfectly known in simulations),

there is no need to know the measurement realizations too but

just the times at which they are received and the corresponding

covariance of the noises at those times. This was ultimately

done in [9] as it was done earlier in [17]-[24]; however,

[9] can handle the case of the truth model having non-

zero process noise based on the theoretical result of [25].

Other historical attempts to handle non-zero process noise

in decentralized filtering have their own drawbacks [68]. The

four different decentralized filtering architectures for possible

sensor fusion developed by the SDI Panel 25+ years ago

(by (the late) Dr. Oliver Drummond and also presented at

his 1997 short course at SPIE) were all predicated (as he

rigorously acknowledged) on there being zero process noise

present, otherwise these structures are useless or detrimental

in situations where process noise is present (so they are

inappropriate to use for Indo-atmospheric tracking). Ref. [68]

discusses a decentralized version of filter fusion where the

presence of non-zero process noise covariance was not well

accommodated because the same small fraction of Q, being
Q
M

, was apportioned to each of the M participating filters

(thus causing each participating filter to perceive the system

as being much more benign than actual and be untuned to

the true underlying situation) and likely to fail in its goal

of adequately tracking for each, which then adversely affects

the collated whole (since each of M subset filters will fail

to track a single target system’s plant that is much noisier

than each individual filter expects) the aggregate can not

be much better yet the computer burden is M times larger

than would be the case if just one correctly modeled filter

were used (thus this particular approach defies the reason for

seeking a decentralized implementation in the first place: for

the sake of redundancy consisting of more than one Kalman

filter that tracks sufficiently well).

Dr. Dana Sinno (Lincoln Laboratory of MIT) has investi-

gated self-organizing networks of Kalman filter-based sensors

(not unlike the electronic acoustic sensors dispensed into the

jungles of Viet Nam in the late 1960’s and 1970’s in a failed

attempt to monitor Viet Cong activity in the vicinity). Now

the sensors have a degree of intelligence and an ability to

hierarchically self-organize (like the 1970’s vintage JTIDS

RelNav did for the U.S. Navy) and automatically turn-off to

conserve power when noisy activity is absent. These smart

sensors can be interrogated and the master sensor reports back

results to a command center (which can be one of several to

avoid a single point vulnerability). Other related activity along

these lines is reported in [273]-[276], [289].

Only ideal exact initial conditions were presumed for each

target model for each local Kalman-filter-model-based sensor,

so results may be less encouraging when practical initialization

is eventually invoked (a candidate being [224]). Recall that

the local sensor models are differential equation based and

apparently assume only constant velocity. Once ideal exact

initial conditions are inserted in such a differential equations-

based or difference equation-based model (Q = 0), the

target’s trajectory is completely determined precisely without

any measurements being available. Subsequently providing

sensor measurements is just “icing on the cake” by improving

the on-line computed covariance but the target locations are

already known precisely without ambiguity. Such would not

be the case if the targets were allowed to accelerate later

after tracking had been initiated as long as it was not the

same constant acceleration as provided in the initial conditions.

Even the use of available (but noisy) According to Dr. Sinno,

Doppler measurements from the radar sensors degrade the

accuracy available from using mere position measurements

alone in this overly idealized experimental situation (as a first

step). A real difficulty at present is how to handle multi-target

tracking at the sensor level. It is likely that this aspect will

only be handled at the level of the supervising Command

Center(s) as master station(s). Our theoretical observation here

is consistent with what was reported in an IR&D project

at the 2004 MIT Lincoln Laboratory ASAP Workshop. Dr.
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Sinno later performed follow-on activities under a DARPA

contract at Lincoln Laboratory (2̃004-5) that, hopefully, is

more realistic. The late Prof. George N. Saridis (RPI) had

published a book on self-organizing systems [194]. The novel

MaxPlus formulation, as reported in [250], [269], posses

considerable potential for further revolutionary developments

in estimation for networked systems described by Petri Nets.

Within [220], the IMM Filtering approach is again imple-

mented only for targets described by linear systems, even

under maneuvers. Strategic Reentry Vehicles (RV’s) are targets

known to be adequately modeled only as being nonlinear in

both the dynamics and in the algebraic measurement model

[218]. Ref. [220] also considers Particle Filtering (PF) and

Probabilistic Data Association (PDA) approaches as well. As

with almost all PF examples to date (i.e., 2006), the state

space target dynamics model used within the calculations

is planar and consists of only 4 states. The complexity of

PF implementation as a CPU computational burden increases

drastically (exponentially) as the state dimension increases. As

already stated, practical Early Warning Radar target models

must be at least six states, and must be nonlinear to real-

istically reflect the action of an inverse square gravity and

the oblateness of the earth (effects that cannot be ignored

in a realistic EWR application). Unfortunately, Ref. [220]

does not reflect Bit Error Rates (BER) or possible request

for retransmission within the communications channels as a

consequence of BER. Ref. [220] does not consider having

adequate processor capability at each sensor site, as would be

the case for EWR with two way communication links present

to Colorado Spring’s Cheyenne Mountain (or to the newer

command center location), and which is more compatible with

methodology of decentralized filtering, reported on herein.

Particle Filtering utilizes numerous “mini-simulation” tri-

als [243], [299]. That is a big computational burden and

Gordon et al did not hide that fact in 1993 [7] when they

came up with the original concept of Particle Filtering. They

acknowledged that they could do many things in a better

way to reduce the computational burden (selective sampling

and re-sampling, invoking Metropolis sampling (1953)[302],

Metropolis-Hasting’s sampling method, invoking Metropolis-

Gibbs’ sampling method, Rao-Blackwellization techniques,

etc.) and [7] predicted future reductions in computational

burden. Sure enough, later versions of Particle Filtering, as

obtained 9 years later by the same authors (and by others, such

as Rudolph van der Merwe’s ReBEL and Frederick Daum and

Jim Huang [8]), made more efficient use of computations and

the computer burden was significantly reduced. However, the

CPU burden is still considerably larger than is likely tolerable

for EWR. Fred Daum (Raytheon) compared the old and new

versions of Particle Filtering (denoted by Daum as being Plain

Vanilla and as Bells and Whistles, respectively, as PF-PV

and PF-BW) to verify the reduction and improvements and

also offered theoretical results that serve as a bound on the

likely computational burden of future improvements in Particle

Filtering. Refs. [207], [208] have imaging applications of the

PF’s as well!

At present, PF is too big a CPU burden to be practical

(except [219]) and likely will remain so for the immediate

future (cf., [256]). Larger state sizes, as needed in 6 state

RVCC target tracking, would constitute a larger burden than

quantified in Farina’s paper [10] for an unrealistically benign

situation of using only a 4 state filter for endo-atmospheric

tracking, with target trajectory confined to a known plane 19

also containing the observing radar, and with ballistic co-

efficient (associated with atmospheric drag) being presumed

completely known. Farina’s Particle Filter was 440 times the

computational burden of his EKF of the same state size

(see Table 2). Because the number of particle necessary to

support a Particle Filter increases exponentially with the state

size, realistic filter dimensions of seven states would likely

cause the corresponding Particle Filter to be an even larger

computational burden than 440 times the computational burden

of the corresponding 7 state EKF 20. We await and encourage

further innovative constructions of proposal densities (when

needed) that should help concentrate the intermediate Monte-

Carlo simulations [302] routinely present in PF to occur in

more useful areas of state space so less of the simulation effort

is wasted than as now occurs.

While the Unscented Kalman Filter (UKF) [1] is now

portrayed in a better light in [2] 21 and in [4], [164], [278], the

UKF is still a bigger computational burden but not as large as

a standard “particle filter” (PF) [7], as aptly illustrated in [10]

by comparing the performance of 4 different estimators: EKF,

Statistical Linearization (KADET), UKF (Julier-Uhlmann),

and PF (with n=25,000) for an over simplified version of endo-

atmospheric radar target tracking (where the nature of the over

simplifications are examined more closely herein in Sec. IV).

Taking the computational burden of the EKF to be unity, the

relative computational burden of the four filters was tallied in

[10], as summarized here in Table II.

The study in [270] stacks up benefits and drawbacks to

19Motion along a conic section is exhibited by satellites and by reentry
vehicles. For both, object position and velocity are governed by the nonlinear

dynamics of body motion in a central force inverse squared gravity field. Even
more unique target behavior can be gleaned by including consideration of the
second harmonic J2 for realism to account for the oblateness of the earth (and

its presence induces two more characteristic motions known as the regression
of nodes and the rotation of Apsides [297]. [328]).

20CPU times or flop counts of EKF’s implemented on sequential Von

Neumann machines go as a multiple of n3.
21In 1997 during HAVE GOLD, TRW was funded to implement the

Unscented Filter a.k.a. the Oxford Filter, but failed to do so. Our apprehension
of UKF is because of: presence of an unexplained factor (or unconstrained

non-integer free parameter, possibly positive, negative, or time-varying at
the whim of the analyst) that can serve as an expanding or contracting
twiddle factor in the denominator of the gain expression that is consequentially

inherited by the covariance equations; numerical comparison in [1] of UKF vs.
EKF performance appear contrived since real EKF practitioners would either

take more frequent measurement fixes or better pose the target model to take
into account its anticipated motion about a circular track by merely posing
the problem in ρ, θ coordinates as the state (thus avoiding literally going

off on tangents); lack of usual local Lipschitz assumption that would indicate
an awareness of minimum conditions needed for solution to exist for the
underlying stochastic differential equation model (but do invoke conditions

that are impossible to check beforehand e.g., [1, Eq. 2] since probability
measure for x(k) is unknown); unconventional use of calculated covariance
to account for nonlinear measurement equation and associated unconventional

assumption of mean being zero and unconventional proposed handling if mean
is not zero (saying it can be shifted, but mean is in fact unknown so one can
not know beforehand how much it should be shifted by so user is stymied

in trying to proceed [1, Sec. 4]); UKF also utilizes “mini-simulation” trials
before each measurement incorporation step (but not as many as a PF would

require).
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TABLE II
RELATIVE CPU BURDEN OF 4 ALGORITHMS [10]

EKF KADET UKF PF (N=25,000)

1 300 3 440

conclude that both EKF and UKF performed well for inte-

gration of MEMS-based IMU with GPS, with and without

GPS blockage. However, Unscented Kalman Filter (UKF) was

deemed superior in [270] for seamlessly handling situations

where large initial attitude errors are present without needing

to initiate special in-motion alignment procedures. An obser-

vation here is that this post-processing analysis study neglected

to include a consideration of total operations counts incurred or

the ability of a particular algorithm to keep up with processing

demands in real-time navigation applications, where timeliness

of computed results should be a primary concern. This aspect

is where use of the Unscented Kalman Filter is less satisfying

and where use of an Extended Kalman Filter (EKF) wins

the contest hands down. Our last comment is based on our

prior experience in both INS/GPS [266], [57] and in EKF.

Another study [272] directly compares the performance of the

UKF to that of the EKF to also favor UKF use as being

more accurate (but also apparently failed to emphasize the

important hard real-time constraints present in the application

that UKF violated). See recent updates in [350], [351]. One

should always ask the question “is it real-time yet?” since

these researchers address every conceivable aspect except that

limitation (or failure of PF being suitable for EWR).

With the passing of time, further refinements have been

made and approximate approaches have been developed [254]

that trade-off computational complexity against optimality

(and associated accuracy) of the above algorithms, as has been

quantified across the board for the same identical example

application problem. Frederick Daum’s (Raytheon) Mar. 2003

IEEE Aerospace Conference paper on Particle Filtering [8]

demonstrates that, although the Particle Filter is easier to code,

in some simple situations, the Particle Filter can be 105 to 108

more computationally burdensome than an Extended Kalman

Filter for comparable accuracy. This is generally consistent

with what Farina et al reported. Ref. [177] is an excellent,

well-written yet concise book on the many aspects of radar

tracking, as it affects algorithm selection; but ultimately admits

significant PF drawbacks in the Epilogue [177, p. 287] which

is directly relevant to many practical applications such as EWR

tracking, paraphrasing: “when good mathematical models al-

ready exist for the system of concern (as they definitely do

for EWR) and the noise present is Gaussian (also true for the

measurement noise present in EWR and during mid course

portion of trajectory and for background objects in earth orbit

[in MEO and HEO to be considered in updating the Space

Object Catalog] are devoid of any process noise) then use

EKF instead of the more CPU burdensome PF” 22. Moreover,

the many recent creative, innovative, useful and impressive

PF results (whittling down the CPU burden [that blossoms

exponentially as a function of state size] by several orders of

22A similar disclaimer also occurs on [177, Last para. of Sec. 3.7].

magnitude for implementation) appear to parallel or mimic

the same general techniques that already arose elsewhere

for routinely handling partial differential equations (PDE) as

solutions are pursued using identical techniques (e.g., such as

invoking a convenient homotopy, interpreting or visualizing

the nature of a solution in terms of “particle flow”, using

meshfree techniques [cf. [320] vs. [379]], etc.).

I inadvertently uncovered an incompatibility in current

hopes for future parallel implementation 23 of a Particle

Filter as a further inherent barrier to PF ever being real-time.

[Inadvertent since, at the time, I was merely summarizing

why only one random number generator had historically been

used within rigorous MIMO Monte-Carlo system simulations

to avoid improper cross-correlation of noise realizations gen-

erated and to maximize the period before any RNG outputs

repeat [357]. The relevance of these same observations to PF

thus become obvious because PF’s utilize numerous “mini-

simulation” trials (that invoke use of a RNG within them),

being a huge CPU burden, somewhat ameliorated by further

performing sophisticated variants of the “Metropolis-Hastings-

Gibbs” sampling/re-sampling to squeeze the most use out of

random samples actually generated. Others had speculated that

this aspect could be implemented in parallel. My aforemen-

tioned insightful connection now bashes this hopeful specula-

tion by reminding of another practicality constraint needed

to avoid premature repeating (and unacceptably high cross

correlations of noise realizations) that arises unless restricted

to use of only one instantiation of the linear congruential

generator method for RNG of the necessary intermediate

uniformly distributed variates before ultimately converting

them to the necessary Gaussian variates that are needed from

this well-known two step procedure.] While parallelization

is only being attempted for Linear Congruential Generators

approaches to date [366], [367], the drawbacks are many [368].

There are alternative, more recent approaches for generating

sample realizations of uniform variates other than use of the

aforementioned linear congruential technique, but there is no

evidence (yet) that the handful of alternatives are any more

amenable to eventual parallelization without possibly repeating

the sample variates generated.

Mini-simulations may possibly be performed in parallel

in the future but calculation of the statistical outcome (i.e.,

estimate of mean and variance 24 from averaging particles) will

still need to be performed sequentially and its necessary entire

operations count will likely not ever be sufficiently improved

to be real-time (as is needed for PF use in EWR and/or

maintaining an up-to-date catalog of background objects in

space). For any estimation algorithm to be used for EWR

target tracking, it needs to be real-time enough to keep up with

anticipated rate of useful radar returns. The aforementioned

practical “criteria of usefulness” has yet to be strictly applied

to current state of PF evolution [350], [251]. Moreover, the

specific number of simulations needed to have a specified

confidence in the results is only conveniently (rigorously)

23Another barrier is mentioned in [177, p. 43, following Table 3.3] that
“limits the opportunity to parallelize the implementation since all the particles
must be combined”.

24Recall that the variance is needed within the gating step of Fig. 1.
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available for the case of Gaussians throughout (associated

only with the case of the system dynamics and measurement

models being strictly linear) and explicit knowledge of an

appropriate number is, in general, unavailable for nonlinear

systems and its associated nongaussian noises, thus defying the

very situations where PF and USF claim to seek improvements

to conventional EKF approximations. So PF and USF both

incur this uncalibrated approximation.

Ref. [335] uses the latest in rigorous real-time estimation

algorithms (neither a PF nor an Unscented/Oxford/Sigma-

Point filter) for enabling accurate pointing (precise pitch and

roll) within an aircraft, as reported within a high dynamics

operating environment. While it does utilize rate integrating

gyros, it also utilizes 2D accelerometer arrays and compares

to an on-board gravity map to achieve its accuracy. Following

reasonably large occasional offsets, it got back to within 0.1

degree pointing error within 10 seconds but results were much

worse with turbulence present. This is not an EWR per se but

EWR may be able to use some of these results in the situation

described herein in Sec. IX.

The benefits of possessing a better (second order) ap-

proximation to any nonlinearities present in the system or

measurement model, that is touted for PF and UKF (at the

expense of incurring multitudinous “mini-simulations” at each

measurement update step of the filter), would be an important

consideration and lucrative aspect if the dynamics and/or mea-

surement models were not well known. As we reminded above,

this is definitely not the case for Exo- and Indo-atmospheric

radar tracking where good models have been known and

documented for decades. A 2nd order filter variant or extension

of an EKF (also known as a Gaussian Filter) achieves a second

order accuracy in its approximation of these well-known and

carefully modeled and documented nonlinearities (e.g., [59,

p. 33]) by retaining the first three terms in the Taylor series

representation of each using the corresponding Jacobian (1st

derivatives) and Hessian (2nd derivatives), which need be

computed only once as an off-line a priori analytic exercise,

as discussed further in Sec. IX.

The Interactive Multiple Model (IMM) bank-of-Kalman-

filters approach arose and is apparently supplanting the orig-

inal 1965 Multiple Model approach of Magill (MMM) [360],

which is architecturally similar but lacks IMM sojourn times

(of an associated underlying Markov Chain) as the mere

contrivance that keeps the several filter options alive as viable

alternative filter models being continually actively entertained

as possibilities as different operating regimes of the system

are encountered. Such IMM approaches are being considered

for tracking maneuvering targets and missiles that are boosting

but exact nonlinear IMM probability calculations are currently

impossible to compute in real-time [223] (also see [307]).

Theorectical underpinnings of MMM are provided in [359,

Sec. 9.3]. An early warning was that PF could not yet handle

multi-target tracking [177, Epilogue]. Subsequently, ref. [156]

combines both IMM and PF (as in [177, Sec. 10.4]) for Multi-

target tracking 25. Concerns regarding IMM may be found in

[307], [58, Sec. 12] along with a list of 6 other cautions in

25Please examine closely for likely departure from being real-time.

Sec. IX herein relating to the vagaries of approximate solutions

to nonlinear filtering.

IV. A LACK OF REALISM IN PARTICULAR

TRACKING ACCURACY EVALUATIONS

Further elucidating our concern regarding lack of realism

by Farina et al’s reentry model by its being completely planar

in [10], central forces in 3-D give rise to trajectories that

are confined entirely to be within a specific plane (known,

historically, as the osculating plane). From a physical me-

chanics course, one learns about central force motions and

associated properties. Such studies reveal that, for a central

force field (like inverse squared gravity), the following cross-

product r × ṙ, where r is the position vector from the origin

of a coordinate system erected at the center of gravity of the

earth as focus to the location of the projectile, defines the

normal to the plane in which the motion of the projectile

is confined. In actual radar applications, the ideal behavior

is not precisely obtainable because of the range-Doppler

ambiguity encountered, as associated with use of practical

radar measurements; so there are slight errors present between

measured range and its associated range-rate to some degree

which, further, corrupts the accuracy of the effective estimates

r̂ and ˆ̇r that together degrade the estimate of the normal to

the osculating plane to which the projectile is confined, to

the degree of departure from the ideal as indicated from the

calculation of r̃×˜̇r, where the individual contributing errors are

r̃
4
= r̂−r and ˜̇r

4
= ˆ̇r− ṙ. The effect of regression of nodes and

rotation of apsides (mentioned earlier) aggravates the problem

of instantaneously estimating the correct plane of projectile

confinement even more since, instead of being merely constant

and fixed, the osculating plane now moves due to the oblate-

ness of the earth. While Farina’s tracker is being treated as a

problem that is entirely planar in [10], the real world problem

in Missile Defense is to actually figure out what plane the

trajectory is situated in and how it is posed. By ignoring these

real world effects, Ref. [10], as a consequence reaps greater

accuracy than is likely in practice, where four other out-of-

plane errors arise (that are ignored by definition in [10]). In

like manner, Paul Zarchan (Lincoln Laboratory) et al used this

same contrivance in evaluations presented at Colorado Springs

at 1997 AIAA/BMDO Symposium and Workshop for RV target

tracking via radar. Zarchan and Jesionowski [314] used a 5

state Extended Kalman filter (but also used inverse square

gravity instead of Farina et al’s constant gravity assumption)

so Zarchan et al obtained even better results than [10] (because

inverse square law gravity, although nonlinear, sets up a gravity

gradient that varies with altitude and observed target behavior

and better pin-points actual altitude and associated location as

a consequence). Results were better in both these simulations

than can be obtained in practice since both assume the plane

of motion was already precisely known (and consequently

optimistically treat the component of out-of-plane errors as

being nonexistent and zero in the tally of total error incurred).

Part of the real problem is to actually deduce in what plane

the target is traveling. In some cases such as in benign pre-

planned test shots from Vandenberg AFB in CA toward the
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Kwajalein Atoll 26 in the Marshall Islands using our own

cooperative target Reentry Vehicles (RVs), one may know

the launch point precisely as well as the aim point and our

own missiles may have the reentry angle completely known

to us for tracking purposes (but for actual missile defense, the

defender’s tracking radar usually only has an unobstucted view

of the target during a portion of mid-course through reentry

and we know that anticipated launch points can be varied

via use of wheeled or rail vehicles or submerged submarines

and that a sophisticated enemy can also suddenly vary several

parameters relating to reentry drag during end-game). Farina

et al also assume that the observing stationary ground-based

radar is at the launch point (and located exactly within the

plane of the target trajectory), as a considerable advantage of

having almost perfect initial conditions for the target tracking

algorithms almost from the start, which is an unrealistic

assumption for actual Missile Defense 27. In reality, a lack of

sufficiently accurate initial conditions is a big handicap that

arises in actual target tracking.

Moreover, when atmospheric drag enters into the picture,

as it did for both [10] and Zarchan and Jesionowski’s Reentry

tracking examples [314], the problem is no longer an exclu-

sively central force problem (guaranteed to be planar). Any tilt

of the reentry body forces the trajectory out of the expected

osculating plane, which both simulation studies treat as being

perfectly known (but did not list among their assumptions).

The much more sophisticated follow-up investigation of [151]

does not have any of the questionable aspects mentioned above

and the trajectory analysis is first rate; however, there are still

some concerns:

1) An α−β filter is historically well-known to be merely a

special case of a Kalman filter under the assumption that

velocity 28 is constant and the filter is run to steady-state

to get the corresponding constant gains [154, p. 23]; why

draw a big distinction now after four decades of Moore’s

Law being in effect [282] to guarantee ample computer

capacity and speed now being available? Although [151,

p. 621] is correct in its tallies, nickel and dime operation

count bookkeeping comparisons of these steady-state-

only algorithms vs. use of a Kalman filter (which can

track through the transient regime) are less pressing than

they once were 40 years ago, when computing resources

were scarce. Most EWR applications nowadays use par-

allel processors and have blazingly fast operating speeds.

However, such tallies for a Von Neumann sequential

machine are still a useful comparison to check as parallel

implementations are pursued that should be faster.

26The Tradex radar used for tracking these RV test shots is located there at
KREMS (along with Altair, Alcor, and MMW). The L-band Tradex radar

has MTT for up to 63 simultaneous targets appearing within the same
mechanically scanned 0.61o, 6 dBm beam-width pencil-beam of the 25.6
meter diameter antenna, but has a 600 meter blind zone behind the primary

target cluster grouping [150]. Actual EWR usually uses phased arrays and
electronic scanning.

27Where initial conditions for each target must be deduced from detection
and confirmation waveforms, available pulse patterns [296], or from other

supplementary information [54].
28Heroic and novel compensation techniques were used to compensate for

acceleration and velocity not being constant. A recent improvement to mere

α − β is [306].

2) The derivation of α−β filter implementation equations,

as spelled out in detail in [151], have apparently been

obtained previously by A. W. Bridgewater, as reported

in the proceedings of an earlier AGARD Conference

[152, p. 38], [153] within the context of automatic

track initiation and, in like manner, using decoupled

components too.

3) It is stated in two places within [151, ff Eq. 31, ff Eq.

38] that the elements of the appropriate Q (expected to

be the compensating fictitious process noise covariance)

comes from Eq. 48, yet [151, Eq. 49] is the expression

for the initial covariance Po to be used for filter initial-

ization and is apparently not for Q. (Perhaps it was a

typo that occurred twice?)

4) Radar at sensor location 1, depicted in Fig. 2 of [151],

is essentially broadside of the target trajectory (an ex-

tremely favorable position for tracking the target but not

a likely position for land-based EWR already deployed

at fixed known locations). Will resulting target tracking

accuracy evaluations be representative of likely EWR

performance (or, instead, be representative of only ideal

behavior in the situation of best case geometry like this)?

5) Radar at sensor location 2, depicted in Fig. 2 of [151], is

still essentially also broadside but now extremely close

to the target and will naturally reap the benefits of an

extremely large SNR detection and tracking signature.

(Perhaps this is a subtle advocate for sea-based EWR by

“stacking the deck” in this manner, without indicating

this assumption in [151]).

6) The good aggregate performance observed (i.e., from

averages of 100 Monte-Carlo runs) for three of the

four older more conventional historical algorithms under

consideration in [151] being close together in accuracy

may have been the consequence of the close proximity of

the radar locations relative to the target and almost ideal

constant periodic measurement availability (exclusively

at rates of, first, every 0.25 sec., then later at rates of

every 4 sec.) utilized (initially without any data dropout

gaps that would otherwise be present in practice with

realistic radar schedulers that manage their finite antenna

beam and signal processing resources between threat

target tracking and surveillance fence monitoring in

also performing the background bookkeeping to properly

account for orbital debris and existing satellites in the

13,000+ item Space Track Catalog).

7) To be fair, data measurement gaps were later introduced

in [151] but were extremely regular by periodically

missing a whole batch of measurements (at the afore-

mentioned rates) for 20 seconds then receiving all for

the next 20 seconds and continuing to alternate in that

fashion. Another situation in [151] looked at just one

data dropout segment of 50 seconds duration arising 250

secs. after tracking had commenced and already settled

out. Targets were non-maneuvering and so coasting with

the inertia of the previous target history still gives pretty

good target tracking accuracy as merely an extrapolation

step since atmospheric drag likely had not kicked in

yet as being significant. (Ideally, accompanying algo-
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rithm self-assessment on-line covariances should have

been large when drop outs occurred but no associated

covariances were reported in [151].)

One could question why it appears that “the deck is always

stacked in their favor” in [10], [151] when they evaluate

the performance of their own algorithms? Was it merely a

coincidence?

Official NMD evaluation procedures reduce this obvious

leaway available to “cheat” in the ways described above

by requiring ensemble averaging of N trials to access the

aggregate mean square tracking accuracy over M different

trajectories of high military interest using only radar sensors

at actual current EWR locations (or newly postulate locations)

at their known power levels thus maintaining realistic aspect

angles throughout as performance is evaluated for several

different target scenarios that are highly likely to occur (based

on known or hypothesized enemy launch sites and known or

hypothesized enemy missile characteristics as launched at our

high value targets, expected to be of interest to an enemy).

A varying ballistic coefficient under enemy control but

unknown to the defender can be a very challenging problem

to track. George Souris (AFIT, retired) had an interesting ap-

proach for handling the radar tracking of an RV with unknown

ballistic coefficient [26] by treating the ballistic coefficient

within the “theory of Interval Matrices”, where all entries of

the matrix were explicitly known except the entry associated

with the ballistic coefficient. This model matches the true

situation in EWR for indo-atmospheric targets. This unknown

entry was known to be confined to within a reasonable range or

“interval”, hence the name. The “theory of Interval matrices”

has recently had some interesting and useful results [27] that

make it even more appealing.

V. CRLB EVALUATION PRECEDENTS FOR

EXO-ATMOSPHERIC TARGETS

Prescribed Measures of Effectiveness (MOE) for EWR

applications currently exist as a gauge of tracking algorithm

effectiveness, including widespread use of 97% Spherical

Error Probable (SEP). However, there is a problem with this

highly touted MOE, as demonstrated in Sec. V.A. We offer the

Cramer-Rao Lower Bound (CRLB) as a less ambiguous MOE

and discuss its theoretical basis in Secs. V.B-V.D and provide

a representative numerical example for EWR in Sec. V.E.

A. Why use CRLBs for evaluating EWR Target Tracking

Efficacy?

Simple transparent examples of 97%SEP behavior (or, more

precisely, 97%CEP behavior which identically parallels in one

lower dimension for simplicity the 97%SEP situation) will

be presented here. Initial Tracker performance evaluations

frequently consist of 250 trials as a goal. While 250 is a

fairly large number and is generally obtained with fairly

high computational expense incurred in obtaining the requisite

realistic Monte-Carlo simulation runs of a particular tracking

estimation algorithm under scrutiny, it still does not yield

infallible results. To illustrate this claim, please consider the

four different histogram diagrams depicted in Fig. 5 (a),

(b), (c), and (d) for a uniform histogram . bucket size (not

mandatory).

Consider that for x1 and x2 being zero mean independent

Gaussian random variables with the same magnitude vari-

ance 29, the following miss distance, as the square root of the

sum of the squares of the constituent position components:

y =
√

x2
1 + x2

2, is well known to be Rayleigh distributed

[305, p. 195]. For 250 trials, we have that from a true

Rayleigh distribution, y
250

= 0.97 → y = 242.5 so by

having the results of 242.5 trials to the left of a particular

value on the abscissa corresponds to the critical value being

sought (deemed to be 97%CEP for 2-D, as depicted here in

Fig. 5 (a), (b), (c), (d), and (e). The same results would be

obtained using the alternate cumulative distribution form of

these same histograms. (The corresponding 3-D miss distance

corresponding to 97%SEP having three independent Gaussian

constituents (each component assumed to have an identical

variance) would have a Maxwell distribution [305, Ex. 8-5,

p. 273].)

These simulations were simply obtained from the “His-

togram Generator” within the demonstration programs for the

Statistics Toolbox provided by The MathWorks that may be

used within MatLab c©. The four runs depicted above were

for a Rayleigh distribution with the B parameter being 4

(constrained to be between 1 and 6). Notice that for each

of these four trials of 250 samples each, a different value

of 97%CEP was obtained of 11, 12, 13, and 14 units for,

respectively, cases a, b, c, and d. A less ambiguous MOE for

gauging the efficacy of target tracking is discussed next.

B. Reviewjng a procedure for evaluating CRLBs for EWR

target tracking

Under the standard assumption that the estimator is un-

biased 30, then the familiar form of Cramer Rao inequality

encountered or invoked most frequently is:

E[(x − x̂)(x − x̂)T |x] ≥ [−E{( ∂

∂x
)T (

∂

∂x
) ln{p(z|x)}}]−1

≡
(

1 +
∂B

∂x

)T

I−1

(

1 +
∂B

∂x

)

(23)

where the inequality here for these matrices is interpreted

in the matrix positive semi-definite sense (i.e., A ≥ B ⇔
A − B ≥ 0) and I is the Fisher Information Matrix. Please

see references cited in [21] for details. It is this form 31 (under

29In actuality, the variance would likely be different for each constituent
component but still the miss distance is just as obviously non-Gaussian even

when each component is Gaussian. The main point is that the miss distance
is blatantly non-Gaussian in reality as well as for the ideal of all component
variances being the same.

30The bias referred to here is inherent to a particular estimator and is
generally not directly related to any underlying fundamental biases arising
for reasons other than the structure of the estimator being employed within

a particular application. The techniques for removing biasedness from esti-
mators such as that by D. Lerro and Y. Bar-Shalom (1993) have been for
situations where the system Dynamics are linear [288], [312], [313] (unlike

the case for EWR).
31The summarizing notation I appearing on the Right Hand Side (RHS)

in Eq. 23 is known as the Information matrix prior to matrix inversion, after

which the entire expression (after ∂B
∂x

→ 0) is the so-called or so-designated

Cramer-Rao Lower Bound (CRLB), which can be numerically evaluated.
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Fig. 5. 97%CEP Results for 4 separate Histogram samples (N= 250) having a common underlying Rayleigh Probability Density Function (pdf)
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the widely invoked assumption that the estimator bias is either

non-existent or negligible) that has a RHS that is independent

of the particular estimator being used and that may be com-

pared to a wide variety of distinctly different estimators as

a single relative gauge throughout. The CRLB methodology

is used here to gauge the quality of filter performance in the

tracking task.

The above Cramer-Rao inequality arises in seeking to

estimate an unknown parameter x using any estimator x̂ and

the measurement z(t), referenced above and available from

the sensor as a time record, must be a non-trivial function of

the unknown parameter x as

z(t) = h(x, t, v(t)) . (24)

In the above, p(x|z) is the conditional probability density

function (pdf) of x given all the measurements z, and v(t)
is the measurement noise. In exo-atmospheric target tracking,

x is deterministic and satisfies a known nonlinear ordinary

differential equation and v is additive Gaussian white noise of

known covariance intensity, hence p(z|x) is known.

Although other bounds exist, like that of Barankin, the

CRLB was selected for use as the familiar bound most appro-

priate for EWR application because it matches the situation

and is tractable. A high-level overview of the CRLB method-

ology and its benefits and limitations may be found in [21]

while it is specialized specifically for EWR exo-atmospheric

tracking in [22]-[24].

The CRLB being achieved means that the error of estimation

term on the LHS of Eq. 29 touches the CRLB term on the RHS

by satisfying the indicated inequality as an exact equality. For

EWR target tracking, the lower bound should not generally be

achievable (hence this CRLB is not expected to exactly match

the average sampled tracking error variance compiled from N

Monte-Carlo trials).

This CRLB was derived by adapting a time-varying radar

SNR to realistically correspond to fluctuating PRF and other

underlying signal processing as an enhancement of the funda-

mental methodology that evolved in [17]-[20], as tailored to

this EW radar application using the conventions laid out in

[22]-[24]. The procedure of [22]-[24], [53] already considered

Pd < 1 since it included explicit consideration of the detection

threshold settings and, moreover, used measurement reception

times that correspond to the time-tags for when measurements

were actually received (so these CRLBs are a posteriori

bounds). While [9] initially tries to tackle a more general case

of a priori bounds, it found that approach to be intractable and

so [9] then merely resorts to using the structure of CRLBs in

[25] for handling process noise that is not zero (as occurs in

Indo-atmospheric reentry tracking and not in exo-atmospheric

tracking, where Q = 0). This is the big distinction between

the CRLB approach of [9], [25] and that of [22]-[24], [53],

where the latter constitute a much lower CPU burden.

C. Insights into where, when, and why CRLBs sometimes

exhibit weird behavior

There is frequently a small initial time segment in the

beginning of an estimation error plot when an estimator’s

covariance lies below the CRLB (as it should, considering the

approximations that are usually invoked up to that point, as

will be explained) before switching to the usual situation of the

CRLB lying below. Sometimes the initial values are so large

and far off that, by the automatically adjusted vertical scale

inherent in many plot packages, this initial switch appears to

be such a proportionately small segment of the figure that it

does not raise suspicion or concern enough to be explained

to an audience of readers. The same type of thing occurred

for each of Farina’s four estimators in [10]. To the present

author, this is a mark of honesty in the preparation of the

results” (but impedes a presentation somewhat in a situation

where the speaker has to stop and explain why an apparent

bewildering situation occurs of the direction of the expected

inequality flipping around and the expected lower bound being

above the sampled σ). An explanation was not given in [10]

nor has it been given anywhere else to this author’s knowledge

so we will do so here now.

The explanation is because of that numerator factor
(
1 + ∂B

∂x

)2
in Eq. 29 that is needed for CRLB to be below all

the time, where B is the bias in the estimator. Since we do not

usually have B explicitly available and even when we do, its

sensitivity to the parameter (in this case the state vector) being

estimated needs to be evaluated as the indicated derivative

(which is usually not conveniently tractable) so it is usually

ignored entirely since it can not be evaluated anyway and we

focus instead on the denominator term (which is the inverse

of the Fisher Information matrix), which we can evaluate

numerically. The numerator term can be a magnifier or a

minimizer, depending on whether it is greater or less than 1

and it changes with time. Since estimators frequently proceed

to have a steady-state bias (where ∂B
∂x becomes zero), the exact

CRLB expression (numerator and denominator) eventually

converges to the approximate CRLB expression (involving

denominator alone). Since we frequently have explicit access

to only the denominator, we usually use just that and wait past

the initial transient until it is appropriate to compare against

because only then does the right hand side CRLB≈ I−1,

where it is reminded that I here is the Fisher Information

Matrix (c.f., [179]).

D. CRLBs for tracking targets devoid of process noise

Post-boost ballistic trajectories that are exclusively exo-

atmospheric (within what is designated as the mid-course

regime) correspond to targets with no process noise present

(i. e., Q = 0). The CRLB that is treated here goes beyond

just using the historically familiar per pulse CRLB angle

measurement error 32 of Eq. 41 (in [22]-[24], [53]) since our

CRLB goes further to additionally utilize:

1) information provided by the target dynamics model over

time in an inverse square gravity field,

2) the initial (starting) covariance P (0) of the tracking filter

32Receive sum-pattern beam-width: θ3 = 3 dBm.
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as handed-over 33,

3) the structure of the radar as a measurement sensor/device

having additive Gaussian measurement noise with pa-

rameters including:

(3a) explicit use of the radar range uncertainty due to

resolution size of the range gates,

(3b) the monopulse SNR time-record with its adaptive

step size (as a consequence of a realistically varying

PRF) as it affects the corresponding angle uncer-

tainty.

However, one CRLB version used the SNR records simulated

by TD/SAT, as Government Furnished Equipment (GFE),

and each sample function realization interpolated to common

times throughout and then averaged (by Dan Pulido, General

Dynamics) to obtain SNR values at designated periodic times,

thus providing smooth CRLBs as an envelope for comparison

to estimator performance at arbitrary step times.

For an exo-atmospheric EWR tracking application, which

has additive Gaussian 34 white measurement noise v(t), the

radar measurements of Eq. 24 has this further benign and

accommodating structure to be exploited:

z(t) = h(x, t) + v(t), (25)

and since the equation for the system evolution is essentially

deterministic (with Qc = 0 ), then the pdf’s of interest here

(to be used in numerically evaluating the CR lower bound of

Eq. 23) are of the form:

p(z|x) =
e−

1
2 (z−h(x))T R−1(z−h(x))

(2π)n/2|R|−1
2

. (26)

Now taking natural logarithms on both sides of the above pdf

yields:

ln{p(z|x)}
= −1

2
(z − h(x))T R−1(z − h(x)) − ln (2π)n/2|R|−1

2

(27)

which upon taking the gradient is:

(
∂

∂x
)T ln{p(z|x)} =

∂T h(x)

∂x
R−1(z − h(x)). (28)

33Using a standard hand-over covariance of (100km)2 for all three
components of the position block and (100m/sec)2 for all three components
of the velocity block. Physically, this should originate and be communicated

from Space Based InfraRed Satellites (SBIRS) for National Missile Defense
(NMD) [54], [300]. The Levenberg-Marquardt method that has been advocated

for use as cutting edge statistical curve fitting for SBIRS was ostensibly
developed earlier by a numerical analyst at Dupont Laboratory in the 1960s.
Unfortunately, although the source code may be found in [304, pp. 197-209],

the reference cited there for Levenberg-Marquardt does not pertain to this
particular algorithm at all. Suspecting a slight mix-up, we searched further for
it in other publications by the same Dupont researcher that appeared at around

the same time but to no avail. The Levenberg-Marquardt method probably
should not be used for EWR without an explicit rationale being available.

34Gaussianity arises as a result of the Central Limit Theorem (CLT), which
with weakened hypothesis, no longer requires that contributing constituents

be independent and identically distributed (iid) and hypotheses have likewise
been weakened to be more easily met so that conclusions can now be invoked

from the Law of Large Numbers [84]. Our Appendix offers a quick review.

When the above expression is post-multiplied by its transpose

and expectation taken throughout, the result is:

E[( ∂
∂x

)T ln{p(z|x)} ∂
∂x

ln{p(z|x)}] =

∂T h(x)
∂x

R−1

R
︷ ︸︸ ︷

E[(z − h(x))(z − h(x))T ] R−1 ∂h(x)
∂x

= ∂T h(x)
∂x

R−1 ∂h(x)
∂x

.

(29)

Finally, over corresponding discrete-time steps (not necessarily

uniform in step size), the total pdf of the whole collec-

tion of independent (white) measurements is the product of

each individual measurement pdf of the form of Eq. 26

as p(z1|x(0))p(z2|x(0))p(z3|x(0)) · · ·p(zk|x(0)), where each

pdf for each constituent measurement here focuses on or

is conditioned on the initial condition for the deterministic

system equation. Once the initial condition x(0) is known with

confidence [391], then the time evolution of the deterministic

system is completely determined (as a consequence of initial

condition observability). The corresponding information ma-

trix for each of these measurement time points is of the form

of Eq. 29 so the aggregate is of the form 35:

I(k, 0) =
∑k

j=1 Φ−T (k, j)∂T h(x)
∂x

|jR−1(j, j)∂h(x)
∂x

|jΦ−1(k, j),
(30)

for k geq j, where the transition matrix Φ−1(k, j)
4
=

[Φ(k, j)]
−1

= Φ(j, k) and, likewise, corresponds to an evalua-

tion of the system matrix linearized about the true state. Now,

when there is a finite initial covariance being utilized by the

estimator as tracking commences, then there is an additional

term 36 that should appear in the above Information matrix to

properly reflect this situation, as depicted as the first term on

the RHS here:

I(k, 0) = Φ−T (k, 0)P−1(0)Φ−1(k, 0)

+
∑k

j=1 Φ−T (k, j)∂T h(x)
∂x |jR−1(j, j)∂h(x)

∂x |jΦ−1(k, j),
(31)

In either the case of Eq. 30 or Eq. 31 holding, the Information

matrix can be interpreted or formulated as evolving recursively

with each received measurement arrival time as:

I(k, 0) = Φ−T (k, j)I(j, 0)Φ−1(k, j)

+∂T h(x)
∂x |kR−1(k, k)∂h(x)

∂x |k
(32)

and, as such, may be implemented within software as merely

a loop (but by observing all the constraints and coordinate

conventions, where ∂f
∂x

is evaluated within the ECI frame and
∂h
∂x

is evaluated in the (E,N,U) frame 37 with corresponding

35After taking the natural logarithm of the aggregate pdf, the exponents in

the Gaussian distribution correspond to the indicated sum, after performing a
gradient and taking expectations, as illustrated in detail above in Eqs. 27 to
29 for just a single measurement for clarity.

36An additional “fictitious measurement” was called for in [17, following

Eq. 4] as being needed to avoid encountering numerical difficulties but use of
P−1(0) as suggested here appears to suffice as a remedy that arises naturally.

37A representation in sine space, centered within the antenna array, is

recommended for consistency with EWR.
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translation offset to the location of the tracking radar) 38.

We have particular interest in the total position error and the

corresponding total velocity error to determine how well we

are actually doing in tracking a target complex. To this end,

we must rigorously contort the inequality of Eq. 23 to a form

that we can use. This is accomplished by properly applying

matrix operations that yield the expressions that we seek 39

as:





σ2
11 σ2

12 σ2
13

σ2
21 σ2

22 σ2
23

σ2
31 σ2

32 σ2
33



 =





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



 ·

E[(xt(t) − x̂(t))(xt(t) − x̂(t))T |Z(t)]·




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0





T

≥





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0



 I−1





1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0





T

=





crlb11 crlb12 crlb13

crlb21 crlb22 crlb23

crlb31 crlb32 crlb33





(33)

and





σ2
44 σ2

45 σ2
46

σ2
54 σ2

55 σ2
56

σ2
64 σ2

65 σ2
66



 =





0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



 ·

E[(xt(t) − x̂(t))(xt(t) − x̂(t))T |Z(t)]·




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





T

≥





0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



 I−1





0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





T

=





crlb44 crlb45 crlb46

crlb54 crlb55 crlb56

crlb64 crlb65 crlb66



 ,

(34)

and then by taking the trace of a matrix throughout 40,

respectively, yields radial position error variance:

σ2
position = σ2

11 + σ2
22 + σ2

33 = tr





σ2
11 σ2

12 σ2
13

σ2
21 σ2

22 σ2
23

σ2
31 σ2

32 σ2
33



 ≥

tr





crlb11 crlb12 crlb13

crlb21 crlb22 crlb23

crlb31 crlb32 crlb33



 = crlb11 + crlb22 + crlb33

(35)

38Notice that nothing was presumed of the estimator in deriving and
evaluating Eq. 29 beyond the underlying measurement structure of Eqs.

25, 26 and the availability of all measurements up to the current time
k. Alternative estimators that “smooth” by estimating the state xk using
measurements beyond k may violate this assumption and this CRLB but they

are not real-time. The appropriate CRLB to correspond to an estimator that
uses measurements beyond the current time of interest (such as in “sliding
window” smoothing or in “fixed point” smoothing, or BLS) should just have

the additional corresponding terms beyond the current time also included in
Eqs. 31 and 32.

39Pre- and post-multiplying A ≥ B by the same matrix L yields LALT ≥
LBLT .

40The matrix inequality A ≥ B implies that tr[A] ≥ tr[B].

and total velocity error variance:

σ2
velocity = σ2

44 + σ2
55 + σ2

66 = tr





σ2
44 σ2

45 σ2
46

σ2
54 σ2

55 σ2
56

σ2
64 σ2

65 σ2
66



 ≥

tr





crlb44 crlb45 crlb46

crlb54 crlb55 crlb56

crlb64 crlb65 crlb66



 = crlb44 + crlb55 + crlb66,

(36)

and, finally, by taking squareroots throughout 41, respectively,

yields:

σposition =
√

σ2
11 + σ2

22 + σ2
33

≥
√

crlb11 + crlb22 + crlb33
4
= CRLBposition

(37)

and

σvelocity =
√

σ2
44 + σ2

55 + σ2
66

≥
√

crlb44 + crlb55 + crlb66
4
= CRLBvelocity.

(38)

Please notice in the above that we do not decouple position and

velocity states but merely project both of the 6 x 6 matrices

of Eq. 32, respectively, into the position subspace (as Eqs. 33,

35, 37) and into the velocity subspace (as Eqs. 34, 36, 38) for

viewing in a plotter display. These instantaneous inequalities

are now the theoretically justified comparisons that we invoke

in monitoring performance of a target tracking algorithm as a

function of time.

E. Assessing BASELINE Performance: an existing standard

EKF vs. CRLB

We illustrated the CRLB calculations relative to ensemble

sampled Monte-Carlo results for the BMEWS radar: Thule 42

tracking an RV on a ballistic trajectory (post cut-off) having

the following position and velocity states at cut-off time

normalized to to = 0 seconds:

xT (to) = [−3217302.678, 3527834.349, 4535013.695,
−767.670,−2520.638, 5065.414]T

(39)

where in the above, the units are in meters for position

and meters/sec for velocity, respectively. The simulations of

the radar case, using known BMEWS published Cobra Dane

measurement covariance’s for range and angle being 43

σrange = 30 meters (per pulse); (40)

σangle =
2.2

1.6
√

2 · SNR(t)
degrees (per pulse), (41)

41Scalar a ≥ b ≥ 0 implies that
√

a ≥
√

b.
42This 10 MHz bandwidth Thule radar (AN/FPS-123V5), with a beam-

width of 1.8o is located in Greenland at Latitude = 76.56o N, Longitude =
297.70o E. The actual range resolution is determined by beam forming to

reduce side-lobes and assumptions on range accuracy of from as little as 15
meters (for the 10 MHz signal) up to more than 30 meters (for the 5 MHz
signal) should not significantly alter the subsequently computed results since

sensitivity to the range uncertainty parameter is low as compared to the effect
of the more dominant angle uncertainty.

43Expressed within the software in MKS units with angles in radians,

respectively.
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respectively 44, appear to be performing properly, as depicted

in Fig. 5 for the case of a nonlinear target (corresponding

to use of the system truth model used for simulating the

trajectory, but linearized about the estimate within the EKF)

while both situations utilized the same nonlinear measurement

model. Both parameters in Eq. A.26 of [53] (with SNR varying

with time) are used in Eq. A.69 of [53] with σE ≡ σangle.

For position error at time t (and similarly for corresponding

velocity with obvious direct replacement substitutions in the

LHS of Eqs. 37 and 38), calculated as
√

(xt(t) − x̂(t))2 + (yt(t) − ŷ(t))2 + (zt(t) − ẑ(t))2, (42)

and the corresponding ensemble sampled variance over N trials

(N=250) being 45:

ΣN =

[
1
N

∑
N

i=1
(xt(t) − x̂i(t))2 + (yt(t) − ŷi(t))

2 + (zt(t) − ẑi(t))
2
]

−

[
1
N

∑
N

i=1

√
(xt(t) − x̂i(t))

2 + (yt(t) − ŷi(t))
2 + (zt(t) − ẑi(t))

2

]2

,

(43)

were depicted for UEWR as diagrammatic plots in [22]-[24],

[53] (N=1,000 in 1997 results). The subscript t appearing in

both of the above equations denotes the available “truth” that

is unabashedly known in simulations.

Fig. 6. CRLB on radial velocity accuracy (for Threat 1)[53]

VI. BLS VS. EKF TRADE-OFFS

We now discuss trade-offs of Batch Least Squares (BLS) vs.

Extended Kalman Filter (EKF) as these two algorithms affect

radar target tracking efficacy. First, the Batch Least Squares

Maximum Likelihood algorithm is familiar from being present

at the core of many diverse yet familiar estimation approaches

[58, Sec. 11] such as:

• the Prony method of power spectral estimation,

• some approaches to GPS Local Area Augmentation Sys-

tems (LAAS),

• within input probing for improved parameter identifica-

tion [16].

The BLS that is present in all these situations has the follow-

ing fundamental structure and characteristics in common, as

discussed below.

44The radar’s intrinsic range gate size dictates the effective range resolution,
which is a constraint that is less restrictive than the angle acuity. The structure

of the phased array radar as a measurement sensor/device having additive
Gaussian measurement noise with parameters including (a) explicit use of the
radar range uncertainty due to resolution size of the range gates and (b) the

monopulse SNR time-record (as deduced from sum and difference channels)
with its adaptive step size (as a consequence of a realistically varying PRF)
as it affects the corresponding angle uncertainty.

45Notice that this is of the form E[(W −E[W ])2] = E[W 2]−(E[W ])2.

BLS use (which, as an algorithm, harkens back to Karl

Frederick Gauss himself) incurs a larger computational bur-

den than an EKF by needing a larger (and growing) CPU

memory allocation to accommodate all the available sensor

measurements for a particular candidate target track that are

to be iteratively processed in one fell swoop over the entire

time interval over which the available measurements have been

accumulated and, consequently, BLS incurs more associated

senescence (computational delay time that is not fixed but

is also growing) than exhibited or needed by an in-place

EKF (which has a delay time for computed output that is

fixed and known to be on the order of n3, where n is the

state size of the EKF). Since BLS processes all the available

measurements en masse and is solved iteratively over all

the measurement sensor data it is provided with, the BLS

algorithm may converge if the measurement data are consistent

with its internal model; but if not consistent enough (as with

cross target measurement mis-associations caused by crossing

targets or with anomalous radar propagation characteristics due

to an atmosphere that is disturbed by sunspots or by other more

ominous causes), may fail to converge (a situation prudently

handled by specifying a parameter LMAX as the maximum

number of allowable iterations, above which BLS is treated

as having NOT converged and therefore stopped; thus being

prevented from running away).

The EKF immediately avails outputted estimates in a more

timely fashion and tends to, more or less, follow any measure-

ment data that it is provided with. The EKF appears to be more

appropriate to use with an MTT data association algorithms 46

because it is a fixed CPU burden, which is much less than that

of a BLS. On the other hand, the BLS algorithm [301] provides

more accurate estimates with a higher fidelity (i.e., being more

trustworthy) on-line computed covariance accompanying its

estimates for the same data segment length. EKF estimation

errors obtained from the on-line prediction of 1-sigma bounds

were observed to be 8 times higher than the actual value

(gauged against truth) for the representative scenarios that

were investigated [14], [15]. The BLS on-line calculation

predicts 1-σ errors of a similar magnitude but paid off by

actually realizing estimation errors in the same vicinity and

so possesses greater veracity in its covariance computed on-

line than the standard EKF candidates discussed above (see

Fig. 6).

Analyzing a variation on standard BLS use involves a

slightly more complicated expression and corresponds to when

BLS is called repeatedly at a known, fixed periodic rate. In

this situation too, there is an upper bound worse case (con-

servatively arrived at to be when the BLS fails to converge)

as:

LMAX · U ·
(

∑[ m
r ]

i=1 i

)

· r
= LMAX · U ·

[
m
r

]
·
([

m
r

]
+ 1

)
· r

2
flops.

(44)

46Examples being Munkres algorithm, generalized Hungarian algorithm,
Multiple Hypothesis Testing (MHT), Murty’s algorithm, Integer Programming
approach of Morefield, Jonker-Valgenant-Castanon, all of which either assign

radar-returns-to-targets or targets-to-radar returns, respectively, like assigning
resources to tasks as a solution to the Assignment Problem of Operations

Research. Also see [85].
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Fig. 7. Position & Velocity Track Estimation Errors vs. Time for Batch and
EKF Simulations[15]

In the preceding expression, m is number of measurements

and r is the period at which BLS is automatically invoked

and the brackets in the upper limit of the finite summation

and within the expression on the RHS (where the prior sum is

simplified) denotes the smallest integer portion of the resulting

division indicated to be performed within the brackets. U is

the processing time required for the BLS to handle a single

measurement (a per unit value).

The per measurement normalization for BLS utilized above

appears to be appropriate and consistent with numerical analy-

sis theory. The main problems being solved at the heart of each

BLS iteration is the solution of a system of linear equations

(the array of regression equations). Recall that this is the crux

or fundamental kernel and the Householder transformation is

usually used to solve it (as the algorithm of least computational

complexity, which accomplishes the task at hand). Operations

counts are available for a perfectly implemented sequential

version of the Householder transform from [168, p. 148]

(n2m − n3/3) and the associated back substitution step is

O(mn), where n is the state size and m is the total number of

measurements from the particular target available at that time.

The CPU burden of BLS is merely linear in the number of

measurements being processed.

To see how the expression of Eq. 44 was obtained, first

consider the case for measurements being processed by BLS

at a periodic rate where BLS is invoked after every 10

measurements (where at each invocation, all the measurements

logged since the beginning for this object ID are reprocessed

by BLS). For the first 40 data measurement points, where

BLS was invoked after 10, after 20, after 30, and after 40,

the total number of data points processed after 40 is 10 + 20

+ 30 + 40 = 100. This is 100 times the measured individual

per measurement CPU times discussed above. At the 47th

measurement, the remainder now processed is nominally no

more than at 40 since the big burden of BLS processing is not

invoked again until at 50 data points as:

(
∑[ 47

10 ]
i=1 i

)

· 10 =
[

47
10

]
·
([

47
10

]
+ 1

)
· 10

2
= 4 · 5 · 5

= 100,
(45)

where a useful formula is

N∑

i=1

i =
N(N + 1)

2
. (46)

Using this result in the above CPU loading factor at time

step k for a periodically invoked BLS yields a loading of:


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2
flops. (47)

Ideally, parallel implementations should be no slower than

these estimates for a Von Neumann sequential machine and

parallel multi-threaded implementations may be considerably

faster; however, there are considerable parameter options and

variations in a parallel mechanization such as number of pro-

cessors, compatibility of algorithm architecture to paralleliza-

tion, characteristics of the operating system, compiler switches

invoked, automated automatic distribution of algorithm over

available processors (versus use of more careful manual spec-

ification and tailoring) that may jeopardize expected ideal CPU

time incurred (also see [279] for more aspects).

This operations count goes as m (the dominant power)

and again just grows linearly with m. Averaging by dividing

the previous expression by m to obtain an expected per

measurement normalization yields a constant based on this nu-

merical analysis theory. A similar invocation of a Householder

transformation per a measurement depicted on [168, p. 252]

also obtained a constant that is a cubic in the remaining fixed

variable, being n3. All theoretical CPU flop time estimates

reported here are consistent among themselves and with what

was observed within the numerical computations.

In general, the more accurate 1-σ bounds from BLS help

better constrain the region of space to be searched by a multi-

target tracking (MTT) algorithm than would otherwise be

provided by an EKF (see Fig. 6). Use of optimistic (smaller

or tighter than true) 1-σ bounds usually provided by an

EKF as a practical real-time sub-optimal estimator usually

causes search to be more limited than prudent in Fig. 2,

although supporting theoretical calculations may falsely assure

success (if they expect the 1-σ available from the EKF to be

trustworthy, which is usually not the case for the sub-optimal

covariances provided from an EKF) while providing adequate

state estimates of the target is an EKF’s primary goal as a

successful tracking filter (and providing covariance veracity

is only secondary and is willingly sacrificed for the primary

goal (notice that Zarchan et al did not even report covariances

or show them in Ref. [151]). However, it is desirable to have

both (and BLS does a better job at this) but EKF’s are more

expediently efficient.

Historically, a finite dimensional filter was sought for esti-

mation and tracking so that it would not grow without bound

as the length of the measurement data record got longer.

Otherwise, the computer implementation code might overwrite

itself or overwrite other critical functions (also required for

mission success) that may reside on the same computer. As

such, the KF processes a single measurement at a time. A

trend that has been observed in investigating actual parallel

implementations of other assorted algorithms over the last 20

years is that the ideal expected speed-up is seldom achieved,

where a prior well-known sequential CPU time loading is

anticipated to be scaled down by a factor of N or merely by
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a more modest
√

N (where N is the number of processor

resources available in the particular application situation).

Actual behavior also depends on the vagaries of the operating

system (OS) at hand. Some OSes support parallel processing

by allowing the user to stipulate where a particular module

thread would reside and run. As an example, for Interactive

Multiple Model (IMM) with two comparably sized filters and

three available processors, having one filter per processor and

the probability calculations/collations (weighted estimates and

covariances) IMM output performed on its own processor, all

synchronized, would be a natural fit. Other OSes no longer

leave it for the user to specifically partition his own algorithm

as he sees fit but instead performs this partitioning exercise

for the user automatically (so the resulting fit may not be as

nice as previously described). Having it done automatically

is not always desirable especially if pieces of each IMM

filter are distributed over all three available processors. The

end result may exhibit worse CPU time than a sequentially

implemented version. Performance also depends on the switch

settings during compile time. See good tidings in [131] as

compared to [129], [130]! 47

In lieu of not comparing to a prior Von Neumann bound for

sequential machines as a parallel implementation is sought,

the alternative is to run “open loop” without any comparison

of this sort. In such a case, it may be tempting to accept

any performance on the parallel processors as “the best that

can be done” (whether it really is or not). According to

[155], the structures of “interpolating loops” more readily

reap the benefits of a likely speed-up in a parallel processor

implementation than “integration loops” would. Apparently an

early versions of BLS used only interpolation.

As an aside, while U.S. SSBN’s (a.k.a., “boomers”) pos-

sess the world’s most accurate Inertial Navigation Systems

(consisting of gyros and accelerometers) to support their 3

month long missions at sea, there is also a non-real-time

estimation problem associated with their use. Of course, there

is a need for maintaining a certain prescribed degree of real-

time Navigation accuracy to support fire control in case these

submarines are called upon to launch their missiles. However,

less publicized is that in the 1970’s after each 3 month mission,

a massive least squares fit was historically performed on

all the stored data to better represent the exact track, from

beginning to ending at the same port for assessing an “error of

closure” (as also occurs in surveying). The human navigators

on board are rated by how well the real-time portion matches

the “actual” position while they were on duty but are also

checked to make sure that they were sufficiently conservative

and parsimonious in their use of alternative external navaids

(which instantaneously improve the INS position accuracy but,

unfortunately, at a cost of exposing the ship to greater enemy

surveillance, to varying degrees, each time they are used [44],

[56]).

47Refs. [129], [130] were constrained to use only existing parallel proces-
sors that had architectures that were optimized for calculating FFT’s without

any special further modifications to handle parallelizing estimation.

VII. THE NEED FOR ONE SHOT SUCCESS

What is needed in Missile Defense is an ability to achieve

one shot success with probability one (instead of in terms of

Mean Square Monte-Carlo averages). Researchers should pur-

sue the work 48 of the late Frank Kozin (Brooklyn Polytechnic

Univ.) [137],[160] (also see [202], [203]). Kozin sought to

make strong proofs about adequate results being reaped from

each and every single sample function (i.e., as probability

one arguments and not just as mean square argument 49).

According to Kozin, earthquake resistant buildings were a con-

sequence of Kozin’s work as it related to stochastic stability.

Since much of current tracker filter evaluation of utility is

from Monte-Carlo runs (e.g., Farina et al use 100 trials for

their accuracy and consistency evaluations in [10]; others may

use 250 or 1,000), a worry is that real missile interception

possesses the characteristic of being a one shot Monte-Carlo

trial. There are no averages available 50 from the target tracking

filter in this real-world test, just the conclusion to answer the

question: did it work or did it not? Did the tracking filter

convey the correct (or adequate) coordinates of the target to

the intercepting missile or not?

VIII. POTENTIAL FOR LAMBERT SOLUTION IN NMD

While (the late) Richard Battin (emeritus MIT Aero & Astro

and past Deputy Director at Draper Lab. and hero of Apollo

navigation and guidance for NASA) was cognizant of most

numerically efficient and accurate ways to solve the Lambert

Problem [328] (and lead an MIT Ph.D. thesis student [352]

and Masters student [353] through this research area), many

others have stepped in to fill the void [329]. Dick Battin was

primarily interested in this particular problem for NASA space

missions regarding orbital transfers of space craft.

Others (notably, Xontech) got involved in this particular

version of the Lambert Problem for National Missile Defense

(when I also became aware of Battin’s earlier precedents

[330]) as associated with Early Warning Radar (EWR) detect-

ing enemy Reentry Vehicles (RVs) launched at us. This partic-

ular approach for NMD tracking of RV’s was investigated via

simulations and eventually abandoned since the initial early

radar measurements of RV velocity apparently lack sufficient

accuracy. For updating the catalogue, the results of [353] may

still be useful.

48Early on, Prof. Kozin referenced these ideas to the late Prof. J. Clifton
Samuels (Purdue University, Howard University).

49That there are some unsavory aspects associated with mere averages,
please consider that “an engineer with his feet in an oven and his head in an
icebox is comfortable on the average!”

50Regarding averages, if 50% of the intercepts ended up 20-σ ahead of the

target at detonation time and 50% ended up 20-σ behind it at detonation time,
is that considered, on the average, right on target? Recall that in seeking to
approximate a periodic square wave by its Fourier series representation, even

if an infinite number of terms are retained in the approximation, there would
be no ringing at the jump points but, despite the fact that its Fourier series
converges in mean square to the piecewise constant periodic idealization, the

well known Gibbs phenomenon at the jump is a spike of 30% beyond the target
goal. Such are the frailties of mean and mean square convergence behavior,

respectively.
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IX. AOT WHEN ESCORT JAMMING DENIES RANGE

Escort jammers (accompanying RV’s as countermeasures

within the same threat complex) typically seek to deny tar-

get range to the observing radars but the well known and

documented locations (and altitudes) of all participating EW

radars can be used to an advantage to compute the baseline

length between pairs of radars that can now simultaneously

obtain almost synchronized views of the same targets from

different perspectives and use the known observed angles to

explicitly triangulate and deduce the target’s range using the

law of cosines (i.e., of known angle-side-angle in Fig. 7).

Even better is to implicitly triangulate and calculate target

range within a single angle-only tracking (AOT) filter (because

it uses the history of previously observed target locations)

but in order to do so, measurements from two (or more 51)

observing radars must be used simultaneously to update the

filter. Historical consensus is that updating with the same

measurement results from one-radar-at-a-time 52 simply will

not resolve the ambiguity of many different target ranges cor-

responding to the same observed angle. MTT for AOT is more

challenging and apparently still needs to be worked out for

this situation and [216] and [244], [303] are good starts. AOT

is even more sensitive to initial conditions than with range

measurements being directly available. Target observability

considerations for AOT are more challenging and are still

evolving [146]-[149], [325]. Although some analysts claim

that AOT can be performed with just one sensor, the surface

ship experience (Hammel and Aidala, 1981) is that with use

of just one AOT sensor, the sensor platform is required to

make a controlled maneuver in order to do so (while the

target is assumed to be moving in a straight line at constant

velocity). Alternative angles-only (a.k.a., bearings-only) filter

formulations are discussed next.

Fig. 8. Synchronous target triangulation from two (or more) radars [33]

Angle-only tracking (AOT) results are reported by J. R.

Sklar ’69; C.-B. Chang ’73, ’80; E. Tse, R. E. Larson, Y. Bar-

Shalom, ’73; R. W. Miller ’78; C.-B. Chang and K.-P. Dunn

51In planar multi-target situations, many ghost targets arise from intersect-

ing lines-of-sight [LOS] (as the angles of actual targets are viewed by different
sensors) but can be distinguished from actual targets by using more than just
two simultaneously observing sensor’s measurement with their more varied

perspective views. Indeed, ghost targetss are less likely to occur in 3-D where
the variously skewed lines-of-sight are less likely to intersect than in 2-D (as
with sonobuoy DIFAR detecting enemy surface ships).

52I made this mistake 25 years ago, without benefit of a warning from any

mentor. However, except in simulations, it is impossible to obtain simultaneity
of RV jammer target measurement reception even for bistatic situations.
Simultaneous fix updating has a technical structure analogous to what arises

in submarine navigation [44], [56] when 2 simultaneous navaid fixes of
opportunity are taken together via different antennas, such as from both GPS

and Loran-C [103].

’79; M. R. Salazar ’81 [284]; C.-Y. Hsiao ’88; F. D. Gorecki

’91; D. V. Stallard ’91; J. R. Guerci et al ’94; L. G. Taff

’97; and by J. P. LeCadre et al ’97. An error that occurred in

one of the above cited original 1973 AOT formulations, which

persisted into its updated 1980 installment in IEEE AES, was

discovered and corrected in [33] and the missing associated

covariance (when the velocity constraints are active) was also

obtained (otherwise the usual Kalman covariance should be

used). The approach of [33] provides a Kalman filter formu-

lation that removes considerable ambiguity in an RV target’s

motion by constraining the computed angles-only solution to

lie within an acceptable range for RV velocities (similar to

those mentioned in [107]). Alternative AOT approaches also

exist [28]-[32] but a worry is that the batch approach of [31]

may not be real-time enough. The handling of multi-targets 53

is also aggravated in situations where just angle-only informa-

tion is available; however, inroads are apparently being made

[280]. Other defense applications exhibiting a similar angle-

only tracking geometry are: passive sonar/sonobuoy tracking

using several participants, acoustic tracking of air breathing

cruise missiles, and Space Based InfraRed Satellites. Once

a good AOT solution is obtained, “one size should fit all!”

Relatively new filter structures that can process several sensor

directional measurements simultaneously (in order to point at

or track the escort jammer as the source of the wide band

WGN jamming signal in an EWR scenario) even though the

sensors are not colocated (but are rather distantly distributed

geographically and auxiliary joint processing is speculated to

reasonably take place at a designated central location such as

within the [prior] Cheyenne Mountain control center proper)

53The Kalman filtering technology of either a standard Kalman Filter or
an EKF or an Interactive Multiple Model (IMM) bank-of-filters appear to

be more suitable for use with Multitarget Tracking (MTT) data association
algorithms (as input for the initial stage of creating gates by using on-line real-
time filter computed covariances [more specifically, by using its squareroot

or standard deviation] centered about the prior best computed target estimate
in order to associate new measurements received with existing targets or to
spawn new targets for those measurements with no prior target association

being “close enough”) than, say, use of Kalman smoothing, retrodiction,
or Batch Least Squares Maximum Likelihood (BLS) curve-fits because the

former are a fixed, a priori known and fixed in-place computational burden in
CPU time and computer memory size allocations, which is not the case with
BLS and the other “smoothing” variants. Examples of alternative algorithmic

approaches to implementing Multi-target tracking (MTT) in conjunction with
Kalman Filter technology (in roughly historical order) are through the joint
use of either (1) Munkres algorithm, (2) generalized Hungarian algorithm,

(3) Murty’s algorithm (1968), (4) zero-one Integer Programming approach of
Morefield, (5) Jonker-Valgenant-Castanon (J-V-C), (6) Multiple Hypothesis
Testing [MHT], all of which either assign radar-returns-to-targets or targets-

to-radar returns, respectively, like assigning resources to tasks as a solution to
the “Assignment Problem” of Operations Research. Also see recent discussion

of the most computationally burdensome MHT approach in Blackman, S.
S., “Multiple Hypothesis Tracking for Multiple Target Tracking,” Systems
Magazine Tutorials of IEEE Aerospace and Electron. Sys., Vol. 19, No. 1, pp.

5-18, Jan. 2004. Use of track-before-detect in conjunction with approximate
or exact GLR has some optimal properties (as recently recognized in 2008
IEEE publications) and is also a much lesser computational burden than MHT.

Also see Miller, M. L., Stone, H, S., Cox, I. J., “Optimizing Murty’s Ranked
Assignment Method,” IEEE Trans. on Aerospace and Electronic Systems,
Vol. 33, No. 7, pp. 851-862, Jul. 1997. Another: Frankel, L., and Feder,

M., “Recursive Expectation-Maximizing (EM) Algorithms for Time-Varying
Parameters with Applications to Multi-target Tracking,” IEEE Trans. on Signal
Processing, Vol. 47, No. 2, pp. 306-320, Feb. 1999.Yet another resurgence:

Buzzi, S., Lops, M., Venturino, L., Ferri, M., “Track-before-Detect Procedures
in a Multi-Target Environment,” IEEE Trans. on Aerospace and Electronic

Systems, Vol. 44, No. 3, pp. 1135-1150, Jul. 2008.
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are discussed next.

Ref. [334] explores two variations on JMEKF formulations

that properly handle higher order moments (that lurk in the

background while trying to get good estimates and covariances

from EKFs). Approximations utilized are acknowledged and

properly handled (rather than be ignored, as is usually the

case). Resulting estimation errors are reduced by several orders

of magnitude within 5 sec., but results are expressed in

normalized units (for comparisons to ordinary EKF approach,

which it beat by a wide margin). Down side is its larger CPU

burden that is yet to be completely quantified and reported.

Ref. [336] achieves a big breakthrough by providing a

proof that this particular EKFs possesses global stability as

a consequence by stating that it possesses almost” global

asymptotic stability; however, the term almost” is required

terminology to keep probability theorists and purists happy

with the wording of his claim. Author Jensen attains his results

by utilizing appropriate stochastic Lyapunov functions (proper

handling of such due to Prof. Emeritus Harold J. Kushner,

Brown Univ.). Proof of Stability for EKF’s as formulated

for specific applications [331], [332]. Now worries about

EFK divergence evaporate for these particular applications.

Ref. [337] provides a proof of Stability for use of Luenberger

Observers too (ẼKF).

Ref. [333] is an excellent survey on the subject of attitude

estimation. It provides insights into what is important in

estimation algorithms. It is a more practical and rigorous

addendum to NASA’s many earlier surveys,concerned with

utilizing alternative EKF’s or Nonlinear Luenberger Observers

(as alternatives to Extended Kalman filter-based approaches).

They admonish to “stick with EKF”.

Matrix KF material that I summarize here was originally

developed primarily by Daniel Choukroun, B. S. (Summa

cum Laude), M.S., Ph.D. (Technion 1997, 2000, 2003, re-

spectively), post-doc (UCLA), currently an Assistant Professor

at Delft University of Technology, Netherlands. Requisite

operation steps for implementation somewhat resemble those

of a conventional Kalman filter and are concisely summarized

in terms of Kronnecker sums. Others contributed to further

refinements: Ref. [338] provides a linear Matrix Kalman filter

for DCM (DCM refinement #1). Ref. [339] offers a linear

Matrix Kalman Filter for DMC using either vector or matrix

measurement updates (DCM refinement #2). An alternative

viewpoint is offered in Refs. [340], [341] as Quaternion

refinements #1 and #2, respectively. Refs. [342] and [344]

are Quaternion refinements #3 and #4, respectively. Ref. [343]

is DCM refinement #3. Refs. [345]-[349] are careful NASA

investigations, updates, and summary assessments of current

alternative approaches to Spaceborne estimation for attitude

determination. Ref. [248] is a critical and thorough analysis

of 3 different EKFs vs. use of Technion’s Matrix Kalman

Filter (MKF) which ultimately availed further improvements

to the MKF. Recapitulating, the inherent nonlinear angular

complexity associated with triangulation to figure out the

direction to the target jammer is instead replaced with a

need for simultaneous linear Matrix measurements (within

a linear system structure) both independently pointing at

the target from the known location of each sensor and the

Matrix filter algorithm internally figures out the appropriate

resulting pointing direction to jammer (within the relatively

tight target complex that can still be intercepted since the

jammer is screaming “here I am” even though explicit radar

range is denied). Implicit range can be cooperatively deduced

(as internally calculated) in this manner.

X. A NEED FOR FURTHER R&D

In the early 1970’s, many researchers from the University

of Washington (e.g., Alfred S. Gilman, K-P. Dunn, Prof. Ian

B. Rhodes) investigated approximate nonlinear estimation in

the presence of so-called “Cone Bounded” nonlinearities so

that the resulting mechanizations are tractable. Dunn and

Gilman later worked at Lincoln Laboratory after obtaining

their Ph.D.’s but unfortunately these nice results apparently

were not relevant enough to EWR target tracking, which does

not exhibit these characteristics.

For the case of an ideal linear possibly time-varying

system with additive Gaussian white process and measurement

noises of known covariance intensities, with Gaussian initial

condition 54, independent of the aforementioned noises and of

specified mean x̄o and initial covariance, Po, and satisfying

certain technical regularity conditions (of being Completely

Totally Observable and Controllable [99], [201] or satisfying

less restrictive, more generally met, technical conditions of

being merely Detectable and Stabilizable), the following 6

properties listed below are associated with the ideal KF filter:

1) the finite dimensional n-state Kalman filter is an optimal

linear estimator and is also the overall optimal estimator

(according to five different statistical criteria of goodness

or measures of effectiveness (MOE) listed in [18]) for

tracking the state of the n-state linear system;

2) the estimation problem is completely solved using just

the conditional mean and variance available on-line in

real-time from the Kalman filter estimate and its associ-

ated Riccati equation solution, respectively. (Conditional

refers to being conditioned on the sensor measurements

received). Everything is Gaussian, so merely means and

variances suffice;

3) there is a guarantee that the Kalman filter is stable and

will converge to the true state (even if the underlying

system being tracked is unstable), as has been proved

using Lyapunov functions (see detailed references in

[76] which explain how it was done);

4) the Kalman filter will converge exponentially asymptot-

ically fast (this is darn quick) to the true state [115];

5) even if the initializing estimate xo and Po are way

off (incorrect) but Po is still positive definite, then the

Kalman filter will still converge quickly to the right

answer (independent of how bad the initial guess or

starting values were) [115];

6) the on-line computed covariance (from the Joseph’s form

of the Riccati equation) is an excellent gauge or measure

54Strictly speaking, even for a linear system with all the other usual regu-

larity conditions being satisfied, the filtering problem is infinite dimensional
if the initial conditions are not Gaussian but instead belong to some other

arbitrary known distribution [138].
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of how well estimation is proceeding and is even better

(more accurate) in fact than statistics computed from

any finite number of Monte-Carlo simulations or mission

time records.

The above 6 statements are true only for the linear case with

known Gaussian white noise statistics and only if the filter

model appropriately matches the underlying linear system

model (including correctly accounting for any biases present),

unlike in [116]. For nonlinear systems or non-Gaussian noises,

all six 55 of the above bets are off! All are violated in general!

Strategic target tracking arising in EWR typically employs

nonlinear system and measurement models, as discussed in

Sec. I. Historically for EWR, EKF’s have been used almost

exclusively except for the α − β filters of an earlier era.

To explicitly distinguish between what to expect of a tracker

for the above postulated ideal linear case and the more realistic

nonlinear case encountered in practice [73], the status of

approximate nonlinear filtering is discussed by paralleling the

format of the previous 6 item list immediately above:

1) the optimal nonlinear filter is infinite dimensional,

in general 56, and therefore not practical to attempt to

compute (otherwise, taking possibly an infinite amount

of time to do so) while a reasonable engineering ap-

proximation is to, instead, employ an Extended Kalman

Filter as a best linear estimator (but not expected to be

an optimal estimator x̂(t) but, hopefully, adequate for

tracking the state of the nonlinear system);

2) the estimation problem is not completely solved using

just the conditional mean and variance available on-

line in real-time from the Extended Kalman filter es-

timate and its associated Riccati solution, respectively.

Hopefully, such an estimate will be adequate but its

intermediary variance usually is not. Unlike the situation

for the linear case, where everything is completely

characterized by just the estimator mean and variance,

the actual optimal estimator needs all higher moments

specified as well [64, Ch. 1], [65] (or, equivalently,

specification of the conditional pdf or of its Fourier

transform, being its characteristic function, from which

moments may be generated). The on-line variance can

be optimistic (smaller than actual) or pessimistic (larger

than actual) and may crisscross several times over a

tracking time interval between being one or the other.

The primary focus is usually on the adequacy of just

the state estimate as the major consideration. However,

there are situations where the variance needs to be of

comparable quality (see Sec. I);

55There was actually a seventh concern expressed in [58, Sec. 12] ques-
tioning the applicability of IMM for nonlinear system models and noting the
apparent lack of prior precedents of IMM use with such nonlinear systems.

The utility of IMM over purely KF’s were recently demonstrated in [101]
for certain linear systems but no nonlinear systems are treated in these
comparisons of KF and IMM performance that favor IMM use. Similarly,

[156] only uses linear system models for IMM even with PF that can
ostensibly handle nonlinear systems and non-Gaussian noises. Also see [307].

56There are some limited nonlinear special cases that have finite dimen-
sional optimal filters (as characterized by Benĕs, Daum, Tam et al, Stafford

[op. cit.]), where the distributions encountered within the system proper are
of the exponential family [124, Chapts. 1-4] yet the marginal or conditional

distributions will still be tractably Gaussian.

3) there is no longer any analytically provable general

guarantee that the EKF is stable and will converge to

the true state. Unfortunately, EKF’s sometimes diverge

[255];

4) the EKF does not converge exponentially asymptotically

fast to the true state. We are happy if it gets there fast

enough to be useful;

5) when the initializing estimate xo and Po are way off

(incorrect) but Po is still positive definite, the EKF may

diverge away from the right answer at an exponential

rate [116]. (EKF performance can be highly dependent

on how good or bad the initial guess or starting values

are);

6) the on-line computed covariance (from the Joseph’s form

of the Riccati equation) is a lousy gauge or measure of

how well estimation is proceeding and is never better

(or even as accurate) as the off-line statistics computed

from an adequately large finite number of Monte-Carlo

simulations or mission time records. (Employing a 97%

histogram-based Spherical Error Probable [SEP] from as

many as 250 Monte-Carlo run evaluations is not atypical

in some EWR applications. Perhaps the number should

be much larger.)

A desirable goal would be for researchers to eventually achieve

as pleasant a resolution in the above 6 categories for han-

dling and tracking nonlinear systems as currently exists for

handling the tracking of linear systems. Despite the plethora

of new estimation algorithms offered and discussed in the

Mar. 2004 Special Issue of the IEEE Proceedings dedicated to

“Estimation and Tracking” topics, it appears that not enough

attention is given to the above 6 topics for the nonlinear

case! Control theorists have also compiled a list of unsolved

problems for esoteric abstract situations [234] yet have missed

mentioning these 6 more mundane bread and butter issues

that face estimation practitioners. New approaches should at

least remedy one or more of the 6 problems listed above or

what use are they? This same gap existed between theory and

practice in 1965 and some remedies are in [242]. However,

Refs. [34], [70], [81], [105], [109] 57, [121], [127] (fulfilling

the promise of [128]) do appear quite lucrative and especially

the milestone accomplishment of [108] for their particular

imaging-based tracking solution. Ref. [108] has apparently

constructively exploited every major ground breaking result

in novel cutting edge random process theory that has occurred

in the last 30 years (reaping structural benefits of martingale

inequalities being available as associated with the greater rigor

of using a Brownian motion process interpretation over merely

57While it is a laudable evolutionary service to collect and analyze the

various models available for describing maneuvering targets, as done in [109],
some may disagree with the remark on page 1349 that the models of Eqs. 79,
80 there are highly nonlinear. In fact, they are bilinear and, as such, are slightly

less tractable than purely linear systems [110] (so there is no need to “pretend”
in obtaining the results of Eqs. 81 and 82). Prof. Roger Brockett (Harvard)
helped pioneer how to get such nice results for these almost linear systems.

Alan Willsky (MIT) and David Kleinman (NPS) have stability results for these
too (circa 1974) and Willsky and J.T.-H. Lo have estimation results for similar
systems that have associated Lie Algebras that are finite dimensional (as do

Benĕs, Daum, Tam, Wong and Yau, Mahler [191, Chap. 5], [196], [197] also
see [190], [233]). Ref. [109] missed including [111], which creatively utilizes

the Maximum Principle. Newer approaches also exist [310].
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a “Gaussian white noise” viewpoint, use of Poisson point

process to capture realistic imaging aspects, use of Girsinov’s

transformations of measures to a computational advantage

[125]) to push the envelop and reap landmark results (thus

taking to fruition what Donald Snyder, Terrence McGarty,

Moshe Zakai, David Sworder, Yaakov Bar-Shalom, and so

many others may have had in mind as an ultimate goal for

this evolving theory). This approach could eventually be as

beneficial as Irving S. Reed’s streak processing is for a similar

space target application (but now no longer constrained to

handling merely straight line tracks)! The new results of [172]

appear to be very similar to those of Frederick E. Daum (1986,

1987). The results of [173] appear to be directly applicable

to further performance analysis of a BLS batch filter (viz.,

CRLB). The results of Refs. [254], [354] nicely augment the

approach of [251]-[253].

For EWR, there is still room for improvement of the

EKF itself including automated “process noise covariance

filter tuning” [34] (recently developed and applied to GPS),

[70]; possible use of iterated EKF’s (of two different flavors)

[35], [36]; or possible use of more terms in the Taylor

series approximations of the significant nonlinearities present

(constituting use of a Gaussian 2nd order filter) [3], [18], [19],

[37]-[39]; and possible parallel mechanizations [40], [41] A

recent evolutionary change is to use polynomial interpolations

via Stirling’s formula [71] or via [72] instead of evaluating

any higher derivatives. All these strategies should improve the

accuracy of the measurement linearization with but a slight

increase in the computational burden. Manually calculating the

first derivative and second derivative Jacobian 58 and Hessian

matrices, respectively, was challenging 30 years ago but is

quite tractable now with the advent of symbol manipulation

software like Maple c©, MacSyma c©, or Mathematica c©so

[71], [72] are less enticing for this application than perhaps

for others where derivatives are less readily available or

nonexistent. Recent innovative results in contraction mapping

analysis [157], [158] should be explored for likely relevance

in seeking to improve theoretical underpinnings of EKF for

nonlinear applications.

New exact and approximate solutions have been obtained

for incorporating out-of-sequence measurements into Kalman

filters [174]. This will likely be useful to compensate for

transport delay incurred in cross-communications if several

EWR participate to jointly track the same targets as seen from

different geographical perspectives or even when augmented

with the output of other types of sensors to enhance target-

tracking capabilities beyond that availed from each alone.

A caution is that innovative researchers sometimes use a

definition of stability that differs from that classically and

historically agreed upon and consistently used for decades.

As a consequence, new results can validly claim to yield

“stable systems” or to yield an “algorithm that converges”

even though limit cycles are present (that historically would

be viewed as being unstable or as an algorithm that did not

58Calculating the Jacobian for a 6 state filter corresponds to forming

62 = 36 derivatives that can be fairly challenging. Seeking to calculate 2nd

derivative Hessians can be very taxing unless symbol manipulation software

is utilized (e.g., MacSyma, Maple).

converge). An earlier precedent for this situation occurring

arises with use of the Min-H technique, as discussed in [44],

(that is guaranteed to converge in-the-sense-of-orthogonal-

search-algorithms) yet can actually vacillate and never settle

down completely but, instead, can continue to hop around

forever between a small finite number of equally valid options

as solutions. Occasionally, the Min-H technique converges to

a single unique answer and only then is its output useful as a

solution to the problem at hand (as used in [44], [56]).

Rudolf Kalman used the Hilbert Space Projection Theo-

rem 59 in originally deriving the Kalman filter in 1960 (cf.

[327]). The norm in L2 is also an inner product, which is what

one needs in a Hilbert Space (along with the space being com-

plete by containing all its limit points). Other researchers, such

as Ruth Curtin, have pursued use of Banach space techniques

for obtaining Optimal filters for systems whose dynamics are

described by Partial Differential Equations (PDE’s) and whose

corresponding observations constitute natural boundary condi-

tions [267, Chap. 5]. Kalman filters for such PDE systems

are also found in Andrew Sage’s 1968 textbook, as identified

(with applications) in [52], [58]. Randall V. Gressang and Gary

B. Lamont submitted “Observers for Systems Characterized

by Semi-groups,” to IEEE Automatic Control in 1977 but

it was rejected (not because it was wrong but because it

was so far ahead of its time). Gressang and Lamont’s paper

posed the problem (arising for infinite dimensional systems

described by PDE’s) and solved it using only corresponding

Banach space techniques (rather than use the Hilbert Space

techniques that were prevalent at the time and familiar to

the reviewers who failed to recognize that the Hilbert space

techniques were inappropriate to use for this particular infinite

dimensional situation). There is also an existing mathematical

theory for handling unbounded linear operators that some

believe is appropriate to use in this context when the operator

at hand involves derivatives. Ref. [195] uses Banach space

techniques when needed to handle Riccati Equations.

XI. PRECEDENTS FOR USE OF NEWER ESTIMATORS

WITHIN STOCHASTIC CONTROL IMPLEMENTATIONS?

ANSWER: NONE ARE SUFFICIENTLY REAL-TIME!

We now discuss an open question that remains to be ad-

dressed for the new alternative estimation approaches. But first

a short review is needed to set the context and define terms: the

term LQG represents the feedback control strategy obtained by

concatenating two back-to-back ideas of using a Kalman filter

in conjunction with use of a Linear Quadratic (LQ) feedback

control. The LQ regulator is the feedback control for driving a

noise-free linear system to the zero state (termed “regulation”)

that minimizes or optimizes an associated convex Quadratic

integral cost function (i.e., quadratic in both the state and the

59Prof. Thomas Kailath alerted the estimation community to a precedent by
some Japanese researchers that posed linear estimation within a Krein Space
instead of within a Hilbert Space and apparently obtained faster convergence

as a consequence. While Matrix Positive definiteness plays a prominent
role within all the analytic proofs supporting the usual Hilbert Space-based
derivation of Kalman filters, the Krein Space approach frequently involves

matrices that are indefinite. The tool in common is still projections onto linear
subspaces [104]. The Krein Space approach decomposes the problem into two

Hilbert Spaces.
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control), with such an endeavor being achieved over a finite

time interval [t0, t1] (for a finite planning horizon) or over an

infinite interval [t0,∞] (for an infinite planning horizon) and

thus minimizing or optimizing the total energy expended in

each case.

When the linear system to be regulated via a feedback

control is noise corrupted, the Separation Theorem allows us

to validly decompose the problem into the two parts mentioned

above by first obtaining an estimate of the state in lieu of not

having the actual noise-free state available for multiplying by

the LQ feedback gain as feedback control: u(t) = M(t)x(t);
then we, instead, use the best available estimate of the state

(being the output of the Kalman filter) in forming the cor-

responding LQG feedback control: u(t) = M(t)x̂(t). This

approach is straightforward but requires solving two similar

looking Matrix Riccati equations:

1) one solved forwards in time for the KF covariance used

in computing the KF gain, K(t), which, in turn, is used

in obtaining the state estimate x̂(t);
2) one solved backwards in time to obtain the matrix

subsequently used in computing the (possibly time-

varying) LQ gain M(t).

If there is negligible noise present in both the plant and in the

measurement sensors, then a Luenberger Observer is utilized

instead of the Kalman filter to reconstruct any unavailable

states (i.e., states that are not directly accessible) for use in

the feedback control.

The Separation Theorem (for linear, possibly time-varying,

systems) supports the above described strategy by guarantee-

ing that the Optimal Control, which minimizes the expected

value of the scalar Quadratic Convex cost function, can validly

be separated into two sequentially applied parts. Unfortunately,

such an easy-to-obtain solution lacks a reasonably conservative

phase margin to guard against instability of this LQG control

result ([88], [89]). Pure LQG solutions have a paucity (as in

zero) in phase and gain margins! (As previously observed with

the calculus of variations for obtaining the elusive optimum

solution, it had already been observed by earlier generations

of researchers that the (piece-wise continuous) time-optimal

bang-bang control is also on the cusp of being unstable since

a drastic instability occurs if any of the indicated “switching

instants” actually implemented are even slightly offset from

the ideal switching goals, and these systems can similarly

go unstable even with the associated smooth LQG control

strategies (cf. [119]). Loop Transfer Recovery (LTR) [90] is a

further slight modification of the basic LQG methodology to

force a practical solution that does have the necessary margins

for safety’s sake so that the resulting total feedback control

solution of LQG/LTR is more robust in a changing envi-

ronment (of aging hardware components resulting in slightly

changing parameter values, possible presence of unmodeled

high frequency dynamics unaccounted for because they did

not reveal themselves as being present during the original

data reduction, where the test stimulus may have been of a

lesser bandwidth than needed in implementation) and, as a

consequence, the LQG/LTR feedback control strategy is no

longer on the cusp of going unstable, as use of LQG alone

would be.

Richard Gran (retired from Grumman Aerospace and later

from The MathWorks) authored [91]. W. H. Wonham (Brown

University, now with Univ. of Toronto wrote in the same

proceedings [92]. Many others have also participated in this

quest for nonlinear separation [93]-[96], [367] 60.

A famous counterexample, where nonlinear separation fails,

was published by H. S. Witenhausen (Bell Labs) [97]. It

reveals the fallacy of attempting nonlinear separation and

dashed hopes (for awhile anyway) for complete generality in

the nonlinear case but engineering approximations frequently

invoke this Separation procedure anyway by separating the

problem of nonlinear optimal control with noise being present

into two distinctly different sub-problems that are treated and

solved separately, in isolation, by first performing nonlinear

estimation followed by nonlinear optimal control. This two-

step technique can sometimes still be useful by treating the

total problem sequentially in this way although, in reality, the

problem of nonlinear optimal estimation and nonlinear optimal

control is inherently mixed together. Extensive simulations

of the resulting algorithms are used to gauge whether it is

adequate for the application at hand. More research is needed

to “crack this nut” and reduce reliance on mere simulation

(especially since no directions arise pointing to a better solu-

tion strategy as the next step to pursue if the results of the

initial simulation of the separated and later combined strategy

are disappointing) except [123] as a recent suggestion.

Appealing to use of the more recent so-designated H∞

or Robust Control methodology will not likely take up the

slack! (See further confirming revelations in [117, Epilogue],

[118] cf. [119]) Although an H∞ approach may perhaps be

useful for process control applications, where possessing a

rapid response time is not an issue because it is not sought as

a goal in process control; by assuming a worse case situation

for its implementation, it usually has a conservative response

that is notoriously sluggish (analogous to the situation of being

over-damped in 2nd order linear time-invariant systems). An

example supporting this assertion is that the useful and very

familiar Least Mean Squares (LMS) algorithm that is known

to converge [308], but sometimes slowly [309], [315], has been

shown in [161] to be H∞-optimal 61. More to the point, the

Robust Control methodology does not yet handle general time-

60Unlike what the title says, this is for feedback stochastic control using
an EFK within the loop and, in my opinion, uses contorted notation. For

T1 ≤ T2, then Lp[0, T1] ⊆ Lp[0, T ] ⊆ Lp[0,∞], (with p a positive integer)
as standard existing results of functional analysis instead of making up their
own nonstandard notation. For arbitrary integer p > 0, each is a Banach

Space. For p = 2, each is a Hilbert Space, with all the properties thereof. This
structure exists for the Lebsque measure (for integrals) and for the Counting

measure (for sums). Despite the claims of generality in the conclusion, it does
not overcome Witenhausen’s famous counterexample.

61Over 12 years ago, some Japanese researchers reported getting better
estimation accuracy for a somewhat uncertain system model when they used

covariances, P(t), that were not positive definite but instead were indefinite.
While such results initially appeared to be counter to prior analytic intuition,
considering the important role that positive definiteness was known to play

in estimation theory and LQG control and in its underlying proofs, the
subsequent analysis of Refs. [162], [163] explains how this can occur when
estimation is posed in a Krein Space rather than in a Hilbert space. Application

results are reported in [163] but are applicable only to systems with linear
time invariant (LTI) plant and measurement models but [163] provides further

insight into the interrelationship with estimation and control.
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varying linear systems, general nonlinear systems, nor systems

with noises present for MIMO except in some heroic cases for

a single isolated scalar system component. This is especially

unsettling upon recalling that when general nonlinear systems

are linearized, the result is a time-varying linear system!

Recently, H∞ control techniques have been used to detect the

event of hardware component failures in systems, where the

simulated failures were 1,000 times nominal; thus, use of such

gigantic failure magnitudes merely conveys the impression of

good performance (since results are less impressive for more

reasonably sized failure magnitudes). Such demo tricks were

historically warned about in [75], [141]-[143] but, evidently,

still occur. Do H∞ approaches offer solutions to any problems

that could not already be solved more conventionally?

Although the late George Zames is credited in a moving

(and extremely informative) tribute on pp. 590-595 in the

May 1998 issue of IEEE Trans. on Automatic Control with,

essentially, single-handedly bringing mathematical functional

analysis to the aid of control and system theory via use of

the contraction mapping principle (CMP) in [136] (see [265]),

please peruse the earlier contribution by Jack M. Holtzman’s

(Bell Telephone Lab., Whippany, NJ) [132], which also has

the use of CMP as its main theme in such systems. However,

Holtzman worked everything out in detail in [132] so that

his results were on a platter in such a form that they could

be easily understood and conveniently applied immediately

to practical system design by engineering readers faced with

real applications and who may not necessarily be interested

in abstract results in a technical paper whose significance is

not known until several years later. Charles Desoer’s and M.

Vidyasagar’s (U. C., Berkeley) textbook came out several years

earlier than Zames too and also had a functional analysis bent.

A. V. Balakrishnan (UCLA) has also been an avid practitioner

of functional analysis in analyzing the behavior of systems and

in understanding optimal control (including numerical solution

algorithms) since the early 1960’s. Ref. [43, App.] even uses

CMP in its convergence proof as does [55].

What about the use of feedback linearization or the use

of neural networks for control? Answers to these questions

appear in [106]. Apparently, we are still awaiting investiga-

tions 62 into the downstream control impact of using the

new alternative estimation approaches of Sec. IV in place of

EKF’s as the first step for actively controlling noise corrupted

nonlinear systems. (See Vol. II of [64] for an alternative

approach as a precedent for handling or compensating for

the effect of noise on relays and on the synchronization of

oscillators.) Unlike the situation for EKF’s, apparently none

62We are also awaiting investigations into why Space-Time Adaptive

Processing (STAP) algorithms assume enemy threat is merely stationary WGN
“barrage” jamming. STAP appears to be very vulnerable to nonstationary
jamming [57]. Many STAP algorithms to date (e.g., [145]) have utilized

Wiener filters (which only handle time invariant situations in the frequency
domain). It is well-known that Wiener filters are a special more restrictive case
of a Kalman filter [139, p.142, 242] and that MIMO Wiener filters incur the

more challenging extra baggage of needing Matrix Spectral Factorization [47],
[49] to take them to fruition instead of equivalently just needing to compute
the more benign Matrix Riccati Equation solution utilized in Kalman Filters.

In the early 1990’s in an award winning paper [144], Prof. Thomas Kailath
(Stanford) and his thesis students established that most so-designated adaptive

filters in current use are in fact merely special cases of Kalman filters.

of the new (or alternative older algorithms) “yet play a role

in Stochastic Control”. Evidence confirming this assertion

is available by perusing the recently published Ref. [159].

Indeed, Ref. [159] elucidates a new, well-funded application

area in Stochastic Control yet nary a word is mentioned about

using α-β filters in the pursuit of stochastic control algorithms,

nor use of Particle Filters, nor Unscented Filters (= Oxford

Filters 63 = Sigma Point Filters) even though the editors of

this special issue are at Oxford. An even more challenging

PDE arises within the context of stochastic control [93] as the

Bucy-Mortensen-Kushner PDE (see [18, p. 176] for a clear

concise perspective).

Realities of Nonlinear Filtering:

• The presence of Gaussian noises in nonlinear systems

(described by nonlinear ordinary differential equations)

yields outputs that are unlikely to be Gaussian and

perhaps not even unimodal.

• Since non-Gaussian outputs and estimates are encoun-

tered, they need more than merely the estimated mean

and variance for a full characterization of its tracking

capability. In general, all the moments and cross-moments

must be specified (up to a certain point before exceeding

practicality) for a sufficiently complete characterization

of non-Gaussians so the problem is generally infinite

dimensional (but finite dimensional for an approximation

that includes only higher moments up to a specified max-

imum number before ignoring all higher order moments

[by assuming their effect to be of little consequence so

treated as zero]). Differential equations can be specified

for the time evolution of all higher moments but they

are, in general, coupled with the time evolution of even

higher order moments ([64], [65]) [which drop out when

assumed to be zero].

Other alternative tractable approaches:

• Can use conjugate pdf’s before incorporating a new

measurement into the filter. The candidate pdf’s are to

be selected from the exponential class (which contains

many familiar pdf’s as members).

• Can approximate the unknown pdf using a hypergeomet-

ric series with parameters to be estimated. Other issues

arise concerning when do pdf’s even exist (relating to

when the Radon-Nikodym derivative exists, and, in turn,

relates to when the cumulative distribution function is an

absolutely continuous function).

• Can pursue use of alpha-stable filters for “fat tailed”

noise (i.e., outliers are prevalent) [a scalar case example

was provided by Stuck ’79 [370]).

XII. SUMMARY

We encourage investigations into new estimation approaches

(such as in [182]-[185], [222]) as a way to possibly get past

prior fundamental barriers that nonlinear filtering practitioners

had tripped up on in the past (that we reconnoiter about

in Secs. IX and X). However, we also desire that realistic

procedures be used to evaluate the suitability of the new as

63Named for the affiliation of the original developers.
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well as older conventional α-β filter and BLS algorithms for

specific applications, where we are only specifically concerned

herein with EWR.

Covariance Intersection was shown to be wanting in Sec. II

and questionable aspects were identified in the derivation of

the Unscented or Oxford filter in Sec. IV (footnotes). In

Secs. III and IV, we were concerned with an apparent lack of

realism relative to the EWR mission in the evaluations of [10]

as it would severely affect tallies of absolute accuracy (that

ignored the existence of out-of-plane errors by treating them

as being essentially zero as also done in like manner in a 1998

AIAA/BMDO workshop presentation by Paul Zarchan and R.

Jesionowski [314] as a possibly misleading precedent) and

consequently treated by default as no longer contributing to

the total error incurred in tracking. This is a serious oversight

since a major part of the EWR problem, in attempting to track

targets under central forces, is to identify what oscullating

plane they occupy. However, since all 4 algorithms considered

in [10] were evaluated under identical controlled conditions,

the CPU timing and CPU loading studies of [10] for cross-

comparing the algorithms were still appreciated and reported

here as useful (but the state dimension of the tracker models

were too low). For a higher dimensional system dynamics

model of greater significance to EWR (of at least 6 states:

3 position and 3 velocity) instead of the 4 used in [10] and

5 used in what Paul Zarchan and R. Jesionowski presented

[314] (in an indo-atmospheric situation where there should

be at least 7 states), the CPU burden increases or blossoms

nonlinearly and exponentially as the model state size increases

and is affected by other parameters as well (as quantified in

[8] for only a particular type of Particle Filter with Bells and

Whistles, as a class). We also offered warning relative to the

use of α-β filters for EWR at the end of Sec. IV.

In Sec. V, we revisited the appropriateness of an historical

40 year old approach to CRLB evaluation as still being

germane for EWR. In Sec. VI, we obtained new original

expressions for BLS CPU timing and loading bounds for

a sequentially implemented version so that this bound may

be used as a starting place gauge for comparison as more

modern versions of BLS are implemented on parallel process-

ing machines64 to, hopefully, reap considerable speed-ups by

scaling down the CPU operations times relative to this upper

bound. In Sec. IX, we reviewed the various new approaches for

improving the behavior of EKF’s since EKF’s have historically

been the workhorse in EWR and are likely to remain so

for the immediate future. In Sec. X, we noted what remains

to be done before other estimation approaches fill the role

that EKF’s currently occupy exclusively within strategies for

handling noisy control systems. Since the topics of “one-shot

trials” and AOT in Secs. VII and VIII are likely of relevance

to applications beyond just EWR (as identified), we rounded

out our discussion by pointing to the future with desiderata.

We hope that others find our insights and comments on the

field to be useful and relevant to their own unique estimation

applications.

64The original version of BLS, originally formulated by Dr. Peter Bancroft,
creatively utilized interpolation, which is more amenable to benefit from

parallelization.

As justified by the discussion in the latter part of the Ap-

pendix versus the statistical idealizations underlying Particle

Filters (PF) offered as the descriptive equations throughout

[177, Chap. 3], a disconnect is perceived to exist between

the very sophisticated statistical arguments underlying both

PF’s “ideal” and PF’s “many reasonable approximations”

(based on Bayesian statistics) yet the pseudo-random variates

that they are actually capable of numerically generating in

implementation are currently not quite able to match the

assumed analytical statistical structure as a practical issue.

Pseudo-random noise generation does not yet computational

match what they really need (even if they assume that it

does) neither as a scalar single channel sequence of uniformly

distributed variates nor as parallel sequences of the same (as

the intermediate step). Failing this, the subsequent conversion

of uniform variates obtained to Gaussian variates also misses

the mark as a consequence. The variates actually generated

computationally lack the expected properties and, as a con-

sequence, the Particles generated for particle flow lack the

expected properties as well. The number and nature of the

statistical Bayesian arguments invoked in implementing either

a KF or an EKF is far fewer than a PF within their supporting

theory. Also, the KF mechanization can be derived by seven

shorter more robust alternative derivation paths:

• orthogonal projection (onto a subspace spanned by the

measurements) [18],

• recursive least squares [18],

• maximum likelihood [18],

• minimum variance [18],

• conditional expectations [18],

• matrix maximum principle [382],

• three martingales approach [382].

The first 5 derivation approaches listed above are demonstrated

in [18, pp. 200-212] and the last two are as cited above;

and all follow directly and simply without explicitly invoking

Bayesian approaches (nor Fisher approaches, nor R. von Mises

approaches) but still rely on the underlying rigor provided by

the 1933 measure-theory-based approach 65 of A. Kolmogoroff

(as mentioned by A. Papoulis in [305, footnote, p. 8]) to

probability theory, as used by J. L. Doob (1953), M. Rosenblatt

(1967), W. Feller (1966), and M. Loeve (1963). The EKF fol-

lows merely as a tractable linearized approximation beyond the

ideal situation to approximately match the nonlinear problem

being faced.

XIII. STUFF APPENDED

Various novel approximate approaches for handling non-

linear filtering by being alert to possible improvements to

supplant, replace, or augment Extended Kalman Filters or

Iterated Extended Kalman Filters, such as (please excuse the

somewhat critical view point that I initially convey below as

I get my licks in [after waiting for 2̃0 years by intentionally

delaying my criticisms until early 2019 so that I could not be

accused of interfering with or blocking any potentially com-

petitive algorithm developments or its subsequent evolution

65The cardinality of random processes and random variables for which pdf’s

do not exist is greater than the cardinality of those for which pdf’s do exist!
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after encountering normal, likely temporary roadblocks to later

be circumvented]). My criticisms being conveyed here now

for the specialists are both from my own past experience and

from the past experiences of others earlier on, as identified.

My tone will be more mellow further below (beyond this

color) at the end of this critique of the 3 different current

alternative estimation approaches, as I later also discuss Fred

Daums very nice and clear tutorial and summary of these

same 3 competitive alternative estimation algorithms within his

own overview status-of-the-field discussion that is generally

accessible to all, including the non-specialists. My own criti-

cisms precede Daums discussion below (but Daums comments

are not criticisms) while mine are definitely criticisms and

follow next: -Particle Filtering (PF)-(only if they live up to

their hype [which has not completely happened yet]) with

careful assessment of their associated respective computational

burdens. (PF provides very good tracking accuracy but can

seldom be computed in real-time! Moreover, PF is not needed

in situations where good mathematical models already exist

for the system dynamics [such as objects acted upon solely

by central forces, as with gravitational forces] and the process

or plant noise is merely a minor consideration [especially

when it is absent entirely, as is the case with radar track-

ing of RVs in the midcourse phase (where the RVs are to

be kinetically intercepted) and for tracking all satellites, in

general]. The strong suggestion that particle filters should

only be used for difficult nonlinear/non-Gaussian problems,

when conventional methods fail is made within the Epilogue

on page 287, next to the last sentence of the 1st paragraph

of the book: Ristic, Branko, Arulampalam, Sanjeev, Gordon,

Neil, Beyond the Kalman Filter: particle filters for tracking

applications, Artech House, Boston, 2004. (Moreover, pp.

271-283 in Section 12.5.2 discuss Rao-Blackwellized Particle

Filters (for additional speeding up of the computations) as well

and also discusses this topic further on page 287. Much benefit

had already accrued by 2016 in use of Rao-Blackwellized

Particle Filters.) Many researchers, like me, are somewhat

suspicious when claims are made by other researchers that

they used a Particle Filter for a particular application, when

adequate linear Kalman Filters had been successfully used for

that same particular INS/GPS airborne application for decades

(prior to now being applied to an airborne drone, as recently

claimed for a PF used by MIT/Draper Laboratory).

Since most recent so-called ground-breaking results for

PFs claim orders-of-magnitude improvements over prior orig-

inal PF implementation/ formulation, which itself increase

exponentially in complexity with dimension; so a several

orders-of-magnitude improvement/reduction is still an expo-

nentially increasing computational burden overall. Richard

Bellman identified a Curse-of-Dimensionally relating to the

computational burden of his Dynamic Programming (DP)

algorithm (a.k.a., a Viterbi algorithm equivalent), but Bellmans

Dynamic Programming came first in 1953 Rand Report:

http://www.dtic.mil/dtic/tr/fulltext/u2/074903.pdf ) and Curse-

of-Dimensionally was not claimed back then for Particle

Filtering per se since Particle Filtering did not yet exist. Robert

E. Larson (when he was a VP at Systems Control Inc. in

Palo Alto, CA) published his approximate simplifications, in

IFAC Automatica circa 1976, that Larson invoked for taming

the Dynamic Programming CPU burden in order that its

implementation would be tractable for practical applications.

Since it was an algorithm that differed considerably from that

of Particle Filters in structure, the same simplifications do not

directly apply nor carry over and other simplifications for PF

were needed, as sought by others within the last 20 years.

That distinction was not originally clarified by those who were

pursuing use of Particle Filters and sought to reduce the Curse-

of-Dimensionally but needed to do so in different ways since

the precedents used in reducing the computational burden for

DP dont strictly apply for PFs.

When process noise is present (as well as the usual sensor

measurement noise), because of the Central Limit Theorem

and especially the Central Limit Theorem (with weakened hy-

pothesis but similar strong conclusion), the corrupting noises

are usually Gaussian in general, and consequently don’t re-

quire anything special beyond an EKF for successful tracking.

The methodology for determining what measurements are

needed, as availed from the full rank condition being satisfied

from an associated Observability analyses or the weaker

Detectability analysis routinely associated with KF and EKF,

apparently dont exist for PF since there is no system model

specified beforehand for a PF for which these conditions

can be tested for compliance. Similarly, full rank conditions

for Controllability or the weaker Stabilizibility also cannot

be tested for compliance since there is no system model

specified beforehand for a PF to be used in such a test.)

Without such conditions being satisfied, how can analyzers and

implementers be assured of the stability of a PF filter estimator

to be assured that it is not diverging from the true state. I have

appealed here to the very familiar ample framework that has

existed for 4+ decades pertaining to use of available Lyapunov

functions to demonstrate stability of KFs (even if the underly-

ing system is unstable, the KF estimator will still appropriately

track it well) and approximately, through linearization, for

EKFs (and now exactly for some particular special case EKFs

using stochastic Lyapunov functions), where such a useful

framework apparently does not yet exist for PFs.

Unlike the benign situation for a purely linear Kalman filter

(KF) that allows use of a so-designated separate Covariance

Analysis (without any system sensor measurements needing to

be specified or collected nor any explicit KF estimates needing

to be specified or calculated) to set system Error Budgets

beforehand that serve as specifications on the actual hardware

to be implemented later along with the software algorithms

under consideration now so that system accuracy goals may

be met [as discussed on pp. 260-266, Sec. 7.4 of Gelb, Arthur

(ed.), Applied Optimal Estimation, MIT Press, Cambridge,

MA, 1974 and a view also confirmed in Maybeck, P. S.,

Stochastic Models, Estimation and Control, Vol. 1, Academic

Press, NY, 1979], the PF has no such capability since PF

Covariances are not available in that same way without PF

estimates being simultaneously calculated. However, for EKFs,

the situation is similar to that for a PF since a linearization

about an EKF estimate is usually needed at each time step

in order to calculate the covariances used in a Covariance

Analysis for an EKF in order that an approximate Error Budget
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can be obtained.

When having real-time estimates is not an issue or constraint

on the utility or estimator usefulness, such as in some Data

Analytics situations where underlying financial models may

be completely unknown, a PF may be the best approach

to use since there is plenty of data. Recall that Kalman

smoothers (nowadays referred to as a Kalman retrodiction)

are of three different forms: (1) fixed interval smoothing, (2)

single point (in time) smoothing, or (3) fixed-lag smoothing

are also NOT real-time algorithms but useful nonetheless such

as in closely evaluating missile behavior at the particular event

time when a later stage ignites and separates for a multistage

rocket. Sometimes a KF smoother is implemented using two

Kalman filters, one running forwards in time and the other

running backwards in time (where initial conditions for the

first and final conditions for the second are made to corroborate

correctly (see Backwards Markov Models by Prof. George

Verghese [MIT], who obtained his Ph.D. at Stanford University

on this topic under Prof. Thomas Kailath, but the aggregate

of these two KF’s being a smoothing solution that is still

NOT real-time). As with PF’s, the Kalman filter has also been

historically derived by James S. Meditch (Boeing) [Meditch,

J. S., Stochastic Optimal Linear Estimation and Control,

McGraw-Hill, New York, 1969] using Bayesian arguments

similar to those used throughout for PFs, as well as yielding

the exact same KF form as independently derived and shown

to simultaneously satisfy other important optimality criteria,

as discussed immediately below: (The image inserted above

[and its references cited therein] is a screen shot from TeK

Associates TK-MIP software product. Another missing detail

is Ref. 29 Mendel, J. M., Lessons in Estimation Theory for

Signal Processing, Communication, and Control, Prentice-Hall

PTR, Englewood Cliffs, NJ, 1996.)

With hopes for benefits to PF in parallelization (multi-

threaded parallel processing and/or embedded); I continue

to follow recent developments in use of Particle Filters but

also continue to have concerns about their failing to be real-

time (except when they degenerate & essentially collapse into

being merely EKFs or KFs [even if they are not explicitly

acknowledged as being so]); I also noticed an incompatibil-

ity in current hopes for future parallel implementation of a

Particle Filter as a further inherent barrier to PF ever being

real-time: approaches currently being pursued to accomplish

parallel implementation of pseudo-random number generators

& maximizing the cycle before they repeat are based on use of

Linear Congruential Generator (LCG) algorithmic structures &

Mersenne primes to generate variates from a uniform distribu-

tion before converting to Gaussian, as needed for PFs to utilize

within numerous mini-simulation trials (that invoke use of a

RNG within them) before each measurement incorporation

step, being a huge CPU burden, somewhat ameliorated by

performing sophisticated variants of the Metropolis-Hastings-

Gibbs sampling/re-sampling. Donald Knuth only showed what

tests LCG passes in The Art of Computer Programming,

Vol. 2, Addison-Wesley, 1969. The late George Marsaglia

has warned for 30+ years that LCG yields variates that lie

in planes, a weakness that has been verified by Profs. Persi

Diaconis (Stanford Univ.), P. LEcuyer (Stanford Univ.), and

many other current researchers in this area. Even if LCG were

perfectly random (which it is not), by attempting a parallel

implementation of it risks inadvertent early repetition by a

2nd , 3rd, or 4th LCG, etc. of being somewhere within the

same sequence already initiated by an earlier LCG invocation,

thus preventing the maximum cycle length from being attained

for the following three integer parameters of the computer

register: (a, b, and T) involved in the hardware implementation

of an LCG [rigor regarding the proper selection of the above

mentioned parameters, (a, b, and T), is provided near the

bottom of the NEXT screen that pops up after the USER

clicks the navigation button at the TOP of this screen labeled

TK-MIP for the PC], before premature repetition of the series

that is sought to be generated. This is the same reason why,

as observed in the rigorous simulations of the 1970s and

1980s, only one LCG should be invoked (but repeatedly) in

the implementation of LCG for a standard serial von Neumann

machine. My long standing real-time PF concerns (stated

above) are now somewhat mitigated in year 2018: (This link is

accessible only from LinkedIn by registered LinkedIn users.)

However, even this last hypothesized potential path offered

from the link immediately above apparently does not yet exist

as hardware (even though IBM [which claims to have achieved

a working quantum computer in early January 2019], Google,

some universities, and several smaller companies are working

on it, as identified on the link just offered).

Prof. P. LEcuyer (Stanford Univ.) has proprietary im-

provements to eventual generation of Gaussian variates as

his approach to a pseudo random number (prn) generator.

(According to him, he has ostensibly provided these to The

MathWorks and to other software developers for a hefty

fee.) The conclusion to date is that the older approaches

to generating Gaussian variates is not as good as the more

recent approaches mentioned here. Apparently missing so far

in PF considerations is any attention to the effect of less-than-

ideal prn generation of uniformly distributed variates leading

to less-than-ideal Gaussian generation. Since the Bayesian-

based derivation of the PF strongly utilizes the properties

of conditional probability density functions at several critical

places, and, all the more, those of Gaussians; it is highly

likely that the departure from ideal Gaussianess in what is

actually used in implementing a PF will have a significant

adverse affect in that PFs performance. One could postulate

a type of sensitivity analysis that should be performed for

this situation in order to quantitatively gauge the effect on the

expected consequential PF performance associated with one

or the other of the two approximate approaches to be used in

PF implementation, neither being perfect.

–See M. S. Arulampalam, S. Maskell, N. Gordon, and T.

Clapp, A tutorial on particle filters for online nonlinear/non-

Gaussian Bayesian tracking, IEEE Trans. Signal Processing,

vol. 50, pp. 174188, Feb. 2002.

–See R. van der Merwe and E. Wan, Gaussian mixture

sigma-point particle filters for sequential probabilistic infer-

ence in dynamic state-space models, in Proc. IEEE Int. Conf.

Acoustics, Speech and Signal Processing (ICASSP), Hong

Kong, 2003, pp. 701704.

–Also see http://ieeecss.org/CSM/library/2010/june10/11-
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HistoricalPerspectives.pdf

–Please see the excellent discussion of how a PF was im-

plemented for their application: Yozevitch, R., Ben Moshe, B.,

A Robust Shadow Matching Algorithm for GNSS Positioning,

Navigation: Journal of the Institute of Navigation (ION), Vol.

66, No. 2, pp. 95-109, Summer 2015 [Notice that they did not

say that their PF was real-time] and some of their pertinent

references: (1) Crow, F. C., Shadow Algorithms for Computer

Graphics, ACM SIGGRAPH Computer Graphics, Vol. 11,

No. 2, pp. 242-248, 1977; (2) Bourdeau, A., Sahmoudi, M.,

and Tourneret, J. Y., Constructive Use of GNSS NLOS-

MUltipath: Augmenting the Navigation Kalman Filter with a

3D Model of the Environment, 15th International Conference

on Information Fusion (FUSION), pp. 2271-2276, IEEE, 2012;

(3) Thrun, S., Burgard, W., and Fox, D., Probabilistic Robotics,

MIT Press, 2005; (4) Muralidharan, K. Khan, A. J., Misra,

A., Balan, R. K., and Agarwal, S., Barametric Phone Sensors:

More Hype than Hope!, Proceedings of the 15th Workshop on

Mobile Computing Systems and Applications, ACM, 2014,

12; (5) DeBerg, M., Van Kreveld, M., Overmars, M., and

Schwarzkopf, O. C., Computational Geometry, Springer, NY,

2000.

–Please consider that Observability and Controllability

yea/nay tests for linear systems with time-varying System

matrix, Obsevation matrix, and System Noise Gain matrix are

presented in Bucy, R. S., Joseph, P. D., Filtering for Stochas-

tic Processes with Applications in Guidance, 2nd Edition,

Chealsa, NY, 1984 (1st Edition Interscience, NY, 1968).

–A long view reveals that: tractable techniques for handling

fractional derivatives for applications have been around for

over 40+ years based on Cauchys integral theorem as a

representation for derivatives in a Complex Variables comtext

(where the order of the derivative is generalized using Cauchys

theorem to no longer be restricted to being merely an integer)

or by being based on a Fourier integral. Much of the theory and

practical applications of fractional derivatives were worked

out back then (40+ years ago), as pioneered and published

in SIAM by Prof. Tom Osler: Another useful more recent

source on this topic is: Kenneth S. Miller and Bertram Ross,

An Introduction to the Fractional Calculus and Fractional

Differential Equations, A Wiley Interscience Publication, John

Wiley & Sons, Inc., NY, 1993.

–Other more mundane practical considerations: What will

the practical challenges be for documenting Particle Filters for

DoD applications in Principles of Operation (POPs) rationales

and later in B1s, B2s,amd B3s or in C1s, C2s and C3s without

a clear delineation of what the system dynamics matrices

and sensor observation matrices and Noise Covariance Ma-

trices are beforehand, as had been established as historical

precedents in documentation for Kalman filter or for EKF

tracking applications? [By the early 1980s, the aforementioned

documentation for DoD tracking, Kalman filtering, and EKF

applications had already standardized on conventions for state

variable notation that TASC (as also utilized by Peter Maybeck

[AFIT] in his 3 Volume textbooks, respectively, in 1979,

1980, and 1981, on this subject) had adopted and popularized

as system: d[x(t)]/dt = F x(t) + B u(t) + w(t) and sensor

measurements: z(t) = H x(t) + v(t), and independent zero mean

white noise covariance matrices corresponding to w(t) and

v(t) above, respectively, being: Q(t), R(t), and Kalman gain:

K(t); the familiar TASC discrete-time notational conventions

were also adopted.] Appropriate DoD documentation was

indeed a challenge for Neural Network (NN) applications that

still had to be trained to obtain the necessary weights for

Perceptrons and multi-layer NNs. DoD documentation was

also challenging for Fuzzy Neural Networks. Who or what

organization is going to perform the necessary associated

IV&V of PF documentation? I wish them good luck!

–The excellent and extremely readable book: Gelb, Arthur

(ed.), Applied Optimal Estimation, MIT Press, Cambridge,

MA, 1974 had a few errors (beyond mere typos); however,

corrections are provided in Kerr, T. H., Streamlining Measure-

ment Iteration for EKF Target Tracking, IEEE Transactions on

Aerospace and Electronic Systems, Vol. 27, No. 2, Mar.1991

and in Kerr, T. H., Computational Techniques for the Matrix

Pseudoinverse in Minimum Variance Reduced-Order Filtering

and Control, in Control and Dynamic Systems-Advances in

Theory and Applications, Vol. XXVIII: Advances in Algo-

rithms and computational Techniques for Dynamic Control

Systems, Part 1 of 3, C. T. Leondes (Ed.), Academic Press,

NY, 1988 (as my expose and illustrative and constructive use

of counterexamples).

–See Section 12 of: Kerr, T. H., Exact Methodology for

Testing Linear System Software Using Idempotent Matri-

ces and Other Closed-Form Analytic Results, Proceedings

of SPIE, Session 4473: Tracking Small Targets, pp. 142-

168, San Diego, 29 July-3 Aug. 2001 for some warnings

and concerns regarding the direct applicability of Yaakov

Bar-Shalom and William Dale Blair (Editors), Multitarget-

Multisensor Tracking: Applications and Advances, Vol. III,

Artech House Inc., Boston, 2000 for the challenging case of

a system with nonlinear dynamics. While Section 12 of the

above just cited Kerr paper above was true in 2001, my 7

item comparison then between what was possible for KFs

for explicitly linear systems and what was possible for EKFs

and IMMs for nonlinear systems now needs modification in

2018, since now a few special case EKFs can be shown to

be stable using a stochastic Lyapunov function, as in: Jensen,

Kenneth J., Generalized Nonlinear Complementary Attitude

Filter, AIAA Journal of Guidance, Control, and Dynamics,

Vol. 34, No. 5, pp. 1588-1593 , Sept.-Oct. 2011. [Jensen

achieves the big stability breakthrough by providing a proof

of this particular EKFs global stability but now states that

it possesses almost global asymptotic stability; however, the

term almost is required terminology to keep probability the-

orists and purists happy with the wording of his new claim.

Author Jensen attains his new results by utilizing appropriate

stochastic Lyapunov functions (proper handling of such is due

to Prof. Emeritus Harold J. Kushner, Brown Univ.). I dont

know whether Jensen was the first to achieve this new result?]

Please forgive me as I use the following two images to explain

and clarify the technical term almost that Jensen was obligated

to invoke: (The two images inserted above [and its references

cited therein] are screen shots from TeK Associates TK-MIP

software product.)

–I am aware that Fred Daum, Jim Huang, and Mike Hough
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(Raytheon) have jointly published a recent paper on the use

of a PF for Strategic Early Warning Radar tracking of Reentry

Vehicle targets but I have not yet seen it! I look forward to

viewing it soon. Maybe it will calm my qualms.

-The solving of Partial Differential Equations (PDEs) has

been described by practitioners and others as an infinite-

dimensional problem because of its numerical and compu-

tational complexity. It is reasonably well known that PDEs

describe the time evolution that is needed to specify the

associated probability density function underlying continuous-

time optimal estimation for both linear and nonlinear systems.

The important fundamental PDE describing this is known

as the Kolmogorov equation (where there is, in general, a

forwards (in time) and a backwards (in time) Kolmogorov

equation that describe the statistical estimation situation in

continuous-time) and the former is also known as the Fokker-

Planck equation arising in optimal statistical estimation for

both the case of the system being linear and the noises

Gaussian (which is very tractable since it degenerates and

simplifies nicely to the standard Kalman Filter) and the general

nonlinear case (usually very intractable and computationally

tedious for all except the simplest of problems that, frequently,

are neither realistic nor practical for most applications). Both

of these PDEs deal with the time evolution of probability

density functions (pdfs) or information flow. Also see Pavel

B. Bochev, Max G. Gunzburger, Least-Squares Finite Element

Methods, Applied Mathematical Sciences, Vol. 166, Springer

Science + Business Media, LLC, NY, 2009. There is a PDE

textbook that was published within the last 15 years that

routinely invokes use of scalar homotopy and log-homotopy,

and. further, has beautiful color images of associated parti-

cle flows, as are reminded there to be standard tools and

methodologies for handling solutions of PDEs. However, in

general, PDEs can not be solved in real-time! Sometimes

speeded-up videos are shown to the convey the trend of the

solution process to an audience. However, within the following

paper: Daum, F. E., Exact finite-dimensional nonlinear filters,

IEEE Transactions on Automatic Control, Vol. 31, No. 7, pp.

616-622, Jul. 1986, a novel, insightful, and creative method

was developed for decomposing the solution of the important

PDE, described above, into two parts: the 1st part was a

large computational burden to be solved off-line beforehand

and stored until needed; the 2nd part is to be solved on-line

in real-time. The two parts, when put together, constituted

a solution to the PDE described in the preceding paragraph

and yielded the exact optimal estimator or optimal filter for

the nonlinear case. However, a constraint on the 1st part is

that the times at which the measurements arrive was needed

beforehand too! That is usually only the case for navigation

applications with periodic updates such as by Omega (now

defunct), Loran-C (now defunct but maybe coming back as

eLORAN to help GPS recognize and compensate for GPS

spoofing), or GPS and/or GNSS satellites in an unjammed

benign environment; otherwise, the aforementioned navigation

aid (i.e., are not deterministic in the time at which they occur

and the exact time of an external position fix is not known

beforehand because of complicating factors such as atmo-

spheric interference (e.g., atmospheric scintillation for EWR)

; thus computational calculation of the 1st part beforehand

is stymied! Radar applications seldom involve radar sensor

measurements arriving at a strictly periodic rate that is known

beforehand since targets are in motion and sometimes the

radar platform is too, consequently, the round trip time of

the radar pulse varies from transmitter to receiver even if

the transmitter rate is periodic at a constant Pulse Repetition

Frequency (PRF). Moreover, there is an historical precedent in

the 1960s and early 1970s to avoid pre-calculated KF gains, as

performed by Dr. Hy Strell and Norm Zabb (Sperry Systems

Management as SSBN navigation work for SP-2413) which

found pre-calculated KF gains satisfactory for simulations

and test of concept for the Ships Inertial System (SINS)

utilizing a 7-state STAtistical Reset (STAR) Kalman filter on

a surface ship used strictly for testing but not satisfactory

for the real world application for SSBNs at sea because the

external position fixes were seldom available exactly as pre-

planned in attempting to synchronize to the pre-computed filter

gains. Admittedly, this example is from a different application

area entirely but it is more benign in general than that for

radar applications. When there are problems within the more

benign linear situation of navigation, the same problems will

likely plague the slightly more challenging nonlinear situation

of radar for the same reasons! However, more recent results:

Schmidt, G. C., ”Designing nonlinear filters based on Daum’s

theory,” AIAA Journal of Guidance, Control, and Dynamics,

Vol. 16, No. 2, pp. 371-376, Mar.-Apr. 1993, apparently offer

a way around the limitation that I mentioned (see Schmidt’s

admission in his conclusion section of having obtained mixed

results). It was expanded upon and generalized by others too

and they cite his work as their starting point. [It is, perhaps,

worth mentioning in passing that there are two special cases

of nonlinear filters that have an optimal estimator that is finite

dimensional and the mean and variance are sufficient statistics,

as in the purely linear system and Gaussian noises case: that of

Benes and that of Daum (and subsequently by many others),

but there are no realistic applications yet to which these results

apply. However, they are useful for the valuable insights that

they provide.]

-Unscented Kalman Filter also known as (a.k.a.), the Oxford

Filter, a.k.a. the Sigma-Point Filter): Our historical apprehen-

sion regarding the Unscented Kalman Filter (UKF) is because

of the presence of an unexplained factor (or unconstrained

free real scalar parameter [not necessarily an integer], possibly

positive, negative, or time-varying, at the whim of the ana-

lyst/implementer) that can serve as an expanding or contracting

twiddle factor in the denominator of the gain expression

that is consequentially inherited by the covariance equations;

which, for linear systems, still appropriately computes the

exact covariance associated with any approximate Gain that is

used in an accompanying estimation filter (even if it is not the

optimal Kalman Gain), as clearly explained on page 234 in Eq.

5.4.18 and further emphasized in the last sentence following

Eq. 5.4.22 in: Brown, Robert Grover, Hwang, Patrick Y. C.,

Introduction to Random Signals and Applied Kalman Filtering,

2nd Edition, John Wiley & Sons, Inc., New York, 1983.

The numerical comparison in Julier, S. J., Uhlmann, J. K.,

and Durrant-Whyte, H. F., A New Method for the Nonlinear
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Transformation of Means and Covariances in Filters and

Estimators, IEEE Trans. on Automatic Control, Vol. 45, No. 8,

pp. 477-482, May 2000 of UKF vs. EKF performance appears

to be somewhat contrived since actual EKF practitioners would

either take more frequent measurement fixes to supplement

tracking the objects trend and/or better pose the target model

in the first place to take into account its known anticipated

planar motion about a circular track of constant radius about

the origin by merely posing the problem in (rho,theta) polar

coordinates [with known constant angular velocity] as the two

states of interest, or if the constant angular velocity is unknown

beforehand, then including this unknown parameter as an

additional state to be estimated using parameter identification

techniques or by using an approach that came later: Souris,

G. M., Chen, G., Wang, J., Tracking an Incoming Ballistic

Missile Using an Extended Interval Kalman Filter, IEEE Trans.

on Aerospace and Electronic Systems, Vol. 33, No. 1, pp.

232-240, Jan. 1997, but Julier, S. J., Uhlmann, J. K., and

Durrant-Whyte, H. F. do invoke conditions that are impossible

to check beforehand e.g., [Julier, S. J. et al, op. cit., Eq. 2] since

probability measure for x(k) is unknown); unconventional use

of calculated covariance to account for nonlinear measurement

equation and associated unconventional assumption of mean

being zero and an unconventional proposed handling if mean

is not zero (by their saying it can be shifted, but mean is in fact

unknown so one can not know beforehand how much it should

be shifted by, so user is thus stymied in trying to proceed as

they recommend [Julier, S. J. et al, op. cit., Sec. 4]; UKF

also utilizes mini-simulation trials before each measurement

incorporation step (but not as many as a PF would require).

The above mentioned Global Lipschitz condition is much

stronger in contrast to the mere continuity condition of the

system dynamics being a sufficient condition on the nonlinear

system dynamics for a deterministic nonlinear differential

equation to have a solution. For uniqueness of the solution of

the latter, only a local Lipschitz condition need be satisfied.

The need for a global Lipschitz condition is discussed in Bucy,

R. S., Joseph, P. D., Filtering for Stochastic Processes with

Applications in Guidance, 2nd Edition, Chealsa, NY, 1984

(1st Edition Interscience, NY, 1968) (and is also discussed in:

Kerr, T. H., Applying Stochastic Integral Equations to Solve

a Particular Stochastic Modeling Problem, Ph.D. Thesis in

the Department of Electrical Engineering, University of Iowa,

Iowa City, Iowa, January 1971, where a detailed proof is

provided on pp. 188-213 utilizing Ito integrals for stochastic

integrands).

So the numerical comparison between Julier, S. J.,

Uhlmann, J. K., and Durrant-Whyte, H. F., A New Method

for the Nonlinear Transformation of Means and Covariances

in Filters and Estimators, IEEE Trans. on Automatic Control,

Vol. 45, No. 8, pp. 477-482, May 2000 is less of how well the

UKF filter performed (as they claimed) but more about how

bad an EKF can perform if it uses an inappropriate or bad

model for the system. This should be NO surprise! A more

appropriate posing of the estimation problem on a circle is:

Li, J. T.-H. Lo and A. S. Willsky, Estimation for Rotational

Processes with One Degree of Freedom-Part 1, IEEE Trans.

on Automatic Control, Vol. 20, No. 1, pp. 10-21, Feb. 1975.

5 pub IEEE.pdf

Equal time here now for some views of others that are

pro-use of Unscented Filter or Sigma-Point Filters in specific

applications:

-Sigma-Point Filtering for Integrated GPS and Inertial Nav-

igation:

-Sigma-Point Filters in Robotic Applications:

-Sigma-Point Kalman Filters for Nonlinear Estimation and

Sensor-Fusion - Applications to Integrated Navigation:

-Robot Mapping Unscented Kalman Filter:

-Please see: Daum, F. E., Nonlinear filters: beyond the

Kalman filter, IEEE AandE Magazine, Vol. 20, No. 8, pp.

57-69, Sept. 2005 for an excellent, clear discussion of the

three estimation algorithms that I have just critiqued above. My

only complaint here is that Daum seems to have overlooked or

missed the earlier Lie Algebra results of : Li, J. T.-H. Lo and

A. S. Willsky, Estimation for Rotational Processes with One

Degree of Freedom-Part 1, IEEE Trans. on Automatic Control,

Vol. 20, No. 1, pp. 10-21, Feb. 1975 as a precedent. [Willsky

and Lo explicitly handle estimation on a circle, SO(2), rather

than estimation on a sphere, SO(3), as NASAs F. Landis

Markley, et al deal with in their extensive NASA survey

and comparison between approaches and techniques. However,

Willsky and Lo are particularly lucid in their development

and exposition and, moreover, within the last sentence of their

conclusion, provide specifics of their suggested generalization

to estimation results on arbitrary Abelian Lie groups, such as

SO(3).] 5 pub IEEE.pdf Also see: Lo, J. T.-H. and Willsky,

A. S., Stochastic Control of Rotational Processes with One

Degree of Freedom, SIAM Journal on Control, Vol. 13, No.

4, 886ff, July 1975. Another aspect that Daum may have,

perhaps, overlooked is the strong applicability of Lie Alge-

bras well beyond mere separation-of-variables for PDEs or

ODEs, as in: Wu, Y., Hu, X., Hu, D., Li, T., and Liam, J.,

Strapdown Inertial Navigation System Algorithms Based on

Dual Quaternions, IEEE Trans. on Aerospace and Electronic

Systems, Vol. 41, No. 1, pp. 110-132, Jan. 2005 and Savage,

P. G., A Unified Mathematical Framework for Strapdown

Algorithm Design, AIAA Journal of Guidance, Control, and

Dynamics, Vol. 29, No. 2, pp. 237-249, March-April 2006 and

Bernard Friedland, Analysis of Strapdown Navigation Using

Quaternions, IEEE Transactions on Aerospace and Electronic

Systems, Vol. 14 , No. 5, pp. 764-768, Sept. 1978 and Bell,

D. J., Manifolds and Lie Algebras, in Mathematics of Linear

and Nonlinear Systems: for Engineers and Applied Scientists,

Clarendon Press, Oxford, UK, 1990.

JUST BECAUSE APPROACHES ARE NEW AND DIF-

FERENT FROM BEFORE DOES NOT MEAN THAT THEY

ARE BETTER (& VICE-VERSA)!

APPENDIX

SUMMARY OF KALMAN FILTER-LIKE ALGORITHMS

As promised, here is an overview summary of the salient

aspects of a Kalman filter in Fig. 9, with structural details and

consequences that can be exploited to an advantage in Figs. 10,

11. In my opinion, the best discussion of the order or sequence

of major operations constituting a correct KF implementation

is only in [359, Figs. 5.9, 6.1].
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Fig. 9. Essential Aspects of using a Kalman Filter (as explained in detail
in [35], [45], [51], [52], and, especially, as offered in [58] as benchmark

validation cross-checks for software developers)

The optimal estimate is always the conditional expectation

for both linear and nonlinear systems and with Gaussian or

Non-Gaussian noises being present. Only for linear system

structures and only for exclusively additive Gaussian noises

being present does the Kalman filter exactly provide such an

estimate (using only a finite dimensional linear filter structure

with a time-varying gain) that processes the measurements as

inputs and provides this optimal estimate as output (along

with its computed covariance). An important aspect is that

a Kalman filter can be implemented in real-time. When the

underlying system and or measurement model is nonlinear

or when the noises are non-Gaussian (or as innocuous as

the initial condition not being Gaussian and independent of

the other aforementioned noises [138] cf. [115]), then the

structure of the filter needed to obtain an optimal estimate

is, in general, nonlinear and infinite-dimensional. Since an

infinite dimensional filter would be impractical to implement

for real-time use, approximations are invoked and use of an

Extended Kalman Filter is one such approach that yields a best

linear estimate (i.e., a linear function of the measurements) that

frequently provides enough accuracy to satisfy the application

at hand and also involves only computations that are expedi-

ently real-time. A nonlinear estimator could ostensibly be more

accurate (but would likely be impractical to pursue further

because of a likely exorbitant computational burden that would

preclude being real-time). Novel EKF generalizations for some

non-Gaussian noises are [204]-[206].

From Fig. 9, it is seen that when the original system is linear

(possibly time-varying) and all noises are WGN, then the

linear system structure of the available measurements feeding

into a Kalman filter (with time-varying gains) for further

processing preserves Gaussianess throughout since linearity

is preserved throughout. Gaussian processes are completely

characterized by just their mean and variance. The Kalman

filter is just an efficient computational algorithm for generating

both of these two important monents in real-time. Use of

Extended Kalman filters (EKF) is one way to attempt an

approximation for handling nonlinear and or non-Gaussian

applications in the same way. Many engineering refinements

to a basic EKF are described in this paper as relevant to EWR

use.

Both Refs. [175], [176] present insightful cutting edge

results from probability and statistics, already laid out within

a Kalman filtering context and tailored to estimation appli-

cations, that pertain specifically to extending KF applicabil-

ity to situations involving noises from exponential families

and in seeking out sufficient statistics that, by capturing the

available information in the most compact way, minimizes the

complexity incurred in algorithm implementation. See [180].

Jerry Mendel and Max Nikias trailblazed with many published

papers and a book (along with a short course in the 1990’s

through their company: Circuits and Systems Inc.) on α-

stable noises and “Stack filters” (and on sorting out bispectra

and trispectra approaches for multidimensional/multichannel

real and/or complex random processes in engineering systems

and we observe here that are also relevant to RV target

discrimination) yet their breakthrough work done decades

earlier is not referenced in recent papers on these same topics

[214], [215]. Other rigorous approaches that appear to be very

useful arise in [236]-[241]. Ref. [362] is an excellent book 66

(with chapters coauthored by some of my TASC cohorts from

the 1970’s).

While Extended Kalman Filters are model-based (as is the

Kalman filter for the purely linear case), both are generally ap-

plied to state variable representations of the system, which for

radar target tracking, usually models the target dynamics (and

any maneuvers anticipated for the particular application). A

generalization of the standard state variable representation is to

model the system in terms of so-designated descriptor systems

(DS), where simplifications frequently accrue that reduce the

computational burden associated with implementation of the

appropriate estimator corresponding to the descriptor structure

of the dynamics model [198]-[200], [227], [247]-[249], [277],

[281]. When these types of descriptor model representations

are applicable and are utilized as a more natural fit of the

physical system to its software implementation with esti-

mation algorithms, the block-by-block connection diagrams

such as those used by The MathWorks’ Simulink c©(or IBM’s

CSMP c©), as a throw-back to the technology of 40 years ago

are no longer necessary, as was originally clearly explained

in [209], [210]. Such a descriptor systems approach avoids or

side steps the need for special high CPU overhead algorithms

for integrating “stiff differential equations” (typically done for

block-by-block representations via use of Gear’s implicit inte-

gration routines [211]), as touted for MatLab c©/Simulink c©in

[212]. Descriptor system representations decompose the short

circuit-like “fast loop” or short time constant into an algebraic

equation devoid of any dynamics (i.e., integrators) along

with a lower dimensional residual dynamics representation.

Both of these operations reduce the complexity in adequately

representing such otherwise “stiff” systems and, moreover,

frequently obviate any need to use special Gear-type implicit

integration algorithms altogether in these particular situations

since simpler Runge-Kutta predictor-corrector algorithms then

frequently suffice. However, in systems that have a residual

wide range of effective time constants (even after algebraic

loops are removed) or fast inner and slow outer control loops

present (as with fighter aircraft guidance laws) or because of

66In their the preface they poke fun at some of the current developers of

PF, who spend an inordinate amount of time depicting pictures of famous
mathematicians of the past rather than more thoroughly explaining what they

have done and why, by saying “we have similar pictures too”.
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Fig. 10. Structural Aspects of a System’s Model can be exploited to an Advantage-Part I
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Fig. 11. Structural Aspects of a System’s Model can be exploited to an Advantage-Part II
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the presence of multiple sampling rates, Gear-type integration

may sometimes still be needed, but now needed less frequently

with descriptor system decomposition and may be invoked

more parsimoniously (since it is a larger CPU-burden), as an

exception rather than as the general rule.

Background:

• Kalman Filters (KF) are used in ALL modern navigation

systems and in ALL modern radar target trackers and

elsewhere.

• KF processing is needed for situations where sensor

measurement data (and its associated system) are noise-

corrupted.

• The Kalman Filter ameliorates the effects of the noises

and significantly improves assessment of whats going on

based on processing on-line sensor measurement data!

• KF methodology enables imposing rational system

SPECS (before hardware is built) using KF to specify

the ”error-budget”.

• KF is an in-place algorithm that is of order n3 in required

processing time and n2 in memory size, where n is the

state size of the state-variable mathematical model used

to completely describe each application at hand.

• Most KF applications need to process in real-time to keep

up with the stream of sensor measurement data.

Realities:

1) Kalman Filters (KF) are in widespread use in a variety

of applications.

2) The Kalman Filter ameliorates the effects of noises and

significantly improves users assessment of ”whats going

on” from sensor data!

3) Most Kalman Filter applications need to process data in

real-time.

4) For KF applications: Linear Time Invariant (LTI) case

= EASY!

5) For KF applications: Nonlinear or Time-varying cases =

HARD!

6) Real-world applications are always nonlinear and usu-

ally time-varying! For nonlinear situations, KF must be

generalized to an EKF (of same structure) merely by

linearizing about previous time estimate.

7) For KF: merely LTI is what students usually learn and

practice in school.

Significant Theoretical Advances in Probability and

Statistics: The conclusion of the Central Limit Theorem (CLT)

[and it’s variations]: That sums of random variables that

are independent and identically distributed (iid) with finite

variance go to Gaussian in distribution (as number of terms

increases)

To illustrate that mere sums of idd are not necessarily Gaus-

sian, consider the sums of Cauchy variates: sums of Cauchy

are always Cauchy (even an infinite number of them) and

although it is bell-shaped, its tails are so fat (i.e., “platykurtic”

[t.e., fat-tailed like a platypus]) that all its moments are infinite

and so do not exist. Cauchy can arise physically as the ratio

of independent Gaussians or as their arctan [305, p. 199].

CLT requires that the variance of the contributing variates be

finite in order to invoke the desirable conclusion that the sum

is Gaussian in distribution. Insights & pointers to the more

recent CLT generalizations no longer requiring iid are available

in [361, Sec. 9.3]. In particular, the Lindberg-Feller Theorem

on [361, p. 239] does not require the contributing variates to

be identically distributed (citing Woodroofe, 1975, p. 255) and

[361, Sec. 9.3.2] reveals the “dependent variable case” (citing

Moran, p. 403 & Serfling, pp. 1158-75, both 1968). Despite

the pathologies of Cauchy, tractable approximate Kalman-like

estimatators have been recently derived for situations when the

additive noise is Cauchy [395].

We are aware of recent thinking and explicit numerical

comparisons regarding the veracity of uniform (pseudo-

)random number generators (RNGs) as, say, reported in

[368] with prescribed remedies. (Please see L’Ecuyer’s arti-

cle [and Web Site: http://www.iro.umontreal.ca/ lecuyer] for

explicit quantifications of RNG’s for Microsoft’s Excel c©and

for Microsoft’s Visual Basic c©as well as for what had been

available in Oracle/Sun’s JAVA c©.) Earlier warnings about

the failings of many popular RNG’s have been offered in the

technical literature for the last 35 years by George Marsaglia,

who, for quite awhile, was the only “voice in the wilderness”

alerting and warning analysts and software implementers to

the problems existing in many standard, popular (pseudo-

)RNG’s since they exhibit significant patterns such as “random

numbers falling mainly in the planes” when generated by the

Linear Congruential Generator (LCG) method of [371].

Prior to these cautions mentioned above, the prevalent view

regarding the efficacy of RNGs for the last 35 years had been

conveyed in [357], which endorsed use of only the linear

congruential method consisting of a iteration equation of the

following form: xn+1 = axn + b(modT ), starting with n = 0
and proceeding on, with x0 at n = 0 being the initial seed,

with specific choices of the three constant parameters a, b,

and T to be used for proper implementation with a particular

computer register size being specified in [357]; however,

variates generated by this algorithm are, in fact, sequentially

correlated with known correlation between variates s-steps

apart according to: ρ = [(1 − 6(βs/T )(1 − (βs/T ))]/as + µ,

where this expression along with the constant parameters

appearing above are defined and explained on the first page

of [371, Sec. 26.8] as matched to a specific CPU register bit

size. Marsaglia had found this Linear Congruential Generator

approach to be somewhat faulty, as mentioned above. The

problems with existing RNG’s were acknowledged publicly

by mathematicians in a session at the 1994 meeting of the

American Association for the Advancement of Science. A talk

was presented by Persi Diaconis 67 (Prof. of Statistics and

Mathematics, Stanford Univ.) “on a minor scandal of sorts”

(this was their exact choice of words, as reported in the AAAS

publication, Science) concerning the lack of a well-developed

theory for random number generators. For most applications,

random numbers are generated by numerical algorithms whose

outputs, when subjected to various tests, appear to be random.

Diaconis described the series of tests for randomness proposed

by George Marsaglia in the mid-1980’s; all existing generators

67Who has also published extensively on deep understandings of the
Metropolis-Hastings-Gibbs sampling/resampling as well as on many other

statistical topics that are relevant here.
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of the time FAILED at least one of these tests. Also see [374].

Prof. L’Ecuyer offers improvements over what was conveyed

earlier by Prof. Persi Diaconis and claims to be up-to-date with

modern computer languages and constructs. Even better results

are reported for a new hardware-based simulation approach in

[369].

All sources recommend use of historically well-known

Monte-Carlo simulation techniques to emulate a Gaussian

vector random process that possesses the matrix autocorre-

lation function inputted as the prescribed symmetric positive

semidefinite WGN intensity matrix. The Gaussianess that is

also the associated goal for the generated output process

may be obtained by any one of four standard approaches

listed in [371, Sec. 26.8.6a] for a random number generator

of uniform variates used as the input driver. However this

approach specifically uses the technique of summing six inde-

pendent uniformly distributed random variables (r.v.) to closely

approximate a Gaussianly distributed variant. The theoretical

justification is that the probability density function (pdf) of the

sum of two statistically independent r.v.’s is the convolution

of their respective underlying probability density functions.

For the sum of two independent uniform r.v.’s, the resulting

pdf is triangular; for the sum of three independent uniform

r.v.’s, the resulting pdf is a trapezoid; and, in like manner,

the more uniform r.v.’s included in the sum, the more bell

shaped is the result. The Central Limit Theorem (CLT) can be

invoked, which states that the sums of independent identically

distributed (i.i.d.) r.v.’s goes to Gaussian (in distribution). The

sum of just six is a sufficiently good engineering approxi-

mation for practical purposes. A slight wrinkle in the above

is that supposedly ideal Gaussian uncorrelated white noise is

eventually obtained from operations on independent uniformly

distributed random variables, where uniform random variables

are generated via the above standard Linear Congruential

Generation method, with the pitfall of possessing known cross-

correlation, as already discussed above. This cross-correlated

aspect may be remedied or compensated for to an extent (since

it is known) via use of a Choleski decomposition to achieve

the theoretical ideal uncorrelated white noise, a technique

illustrated in [372, Ex. 2, pp. 306-312], which is, perhaps,

comparable to what is also reported later in [373].

An incompatibility in current hopes for future parallel

implementation of a Particle Filter as a further inherent barrier

to PF ever being real-time: all approaches currently being

pursued to accomplish parallel implementation of pseudo-

random number generators 68 and maximizing the cycle be-

fore the generated variates repeat are based on using Lin-

ear Congruential Generator (LCG) and Mersenne primes to

generate variates from a uniform distribution before con-

verting to Gaussian, as needed for PF’s to utilize within

numerous “mini-simulation trials” (that invoke use of a RNG

within them), being a huge CPU burden, ameliorated by

performing sophisticated variants of the “Metropolis-Hastings-

Gibbs” sampling/re-sampling. Prof. Donald Knuth (Stanford

68It has been observed that the code words or catch phrase that specialist

in this area use is that parallelization of random number generators is
“embarrassingly obvious”. As discussed here (and elsewhere), it apparently

is not.

Univ.) only showed what tests LCG passes in [357]. George

Marsaglia has warned for 30+ years that LCG yields variates

with a repetition pattern that “lie in planes”, a weakness that

has been verified by Profs. Persi Diaconis, P. L’Ecuyer, and

many others [374]-[377].

I inadvertently uncovered an incompatibility in current

hopes for future parallel implementation of a Particle Filter

as a further inherent barrier to PF ever being real-time.

[Inadvertent since I was merely summarizing why only one

Random Number Generator (RNG) had historically been used

within MIMO Monte-Carlo system simulations to avoid im-

proper cross-correlation of noise realizations generated and to

maximize the period before any RNG outputs repeat. The rel-

evance of these same observations to PF thus become obvious

because PF’s utilize numerous “mini-simulation” trials (that

invoke use of a RNG within them) before each “measurement

incorporation” step, being a huge CPU burden, ameliorated by

performing sophisticated variants of the “Metropolis-Hastings-

Gibbs” sampling/re-sampling. Others had speculated that this

aspect could be implemented in parallel. My insightful con-

nection now bashes this hopeful speculation by reminding of

practicality constraint (to avoid premature repeating of noise

realizations) that arises unless restricted to use of only one

RNG.]
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