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Systems with Finite Communication Bandwidth
Constraints—Part I: State Estimation Problems

Wing Shing Wong and Roger W. Brockett

Abstract—In this paper, we investigate a state estimation problem
involving finite communication capacity constraints. Unlike classical esti-
mation problems where the observation is a continuous process corrupted
by additive noises, there is a constraint that the observations must
be coded and transmitted over a digital communication channel with
finite capacity. This problem is formulated mathematically, and some
convergence properties are defined. Moreover, the concept of afinitely
recursive coder-estimator sequenceis introduced. A new upper bound for
the average estimation error is derived for a large class of random
variables. Convergence properties of some coder-estimator algorithms
are analyzed. Various conditions connecting the communication data rate
with the rate of change of the underlying dynamics are established for
the existence of stable and asymptotically convergent coder-estimator
schemes.

Index Terms—Finitely recursive coder-estimator sequence, hybrid sys-
tems, prefix code, state estimation.

I. INTRODUCTION

Information theoretical issues are traditionally decoupled from
the consideration of decision and control problems. Hence, if an
engineer tries to design a classical feedback controller, the standard
assumptions are that all information processing and data trans-
mission required by the algorithm can be performed with zero
delay and infinite precision. It is worth questioning the validity
of these assumptions. Decoupling the communication aspects from
the underlying dynamics of a system greatly simplifies the analysis
and generally works well for classical models. However, as the
application of decision and control theory spreads to new areas, this
fundamental assumption deserves a careful re-examination. In some
new system models, it is common to encounter situations where
a single decision maker controls a large number of subsystems,
and observation and control signals are sent over a communication
channel with finite capacity and significant transmission delays.
Neurobiological systems offer a basic paradigm. Another class of
examples comes from social-economical systems where the state
observation process is typically slow and the control requires some
time to be implemented. Both of these characteristics can be viewed
in the context of systems with finite communication constraints. A
third class of examples is offered by remotely controlled systems.
With the rapid growth of mobile communication systems, it is easy
to envision commercial applications where a large number of mobile
units need to be controlled remotely. Since the radio spectrum is
limited, communication constraints for these systems are a real
concern.

In this paper, a state estimation problem based on observations
transmitted with finite communication capacity constraint is inves-
tigated. However, unlike classical estimation problems where the
observation is a continuous process corrupted by additive noises,
the condition here is that the observations must be coded and
transmitted over a digital communication channel with finite capacity.

Manuscript received March 31, 1995; revised October 13, 1996. This work
was supported by a grant from the Hong Kong Research Grants Council.

W. S. Wong is with the Department of Information Engineering, the
Chinese University of Hong Kong, Shatin, NT, Hong Kong (e-mail: ws-
wong@ie.cuhk.edu.hk).

R. W. Brockett is with the Division of Applied Sciences, Harvard Univer-
sity, Cambridge, MA USA.

Publisher Item Identifier S 0018-9286(97)05955-2.

The concepts of acoder-estimator sequenceand afinitely recursive
coder-estimator sequenceare introduced in this paper. The latter
concept is clearly motivated by the idea of finite-dimensional filters.
Convergence issues related to these sequences are investigated in
this paper. In particular, various necessary and sufficient conditions
connecting the communication data rate with the rate of change of
the underlying process are established for the existence of stable and
asymptotically convergent coder-estimator schemes.

Our work here is connected with several well-developed theories.
In the special case where the stochastic process is reduced to a
static random variable, the problem is closely related to the vector
quantization problem [9], and to a lesser degree, it is also related
to the rate distortion theory [3] and statistical inference theory
via compressed data [1], [18], [2]. There are also several previous
research works which investigate various information-related aspects
of decision and control systems. For example, the issue of finite
precision of quantized systems is studied in [7] and [16], and the
sampled-data control systems are well investigated (see the references
in [10]). Recent papers [15], [4], and [11] are also related to our
work here.

II. BASIC MODEL

Consider a remotely located system with state represented by a
stochastic processfX(t)g1t=0. We assume that thea priori distribu-
tion of the stochastic process is known and that its first and second
moments are bounded for all time. The system is observed contin-
uously at the remote location. However, the information processing
element is not colocated with the observing element; so the observed
data has to be transmitted over a communication channel before it
can be processed.

Aspects of classical information theory, such as rate distortion
theory, investigate how to encode and decode information from
an independently identically distributed (i.i.d.) source so that the
asymptotic distortion (or error) rate between the source and its
quantized representation is minimized. The coding and decoding
considered there isnonrecursivein the sense that the coding is based
on a sequence of observations on ani.i.d. source. From the system
estimation viewpoint, neither thei.i.d. assumption on the source state
nor the nonrecursive nature of the coding and decoding schemes
is appropriate. Typical models of interest to system scientists and
engineers are of the form

dX

dt
= f(X(t); u(t)) + �(t); X(0) unknown (1)

where � is the perturbation or noise process independent ofX(t),
andu is the control. The sampled states of such a system are highly
correlated and are far from forming ani.i.d. source. Moreover, the
natural dynamics of such a system may be unstable. Hence, the
behavior may be drastically different from standard rate distortion
models. Anonrecursivecoding and decoding scheme is also unnatural
for these problems, since typically estimations of the states are used
in the feedback control of the systems.

In this paper, we investigate a class of estimation problems that
can be viewed as extending the classical rate distortion investigation
to system state estimation problems. Our focus differs from rate
distortion theory in that a recursive coding and decoding scheme
for a highly correlated source state is considered. Compared to
classical state estimation theory, the observations in these problems
are corrupted not only by additive observation noises but also by a
communication channel with finite bandwidth.
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III. CODER-ESTIMATOR SEQUENCE

Let the stochastic processfX(t)g1t=0 denoting the state of a system
be defined on the probability space(
;F ;P). The state is observed
via an observation process,Y (t), where

Y (t) = X(t) + V (t) (2)

whereV (t) is a zero-mean observation noise process independent of
X(t), also defined on the probability space(
;F ;P). LetFt denote
the �-field generated byfY (s); 0 � s � tg.

If the observed information is transmitted to an estimator with no
delay and no loss in precision, that is, via a channel with infinite
bandwidth, one can formulate a classical estimation problem to find
the optimal estimate ofX givenY . However, if the communication
channel between the observer and the estimator has a finite com-
munication bandwidth, then the resulting problem does not fit any
of the classical models. Notice that even if there is no propagation
delay, the finite communication bandwidth assumption automatically
imposes a transmission delay on the problem. Hence, the analysis is
inherently complicated.

Assume that the data rate of the communication channel isR bits
per second. We assume that� = 1=R represents the time to send
one bit of information.

It is assumed that the observation data, once obtained, are encoded
to form a codeword according to a predefinedprefix codingscheme
[6]. Moreover, the encoding is achieved by dedicated circuitry with
zero processing delay. To achieve good performance, it may be nec-
essary to vary the coding scheme from transmission to transmission.
It is assumed that the transmitter and the receiver have ana priori
agreement on an algorithm that enables both sides to decide which
coding scheme is currently in use.

Let B� represent the set of finite length strings of symbols from a
binary alphabet. Denote byl the integer-valued function onB� which
evaluates the length of a codeword.

Definition 1: A coder sequence is a sequence of ordered pairs
f(hi; ti)g

1

i=0 satisfying the following relations.

1) hi is a function from
 to B� measurable with respect toFt .
2) For i � 1; ti = ti�1 + l(hi�1(!))�, wheret0 = 0:

Denote theith codeword byci, that is

ci = hi(!): (3)

In the special cases whenfixed length codewordsare used, theti’s
become deterministic.

Definition 2: A coder-estimator sequence is a sequence of triples,
f(hi; ti; X̂i)g

1

i=0, wheref(hi; ti)g1i=0 is a coder sequence and̂Xi is
an estimator based onfc0; � � � ; cig.

Notice that in this definition, the coding decision can be dependent
on the whole past history of the observation process. Similarly,
the estimator can be dependent on the whole sequence of past
codewords. This flexibility of course comes with a computation and
memory storage cost. Later on, we will address this issue and restrict
our attention to coder-estimator sequences that are computationally
efficient.

The performance of a coder-estimator sequence is captured by a
related sequence of coder-estimator errors

EkX̂i �X(ti)k
2
: (4)

A natural question is whether a coder-estimator sequence isstable
in the following sense.

Definition 3: A coder-estimator sequence is stable forX if there
exists a finite constantC, so that for alli

EkX̂i �X(ti)k
2
� C: (5)

In some special cases, a stable coder-estimator sequence may even
converge in the following sense.

Definition 4: A coder-estimator sequence converges in quadratic
mean forX if

lim
i!1

EkX̂i �X(ti)k
2
= 0: (6)

IV. FINITELY RECURSIVE CODER-ESTIMATOR SEQUENCES

In the definition of a coder-estimator sequence, the coding func-
tions and the estimates are based on the whole past history of the
processX. The computation and storage demand for such a general
coder-estimator sequence can be excessively high. From an efficiency
viewpoint, it makes good sense to consider the following special class
of coder-estimator sequences.

Definition 5: LetD be a direct sum of finitely many copies of the
real numbers,< andB�. A coder-estimator sequence is said to be
finitely recursive if there exists a vector of finitely many auxiliary
variables,A, taking values inD, and functionsF from D � B� to
D; G from D � < to B�, andH from D � B� to <, such that for
all i � 1

ci = G(Ai; Yt (!))

X̂i(c1; � � � ; ci) = H(Ai; ci)

Ai+1 = F (Ai; ci):

(7)

Notice that the admissible coding schemes are no longer dependent
on all aspects of the past history ofX. The estimator depends only
on the auxiliary variables and the latest codeword. In our paradigm,
the coding component evaluates the first and the third equations in
(7) at timeti, based on the observed process. The output codeword
is then transmitted over a communication channel to the estimation
component which then computes the estimate by means of the second
and the third equations in (7).

V. FIXED CODEWORD LENGTH SEQUENCES

Coder-estimator sequences with fixed codeword length form an
important sub-family. In this case, sampling times,ti’s, form a
deterministic lattice with a spacing ofn�, wheren is the length
of the codeword. As a result, one can reduce the state equation to

Xi+1 = f(Xi) + Ui

X0 has a known p.d.f.q
Yi+1 = Xi+1 + Vi+1

(8)

where Ui represents the state perturbation process andVi is the
observation noise. Unless stated otherwise, in the rest of this paper,
we assume thatf is a continuous, Lipschitz function and the
probability density function (p.d.f.) forX0; Ui; Vi are all continuous
in order to simplify the presentation.

In the case of a scalar linear system, the system reduces to

Xi+1 = �Xi + Ui

Yi+1 = Xi+1 + Vi+1
(9)

where

� = e
an� (10)

for some constanta.

VI. I MPORTANT CLASSES OFCODER-ESTIMATOR SEQUENCES

For simplicity, we assume from now on that the state to be
estimated is a scalar process. There are two natural examples of
these fixed codeword length sequences:mean sequencesand equal-
partition sequences.
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Mean Coder-Estimator Sequence and its Generalization:A mean
coder-estimator sequence uses a 1-bit codeword per sample data.
Define a 1-bit coder-estimator sequence in the following recursive
manner: at sampling timet, define a 1-bit coding scheme on the ob-
served signal,Y (t), by means of the characteristic sets[�1;EY (t))

and [EY (t);1]. After receiving the transmitted codeword, a min-
imum variance estimator is used to estimateX(t). Moreover, by
accounting for the effects of the system dynamics, one can obtain a
new distribution ofY at the next observation instant conditioned on
the received codeword. The same procedure can then be repeated. To
be more rigorous, construct a coder-estimator sequence by

A0 =EY (0) (11)

h0(Y (0)) =
1 �1 < Y (0) < A0

0 A0 � Y (0) <1
(12)

X̂0(c0) =E[X(0)jc0]: (13)

For i � 1, define

Ai =E[Y (i�)jc0; � � � ; ci�1] (14)

hi(Y (i�)) =
1 �1 < Y (i�) < Ai

0 Ai � Y (i�) <1
(15)

X̂i(c0; � � � ; ci) =E[X(i�)jc0; � � � ; ci]: (16)

The mean coder-estimator sequence is characterized by the fact
that the coding functions are defined by using the conditional mean
of the observed process,Y , as a partition point. Define ann-bit
generalized mean coder-estimator sequence to be any sequence with
coding functions that partition the real line into2n intervals and use
the conditional mean of the observed process as one of the2n � 1

partition points.
Equal-Partition Coder-Estimator Sequences:This is a finitely re-

cursive coder-estimator sequence. Define asupport intervalto be the
smallest closed interval which contains the support of a function.
Assume that the p.d.f. forX0; Ui; and Vi for all i all have finite
support intervals. Particularly, let the support interval for the p.d.f.
of X0; Ui; andVi be [�x0; x0]; [�u; u]; and [�v; v], respectively.

The coding function for then-bit equal-partition coder-estimator
sequence at sampling timein� is defined by dividing the support in-
terval of the p.d.f. ofY (in�) conditioned on the codewordsc0; � � � ; ci
into 2n equal length, consecutive subintervals,(S1; � � � ;S2 ), and
mapping the characteristic setSi to the codewordi. The estimator
is defined by the midpoint of the support interval of the p.d.f. ofX

conditioned on the received codewords. To define the equal-partition
coder-estimator sequence more precisely, let

A0

B0

=
�x0
x0

: (17)

In general, fori � 0, define

Ui = maxx2[A ;B ] f(x) + u+ v

Li = minx2[A ;B ] f(x)� u� v
(18)

and denote byMj = j
Ui � Li

2n

hi(Y (in�)) = j if Li +Mj�1 � Y (in�) < Li +Mj (19)

X̂i(ci = j) = Li +Mj� (20)

Ai+1(ci = j)

Bi+1(ci = j)
=

max(Li +Mj�1 � v; Li + v)

min(Li +Mj + v; Ui � v)
: (21)

VII. B ASIC PROPERTIES ANDVECTOR QUANTIZATION

Before one can analyze the performance of a general coder-
estimator sequence, it is crucial to analyze the performance of a
single coder-estimator step. LetX be a real-valued random variable
with known measurable p.d.f.q, meanm, and variance�2. The
observationY is defined by

Y = X + V (22)

whereV is a zero mean observation noise with a known, measurable
p.d.f. r. The observed information is coded by a coding schemeh;
the received codeword is denoted byc.

A natural question concerns finding the optimal coding scheme and
estimatorg to minimize the error

EjX � g(c)j
2
: (23)

For the special case where there is no observation noise, that
is V = 0, this corresponds to the well-known vector quantization
problem. The error function is typically referred to as the distortion
measure. Define the coding scheme by partitioning the state-space
into 2n cells, fAig, so that if the observed value falls inAi it is
represented by the valuêXi. TheAi’s are called the characteristic
sets of the coding function. The following properties are fundamental
results from vector quantization theory [9].

• If the estimates,X̂i, are given, then the distortion is minimized
by the Voronoi partition. The partition cells are polytopal.

• Given a state-space partition, the optimal estimate for each cell
is chosen by minimizing the conditional expected distortion.

There is no known general algorithm for deriving the optimal
coder-estimator pair, although there are locally optimal algorithms
such as the Lloyd algorithm or simulated annealing based algorithms
[9].

Even though the setting of our investigation is more general than
vector quantization, in the rest of this paper, it is assumed that:

• all coding functions are defined by polytopal partition cells.

Lemma 1: Suppose the coding function is defined by the charac-
teristic sets(A1; � � � ;AM), and conditional mean estimator is used.
Then, the estimation error is given by

E� = �
2
�

M

i=1

(mi �mpi)
2

pi

(24)

where
pi = prob(Y 2 Ai)

mi = E[XjY 2 Ai]:
(25)

Proof:

E� =

M

i=1

piE[(X �E[XjY 2 Ai])
2
jY 2 Ai]

= EX
2
�

M

i=1

pi(E[XjY 2 Ai])
2

= �
2
+m

2
�

M

i=1

m
2

i

pi

= �
2
�

M

i=1

(mi �mpi)
2

pi

:

For our study of coder-estimator sequences, it is important to
obtain lower bounds for the error reduction capability of a coder-
estimator step. A result is proven here for the mean coder-estimator
step based on an interesting inverse Cauchy–Schwartz inequality and
the following lemma.
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Lemma 2: If the p.d.f. q is nondecreasing, then fora � b < c <

1, the following inequality holds:

(
c

b

xq(x)dx� a
c

b

q(x)dx)2� 1

2

c

b

q(x)dx
c

b

(x� a)2q(x)dx:

(26)

Proof: The left-hand side is equal to

c

b

(x� a)q(x)dx
2

=
c�a

b�a

xq(x+ a)dx
2

= (c� a)2
c�a

b�a

x

c� a
q(x+ a)dx

2

�
c�a

b�a

x

c� a
q(x+ a)dx

c�a

b�a

x
2
q(x+ a)dx

� 1

c� b

c�a

b�a

x

c� a
dx

c�a

b�a

q(x+ a)dx
c�a

b�a

x
2
q(x+ a)dx:

The last step follows from an inequality due toČeby̌sev [13, p. 39].
Hence

c

b

(x�a)q(x)dx
2

� b+ c� 2a

2(c� a)

c

b

q(x)dx
c

b

(x�a)2q(x)dx:

Theorem 1: Assume thatq is piecewise concave, monotone non-
increasing or nondecreasing onN intervals, andn = dlog

2
(N+1)e.

Then there exists ann-bit generalized mean coder-estimator step that
satisfies

E� <
3

4
�
2
: (27)

Proof: From the theorem assumption, it follows that there exists
a generalizedn-bit coding scheme so that each of the characteristic
set is an interval andq is concave and monotonic on each interval.
Moreover, the coding function also contains characteristic sets of the
form (a;m] and (m; b] for somea and b. Label the characteristic
sets byAi. Define

pi =
A

q(x)dx

mi =
A

xq(x)dx

�
2

i =
A

(x�m)2q(x)dx:

By Lemma 1

E� =

M

i=1

�
2

i �
M

i=1

(mi �mpi)
2

pi
:

Hence, to establish the theorem, it is sufficient to show that

A

(x�m)q(x)dx
2

� 1

4
A

(x�m)2q(x)dx
A

q(x)dx:

Consider the characteristic setAi. By construction, it is either to
the left or right ofm. By symmetry argument, one can assume that
x 2 Ai implies thatx � m. Notice thatq is concave onAi, and
it is either nonincreasing or nondecreasing on it. The two cases are
considered separately.

Case 1:q is Nondecreasing onAi: Sinceq is a probability mea-
sure and nondecreasing, the subintervalAi must be finite. By
Lemma 2

(
A

xq(x)dx�m
A

q(x)dx)2

� 1

2
A

(x�m)2q(x)dx
A

q(x)dx:

Case 2:q is Nonincreasing onSi: Since the square-root function
is concave and increasing, it follows that

p
q is concave and non-

increasing onAi. On the other hand, the functionx � m is
nonnegative, concave, and increasing onAi. Supposef and g are
both concave, nonnegative on an intervalI, with f nonincreasing
and g nondecreasing. Since

(f(x)� f(y))(g(x)� g(y)) � 0

it follows that

f(x)g(y) + f(y)g(x) � f(x)g(x) + f(y)g(y):

Since

f(�x+ (1� �)y)g(�x+ (1� �)y)

� (�f(x) + (1� �)f(y))(�g(x) + (1� �)g(y))

� �f(x)g(x) + (1� �)f(y)g(y)

hencefg is concave. In particular,(x�m)
p
q is concave onAi.

The Blaschke and Pick theorem [8] states that for nonnegative
concave functionsf and g defined on an intervalI with Lebesque
measure�

I

f
2
d�

I

g
2
d� � 4

I

fgd�

2

:

Let f =
p
q andg = (x�m)

p
q, then it follows that

A

qdx
A

(x�m)2qdx � 4
A

(x�m)qdx
2

:

Hence, the claimed inequality holds.

VIII. C ONVERGENCE RESULT FOR

MEAN CODER-ESTIMATOR SEQUENCES

The mean coder-estimator sequence is a natural 1-bit sequence. In
this section, its error-reduction performance is analyzed. In fact, the
analysis covers the slightly more general class of generalizedn-bit
mean coder-estimator sequences.

Consider the system defined by (9). Assume thatUi andVi are both
discrete, zero-mean random variables with probability mass defined
on �Ns�;�(Ns � 1)�; � � � ; Ns� and�No�;�(No � 1)�; � � � ; No�;

respectively. Denote their variance by�2s and �2o , respectively. If
� > 1 and if the system is unobserved, the error of the minimum
variance estimation of the processX will diverge. A basic question is
whether one can construct a coder-estimator sequence that is stable
as defined in Section III.

Theorem 2: SupposeX0 has meanm, variance��, and a p.d.f.
q that is concave and monotone nondecreasing or nonincreasing. If
n = dlog

2
[(No + 1)(2No + 2Ns + 1)]e + 1, then there exists an

n-bit generalized mean coder-estimator sequence which is stable for
the processX if

a� =
a

R
<

1

2n
ln

4

3
: (28)
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Proof: Assume the p.d.f. ofXi conditioned on the codewords
c0; � � � ; ci is piecewise concave and monotone nondecreasing onLi

intervals. LetPi denote the corresponding set ofLi � 1 partition
points. DefineQi by fx+i� : x 2 Pi;�(Ns+No) � j � Ns+Nog.
The order of this partition set is at most(Li � 1)(2Ns + 2No + 1).

From (9)

Yi+1 = �Xi + Zi+1

where

Zi+1 = Vi+1 + Ui

and Zi+1 is a discrete random variable with probability mass on
�(Ns + No)�; � � � ; (Ns + No)�. It follows that the conditional
distribution of Yi+1 conditioned on the codewordsc0; � � � ; ci; qi+1
is also piecewise concave and monotone nondecreasing on the
interval defined byQi. DefineRi by adding the conditional mean
of xqi+1dx to Qi. Ri defines a partition of the real line with at
most (Li � 1)(2Ns + 2No + 1) + 2 intervals; (two of which are
semi-infinite intervals.) By the concavity property, one can show that
qi+1 must vanish on the two semi-infinite intervals. Hence, one can
construct adlog

2
[(Li � 1)(2Ns + 2No + 1)]e-bit generalized mean

coder scheme by using the partition defined byRi if one does not
include the two semi-infinite intervals in the coding scheme.

After the i + 1th codeword is received, the p.d.f. ofXi+1 condi-
tioned on the codewordsc0; � � � ; ci; ci+1 is piecewise concave and
monotonic on at most2N0 + 3 consecutive intervals. By induction
argument, it follows that if

n � log
2
[2(No + 1)(2No + 2Ns + 1)]

then there always existn-bit generalized mean coding sequences so
that all the conditioned p.d.f. ofY is piecewise concave and monotone
nondecreasing on the characteristic sets.

At the end of each coded observation, there areM = 2n possible
outcomes. Hence, one can trace the history of ann-bit coder-estimator
sequence by anM -nary tree as depicted in Fig. 1. The depth of the
graph corresponds to the time at which the coding-estimation takes
place. The nodes of the graph are labeled by a variable length string
beginning with a “�” and followed by the sequence of codewords
received in order to reach that state. Also associated with each node
is a value, denoted by�2

�i ;���;i , which represents the variance of
X(jn�) conditioned on the sequence of codewords,(i0; � � � ; ij), that
leads to that node. Associated with each node is a value, denoted
by pi ;���;i , which represents the probability of reaching that node.
Notice that

i 2Z =f1;���;Mg

pi ;���;i ;i = pi ;���;i :

From (9), it follows that the conditional variance ofX(kn�)

conditioned on the codewordsi0; � � � ; ik is equal to�2�2�i ;���;i +

�2o . By construction, the conditional distribution ofX(kn�) satisfies
the conditions of Theorem 1. Hence

i 2Z

p(ikji0; � � � ; ik�1)�
2

�i ;���;i �
3

4
�
2

�
2

�i ;���;i + �
2

o :

Hence

EjX̂k �X(kn�)j2

=

i 2Z

� � �
i 2Z

pi ;���;i ;i �
2

�i ;���;i ;i

�
3

4
�
2

i 2Z

� � �
i 2Z

pi ;���;i �
2

�i ;���;i + �
2

o

<
3

4
�
2

k+1

�
2

�
+ 3�

2

o :

Fig. 1. Illustration of the assignment with different size networks.

It follows that the coder-estimator sequence is stable forX if (28)
holds.

Corollary 1: If Ui = Vi = 0, then the 1-bit mean coder-estimator
sequence converges in the quadratic mean if

a� <
1

2
ln

4

3
: (29)

IX. CONVERGENCEPROPERTY OFEQUAL-PARTITION SEQUENCES

Consider a slightly more general version of the system defined by
(9)

Xi+1 = fi(Xi) + Ui

X0 has a known p.d.f.q
Yi+1 = Xi+1 + Vi+1

(30)

wherefi is a Lipschitz function satisfying the condition

jfi(x)� fi(y)j � Cf jx � yj (31)

for all i; x; and y.
Assume that the p.d.f. ofX0; Ui;, andVi have finite support inter-

vals, [�x0; x0]; [�u; u]; and [�v; v]; respectively. The performance
of ann-bit equal-partition coder-estimator sequence is analyzed here
for such a system.

Theorem 3: Then-bit equal-partition coder-estimator sequence is
stable if

a� log
2
e < 1: (32)

Proof: Let Si ;���;i represent the length of the support interval
of the p.d.f. ofXj conditioned on receiving the codewordsi0; � � � ; ij .

It follows from the Lipschitz assumption onf that the p.d.f. of
Xj+1 conditioned on the codewordsc0; � � � ; cj has a support interval
with length not greater thanCfS + 2u, and the support interval
of Yj+1 conditioned on the same set of codewords has length not
greater thanCfS + 2u + 2v. Hence, each of the characteristics set
is an interval with length not greater than(CfS + 2u+ 2v)=2n. If
the i+1th codeword is received,Xi+1 must lie within+v or �v of
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the associated characteristic set. Hence

Si ;���;i � (�Si ;���;i + 2u+ 2v)=2
n
+ 2v:

Let

Tj = max
i ;���;i

Si ;���;i :

Then

Tj+1 � (�Tj + 2u+ 2v)=2
n
+ 2v:

The sequenceTj is bounded if� < 2n. Since the variance of
X conditioned on the codewordsi0; � � � ; ij is bounded byT 2

j , the
theorem, therefore, holds.

Remark: If Vi = Ui = 0, then the equal-partition coder-estimator
sequence converges in the quadratic mean if the inequality on� holds.

X. CONCLUSION

In this paper, a new class of state estimation problems with
communication bandwidth constraints is proposed. These problems
couple the issue of estimation with the issue of information com-
munication. Although the estimation problem investigated here is
by itself quite simple, it serves to illustrate the complexity and
the intricacy of these finite communication bandwidth problems.
Extension of this work to more sophisticated estimation problems
and feedback control problems will be reported in subsequent pa-
pers.
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Nonovershooting and Monotone Nondecreasing Step
Responses of a Third-Order SISO Linear System

Shir-Kuan Lin and Chang-Jia Fang

Abstract—This paper presents the necessary and sufficient condi-
tions for a third-order single-input/single-output linear system to have a
nonovershooting (or monotone nondecreasing) step response. If the trans-
fer function of an overall system has real poles, a necessary and sufficient
condition is found for the nonovershooting (or monotone nondecreasing)
step response. In the case of complex poles, one sufficient condition and
two necessary conditions are obtained. The resulting conditions are all
in terms of the coefficients of the numerator of the transfer function.
Simple calculations can be used to check a system for the nonovershooting
(or monotone nondecreasing) step response. Another feature is that the
conditions in terms of pole-zero configurations can be easily derived from
the present results.

Index Terms—Linear system, PID controller, step response.

I. INTRODUCTION

The controller design for a third-order linear system has been
drawing the attention of many researchers for several decades [1]–[6]
because a conventional dynamic plant controlled by a proportional-
integral-derivative (PID) controller turns out to be a third-order
system. It was pointed out [7] that not only poles but also zeros
significantly characterize the step response of a transfer function.
Recently, the focus is on the pole-zero relations for the step response
without overshoot and undershoot. Note that a step response has no
undershoot in the whole history if and only if it is a monotone
nondecreasing step response. The number of undershoot times (or
local extrema) in the step response has been widely discussed for a
strictly proper transfer function with only real poles and real zeros
[8]–[11]. A special case of this theme is the initial undershoot [12],
which is actually an old result [11], [13]–[15]. Incidentally, another
kind of old result for the monotone nondecreasing step response was
also repeatedly reported in the recent works, which will be explained
in the following paragraph. For a single-input/single-output (SISO)
discrete-time system, the linear programming approach formulated by
the l1 theory [16] or simple coefficient relations [17] can be used to
design a minimum overshoot controller.

On the other hand, many works [18]–[24] were devoted to finding
explicit conditions for a nonovershooting and a monotone nondecreas-
ing step response. The condition proposed in [18] is in terms of the
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