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Systems with Finite Communication Bandwidth The concepts of @oder-estimator sequen@nd afinitely recursive
Constraints—Part |: State Estimation Problems coder-estimator sequencare introduced in this paper. The latter
concept is clearly motivated by the idea of finite-dimensional filters.
Wing Shing Wong and Roger W. Brockett Convergence issues related to these sequences are investigated in

this paper. In particular, various necessary and sufficient conditions
connecting the communication data rate with the rate of change of
Abstract—In this paper, we investigate a state estimation problem the underlying process are established for the existence of stable and
involving finite communication capacity constraints. Unlike classical esti- asymptotically convergent coder-estimator schemes
mation problems where the observation is a continuous process corrupted ) K h . ted with | Il-d ) | d theori
by additive noises, there is a constraint that the observations must ur wor . €re Is connected wi sever.a well- eve.ope eories.
be coded and transmitted over a digital communication channel with In the special case where the stochastic process is reduced to a
finite capacity. This problem is formulated mathematically, and some static random variable, the problem is closely related to the vector
convergence properties are defined. Moreover, the concept of #nitely quantization problem [9], and to a lesser degree, it is also related

recursive coder-estimator sequerniseintroduced. A new upper bound for : . . .
the average estimation error is derived for a large class of random to the rate distortion theory [3] and statistical inference theory

variables. Convergence properties of some coder-estimator algorithms Via compressed d"’_‘ta [1]1 [1_8]: [2]. T_here_are aIS(_) several previous
are analyzed. Various conditions connecting the communication data rate research works which investigate various information-related aspects

with the rate of change of the underlying dynamics are established for of decision and control systems. For example, the issue of finite
th(; existence of stable and asymptotically convergent coder-estimator precision of quantized systems is studied in [7] and [16], and the
schemes. sampled-data control systems are well investigated (see the references

Index Terms—Finitely recursive coder-estimator sequence, hybrid sys- in [10]). Recent papers [15], [4], and [11] are also related to our
tems, prefix code, state estimation. work here.

. INTRODUCTION Il. BAsic MODEL

Information theoretical issues are traditionally decoupled from ~qnsider a remotely located system with state represented by a
the consideration of decision and control problems. Hence, if @i,:hastic procesEX (1)}2,. We assume that the priori distribu-
engineer tries to design a classical feedback controller, the standgstl of the stochastic process is known and that its first and second
assumptions are that all information processing and data traRfsments are bounded for all time. The system is observed contin-
mission required by the algorithm can be performed with zerg, q)y ot the remote location. However, the information processing
delay and infinite precision. It is worth questioning the validity,jement is not colocated with the observing element; so the observed
of these assumptions. Decoupling the communication aspects frgfl}a has to be transmitted over a communication channel before it
the underlying dynamics of a system greatly simplifies the analysis,, pe processed.
and generally works well for classical models. However, as the ngpects of classical information theory, such as rate distortion
application of decision and control theory spreads to new areas, tméory, investigate how to encode and decode information from
fundamental assumpti(.)n.deserves a careful re-exam.inatilon. In SAf€independently identically distributedifl.) source so that the
new system models, it is common to encounter situations whefgymntotic distortion (or error) rate between the source and its
a single decision maker controls a large number of subsysterg§antized representation is minimized. The coding and decoding
and observation and control signals are sent over a communicaifsigered there isonrecursivein the sense that the coding is based
channe! W|th finite capacity and S|gn|f|cant_transm|53|on delayén a sequence of observations oniaul. source. From the system
Neurobiological systems offer a basic paradigm. Another class Qfiimation viewpoint, neither ttig.d. assumption on the source state
examples comes from social-economical systems where the S{al¢ the nonrecursive nature of the coding and decoding schemes

observation process is typically slow and the control requires SOR€appropriate. Typical models of interest to system scientists and
time to be implemented. Both of these characteristics can be vie ineers are of the form

in the context of systems with finite communication constraints. A
third class of examples is offered by remotely controlled systems. dX .
With the rapid growth of mobile communication systems, it is easy = = JX (O, w®)) +€(1). X(0) unknown M)
to envision commercial applications where a large number of mobile
units need to be controlled remotely. Since the radio spectrumyvigiere¢ is the perturbation or noise process independenk ¢f),
limited, communication constraints for these systems are a regldu is the control. The sampled states of such a system are highly
concern. correlated and are far from forming amd. source. Moreover, the
In this paper, a state estimation problem based on observatigigural dynamics of such a system may be unstable. Hence, the
transmitted with finite communication capacity constraint is invegehavior may be drastically different from standard rate distortion
tigated. However, unlike classical estimation problems where thgodels. Anonrecursivecoding and decoding scheme is also unnatural
observation is a continuous process corrupted by additive noisgs, these problems, since typically estimations of the states are used
the condition here is that the observations must be coded &Rdthe feedback control of the systems.
transmitted over a digital communication channel with finite capacity. In this paper, we investigate a class of estimation problems that
Manuscript received March 31, 1995; revised October 13, 1996. This wdrRN be viewed as extending the classical rate distortion investigation
was supported by a grant from the Hong Kong Research Grants Council. t0 system state estimation problems. Our focus differs from rate
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Ill. CODERESTIMATOR SEQUENCE In some special cases, a stable coder-estimator sequence may even

Let the stochastic proce$& (+)}52, denoting the state of a systemCONverge in the following sense. _ )
be defined on the probability space, F, P). The state is observed Definition 4: A coder-estimator sequence converges in quadratic
via an observation process,(t), where mean for X' if

Y(t) = X(1) + V(1) @ Jim B - X ()] = 0. ©

whereV () is a zero-mean observation noise process independent of

X (t), also defined on the probability spage, 7, 7). Let 7, denote

the o-field generated by{Y (s),0 < s < t}. In the definition of a coder-estimator sequence, the coding func-
If the observed information is transmitted to an estimator with néPns and the estimates are based on the whole past history of the

delay and no loss in precision, that is, via a channel with infinifg"ocessX . The computation and storage demand for such a general

bandwidth, one can formulate a classical estimation problem to fig@der-estimator sequence can be excessively high. From an efficiency

the optimal estimate ok givenY . However, if the communication viewpoint, it makes good sense to consider the following special class

channel between the observer and the estimator has a finite c&hcoder-estimator sequences.

munication bandwidth, then the resulting problem does not fit any Definition 5: Let D be a direct sum of finitely many copies of the

of the classical models. Notice that even if there is no propagatié@@l numberst and 5. A coder-estimator sequence is said to be

delay, the finite communication bandwidth assumption automaticaffitely recursive if there exists a vector of finitely many auxiliary

imposes a transmission delay on the problem. Hence, the analysi¥agables,A, taking values irD, and functionsF” from D @ B™ to

IV. FINITELY RECURSIVE CODER-ESTIMATOR SEQUENCES

inherently complicated. D, G fromD & R to B, andH from D & B* to R, such that for
Assume that the data rate of the communication channglfiits  all ¢ > 1

per se_cond_. We assume that= 1/R represents the time to send e = G(AL Y, ()

one.blt of information. _ . Xiler, - ei) = H(Ai ei) )
It is assumed that the observation data, once obtained, are encoded Aip1 = F(Ai ).

to form a codeword according to a predefirn@efix codingscheme ) o _
[6]. Moreover, the encoding is achieved by dedicated circuitry with Notice that the admissible coding schemes are no longer dependent
zero processing delay. To achieve good performance, it may be ne@-all aspects of the past history 8f. The estimator depends only
essary to vary the coding scheme from transmission to transmissiéf.the auxiliary variables and the latest codeword. In our paradigm,
It is assumed that the transmitter and the receiver have priori  the coding component evaluates the first and the third equations in
agreement on an algorithm that enables both sides to decide whiéhat timet;, based on the observed process. The output codeword
coding scheme is currently in use. is then transmitted over a communication channel to the estimation
Let B* represent the set of finite length strings of symbols from @mponent which then computes the estimate by means of the second
binary alphabet. Denote Wythe integer-valued function o8* which ~ and the third equations in (7).
evaluates the length of a codeword.
Definition 1: A coder sequence is a sequence of ordered pairs V. FIxeD CODEWORD LENGTH SEQUENCES
{(hi, t:)}72, satisfying the following relations.

_ ) ] Coder-estimator sequences with fixed codeword length form an
1) h; is a function from(2 to 5* measurable with respect 5. .

important sub-family. In this case, sampling timess, form a

2) Fori > 1t = timy + l(hi—1(w))s, wherety = 0. deterministic lattice with a spacing ofs, wheren is the length
Denote theith codeword bye;, that is of the codeword. As a result, one can reduce the state equation to
ci = hi(w). (3) Xip1 = (X)) + U
) ] Xy has a known p.d.f.q (8)
In the special cases whéined length codewordare used, the;’s Yipr = Xig1 + Vi

become deterministic.

Definition 2: A coder-estimator sequence is a sequence of tripleghere U; represents the state perturbation process &nds the
{(hi ti. X))o, where{(hi,1;)}32, is a coder sequence ari is observation noise. Unless stated otherwise, in the rest of this paper,
an estimator based ofto,- - -, c;}. we assume thatf is a continuous, Lipschitz function and the

Notice that in this definition, the coding decision can be dependepiobability density function (p.d.f.) foKo, U;. V; are all continuous
on the whole past history of the observation process. Similarlyy order to simplify the presentation.
the estimator can be dependent on the whole sequence of padf the case of a scalar linear system, the system reduces to

codewords. This flexibility of course comes with a computation and Xy =X + U,
memory storage cost. Later on, we will address this issue and restrict {Yﬁ - Y 1 i " ) 9)
our attention to coder-estimator sequences that are computationally " " "
efficient. where
The performance of a coder-estimator sequence is captured by a ans
related sequence of coder-estimator errors T=¢ (10)
E||IX; — X(t,)|. (4) for some constani.
A natural question is whether a coder-estimator sequenstalide VI. |MPORTANT CLASSES OF CODERESTIMATOR SEQUENCES

in the following sense.
Definition 3: A coder-estimator sequence is stable forif there
exists a finite constant’, so that for all:

For simplicity, we assume from now on that the state to be
estimated is a scalar process. There are two natural examples of
these fixed codeword length sequenaagan sequenceand equal-
E|IX; - X(t)|” < C. (5) partition sequences
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Mean Coder-Estimator Sequence and its GeneralizatiBnmean VII. BASIC PROPERTIES ANDVECTOR QUANTIZATION
coder-estimator sequence uses a 1-bit codeword per sample dat@iefore one can analyze the performance of a general coder-
Define a 1-bit coder-estimator sequence in the following recursiytimator sequence, it is crucial to analyze the performance of a
manner: at sampling timg define a 1-bit coding scheme on the obgjngle coder-estimator step. Lat be a real-valued random variable

served signall’(#), by means of the characteristic sptsxc, EY'(#))  \yith known measurable p.d.f;, meanm, and variances?. The
and [EY (), oo]. After receiving the transmitted codeword, a mingpservationy” is defined by

imum variance estimator is used to estimafé¢). Moreover, by . i
accounting for the effects of the system dynamics, one can obtain a Y=X+V (22)

new distribution ofY” at the next observation instant conditioned ojyhereV” is a zero mean observation noise with a known. measurable
the received codeword. The same procedure can then be repeateq, §q. .. The observed information is coded by a coding schéme

be more rigorous, construct a coder-estimator sequence by the received codeword is denoted by
) A natural question concerns finding the optimal coding scheme and
4o =EY(0) (11) estimatorg to minimize the error
. 1 —oc <Y(0) < Ao 2
= E|X — g(o). 2
ho(Y(0)) {0 Ao < Y(0) < 50 (12) | g(c)] (23)
X’o(f’o) —E[X(0)|co]. (13) For the special case where there is no observation noise, that

is V' = 0, this corresponds to the well-known vector quantization
problem. The error function is typically referred to as the distortion
measure. Define the coding scheme by partitioning the state-space
into 2" cells, {A;}, so that if the observed value falls iA; it is

For¢ > 1, define

Ai =E[Y (i)]co, - - '/_""*1] (14) represented by the valu¥;. The A,’s are called the characteristic
vy 1m0 <Y(id) < A sets of the coding function. The following properties are fundamental
hi(Y(i6)) = , S (15) s
0 A <Y(i6) <oo results from vector quantization theory [9].
X,;(co, <o, ¢) =E[X(i6)|co, - -+, el (16) « If the estimatesX;, are given, then the distortion is minimized

by the Voronoi partition. The partition cells are polytopal.

The mean coder-estimator sequence is characterized by the fa¢t Given a state-space partition, the optimal estimate for each cell
that the coding functions are defined by using the conditional mean s chosen by minimizing the conditional expected distortion.
of the observed proces3;, as a partition point. Define an-bit There is no known general algorithm for deriving the optimal
generalized mean coder-estimator sequence to be any sequence auitter-estimator pair, although there are locally optimal algorithms
coding functions that partition the real line int§ intervals and use such as the Lloyd algorithm or simulated annealing based algorithms
the conditional mean of the observed process as one of'the 1 [9].
partition points. Even though the setting of our investigation is more general than
Equal-Partition Coder-Estimator Sequence%his is a finitely re- vector quantization, in the rest of this paper, it is assumed that:
cursive coder-estimator sequence. Defirmipport intervalto be the « all coding functions are defined by polytopal partition cells.

smallest closed interval which contains the support of a function.| amma 1: Suppose the coding function is defined by the charac-

Assume_that the p.d.f._ foX,, U;, and V; for aII_ i all have finite  (qristic setgAq,---, Ay), and conditional mean estimator is used.
support intervals. Particularly, let the support interval for the p.d4pen the estimation error is given by

of Xy, U;, andV; be [—x¢, 20], [-u, u], and[—v, v], respectively.

The coding function for the:-bit equal-partition coder-estimator Ee = o — i (mi —mp;)* (24)
sequence at sampling tinies is defined by dividing the support in- — pi
terval of the p.d.f. oy’ (¢né) conditioned on the codewords, - - -, ¢;
into 2" equal length, consecutive subintervalS,.---,S.»), and where
mapping the characteristic s8t to the codeword. The estimator pi = prob(Y € Aj) (25)
is defined by the midpoint of the support interval of the p.d.f.Xof m; = E[X|Y € Ai].
conditioned on the received codewords. To define the equal-partition Proof:
coder-estimator sequence more precisely, let M

Ee=> pE[(X —E[X|V € A’V € AJ]
() ()
By o ’ M
=EX’ - p(EXY € A)])?
In general, fori > 0, define i=1
s o wam?
Ui = max,ea, B, fle)+uto (18) =0 4+m" - Z b
L; = mingepa, B, f(z)—u—v =1
, - (m; — mp;)?
U, — L; :‘72_27,'
and denote by, = j = i=1 pi
|
hi(Y(in6))=j if L+ M;—, <Y(inb) < L; + M; (19) For our study of coder-estimator sequences, it is important to
Xi(ci=j)=Li+ M,y (20) obtain lower bounds for the error reduction capability of a coder-
estimator step. A result is proven here for the mean coder-estimator
<Ai+1 (i = j)) — <I“"LX(LT' +Mj1 — v, Li+v) ) (21) step based on an interesting inverse Cauchy-Schwartz inequality and
Biyi(ei = j) min(L; + M; +v,Ui —v) the following lemma.
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Lemma 2: If the p.d.f.¢ is nondecreasing, then far< b < ¢ < Case 1:¢ is Nondecreasing ol ;: Sincegq is a probability mea-
oc, the following inequality holds: sure and nondecreasing, the subinterval must be finite. By
. . 1 e . Lemma 2
rq(x)dx — a/ q(x)dz)* > 7/ q(x (]T/ (z — a)*q(z)dx. - -
(/b b )4z) 2/, =) b ) (/ ;tq(;r)d;r—m/ q(x)dz)?
(26) Ay Ay
1 ‘ 2 1 b ‘ o o
Proof: The left-hand side is equal to Z3 /Ai(m —m)alz)de /Ai a(x)dz.
e s 2 Case 2:¢q is Nonincreasing or8;: Since the square-root function
/b (z = a)g(w)de is concave and increasing, it follows thgf7 is concave and non-
o—a 2 increasing onA;. On the other hand, the functiom — m is
= </ rq(x + a)dx) nonnegative, concave, and increasingAn Supposef and g are
b—a ) both concave, nonnegative on an interfalwith f nonincreasing
— (c—a)? </ T et a,)dm) and g nondecreasing. Since
b—a C— 0O R R
rc—a x re—a (f(‘[) - f(y))(g(‘l) - y(y)) S 0
> / q(m—i—a)dm/ :132q(m—|—a)dm
bea C— @ b—a it follows that
1 rc—a T rc—a rc—a 5
= R L F)aw) + Fwate) = F)ale) + Fw)aly).
The last step follows from an inequality due @ebysev [13, p. 39].  Since
Hence FO@ + (1= Ny)g(Aa + (1= A)y)
~C 2 . 9 ~C ~C i ) . _ e/, ) — ) .
</ (;L’—a)q(;ﬂ)d;u) > bQJZ ¢ -)a / q(:v)(l;t/ (w—a)’q(x)da. > (M) + (1 =N f(y)(Ag(z) + (1 = Ng(y))
b c—a b b

> Af(@)g(z) + (1= N f(y)g(y)

h 1A hat is pi . = hencefy is concave. In particulaz — m),/g is concave omA;.
eorem 1: Assume thay Is piecewise concave, monotone non- The Blaschke and Pick theorem [8] states that for nonnegative

increasing or nondecreasing dhintervals, andh = [logs(N+1)].  concave functionsf and g defined on an interval with Lebesque
Then there exists an-bit generalized mean coder-estimator step th%easure;z

satisfies
. . . 2
3 52 2au | Pdp < 4| [ fgd
Ee < 10 . (27) ffdp [ g7dp < fadp ) .
4 I I I

Proof: From the theorem assumption, it follows that there exists Let f = /g andg = (x — m)./q, then it follows that
a generalized:-bit coding scheme so that each of the characteristic i i i )
set is an interval Qnd is concave and mgnotonic on ga(;h interval. / qu/ (x —m)’qdx < 4</ (z — m)qd;c) ]
Moreover, the coding function also contains characteristic sets of the A; A; A;
form (a,m] and (m,b] for somea andb. Label the characteristic H he claimed i litv hold
sets byA,;. Define ence, the claimed inequality holds. |
i :/ g(z)dx VIIl. CONVERGENCE RESULT FOR
A MEAN CODER-ESTIMATOR SEQUENCES

mi; = / wq(x)dx The mean coder-estimator sequence is a natural 1-bit sequence. In
A; this section, its error-reduction performance is analyzed. In fact, the
o2 = / (2 — m)%q(x)da. analysis covers.the slightly more general class of generatizbid
A mean coder-estimator sequences.
Consider the system defined by (9). Assume thaandV; are both
By Lemmal discrete, zero-mean random variables with probability mass defined
Y Y ) on —Nye, —(N; — 1)e,- -+, Nye and—Nog—(N;, — 1)e,«++, Noe,
Fe = ZUIZ _ Z (mi —mpi) _ respectlvely_. Denote thelr_ variance by ando?, respectlvely. _If
= = bi 7 > 1 and if the system is unobserved, the error of the minimum
variance estimation of the proceX&swill diverge. A basic question is
Hence, to establish the theorem, it is sufficient to show that  whether one can construct a coder-estimator sequence that is stable
) 5 ) ) as defined in Section Il
</ (@ — 7,1,)q($)dw> > l/ (¢ — ,,1,)Zq($)d$/ q(x)d. Theorem 2: SupposeX, has meann, variances,, and a p.d.f.
A; 4 /A, A, ¢ that is concave and monotone nondecreasing or nonincreasing. If
n = [log,[(No + 1)(2N, + 2N, + 1)]] + 1, then there exists an

ConS|der_the characteristic st. By construction, it is either to n-bit generalized mean coder-estimator sequence which is stable for
the left or right ofm. By symmetry argument, one can assume th?ltme processX if

x € A, implies thatx > m. Notice thatg is concave onA;, and
it is either nonincreasing or nondecreasing on it. The two cases are
considered separately.

i

1 4
In . 28
n 3 (28)

a
6 = — —
¢ R < 2n
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Proof: Assume the p.d.f. of\; conditioned on the codewords oy
co, -, IS piecewise concave and monotone nondecreasing;on Node *11
intervals. LetP; denote the corresponding set bf — 1 partition
points. DefingR; by {z+ie:x € P;, —(N;+N,) < j < N,+N,}.
The order of this partition set is at most; — 1)(2N, + 2N, + 1).
From (9)

}24,_1 =7X; + Zi+1 Py Nodez*lM
Node * . . Ok 1M
where . .
Zigr =Vigr + U ol
Py
and Z;;, is a discrete random variable with probability mass on
—(Ns + No)e,---,(Ns + No)e. It follows that the conditional
distribution of Y;4, conditioned on the codewords,-- -, ci, git1
is also piecewise concave and monotone nondecreasing on the
interval defined by);. Define R; by adding the conditional mean

X - . . Node *MM
of [xgit1de to Q;. R; defines a partition of the real line with at c%eMM
most(L; — 1)(2Ns + 2N, + 1) + 2 intervals; (two of which are Time = 0 . 206

semi-infinite intervals.) By the concavity property, one can show that
¢i+1 must vanish on the two semi-infinite intervals. Hence, one can
construct aflog,[(L: — 1)(2Ns + 2N, + 1)]]-bit generalized mean Fig. 1. Illustration of the assignment with different size networks.

coder scheme by using the partition defined By if one does not

include the two semi-infinite intervals in the coding scheme.

After the i + 1th codeword is received, the p.d.f. &f;;; condi- It follows that the coder-estimator sequence is stableXfdf (28)
tioned on the codewords,---,¢;, c;+1 IS piecewise concave and holds. O
monotonic on at most Ny + 3 consecutive intervals. By induction  Corollary 1: If U; = V; = 0, then the 1-bit mean coder-estimator
argument, it follows that if sequence converges in the quadratic mean if

n > 1og,[2(N, 4+ 1)(2N, + 2N, + 1)]

M=2"

4

1
then there always exist-bit generalized mean coding sequences so a6 < 2 In 3 (29)

that all the conditioned p.d.f. &f is piecewise concave and monotone
nondecreasing on the characteristic sets.

At the end of each coded observation, there &fe= 2" possible
outcomes. Hence, one can trace the history of-dit coder-estimator ] ] ) i
sequence by af/-nary tree as depicted in Fig. 1. The depth of the Consider a slightly more general version of the system defined by
graph corresponds to the time at which the coding-estimation takd}
place. The nodes of the graph are labeled by a variable length string

IX. CONVERGENCEPROPERTY OFEQUAL-PARTITION SEQUENCES

beginning with a %” and followed by the sequence of codewords ‘\i’?+‘ = filXi) + Ui
received in order to reach that state. Also associated with each node Xo has a known/'p.d.fq (30)
is a value, denoted byiio,...,,;j, which represents the variance of Yipr =Xipa + Vi

X (jné) conditioned on the sequence of codewofds,- - -, ), that
leads to that node. Associated with each node is a value, deno‘f\gberefi

by pi,---,i;,» Which represents the probability of reaching that node.
Notice that |fi(x) = fiy)| < Cple —y| (31)

is a Lipschitz function satisfying the condition

o > Pioysignis = Pioyijo for all ¢, », and y.
EEM =1 M) Assume that the p.d.f. oy, U;,, andV; have finite support inter-
From (9), it follows that the conditional variance of (kn6) vals,[—=o, o], [—u, u], and[—wv, v], respectively. The performance

conditioned on the codewords, - - - , ¢, is equal to#aiio,.“,ik_l +  of ann-bit equal-partition coder-estimator sequence is analyzed here
oZ. By construction, the conditional distribution &f(kn6) satisfies for such a system.
the conditions of Theorem 1. Hence Theorem 3: The n-bit equal-partition coder-estimator sequence is
- . : 3/ 9 - ; stable if
> plinlioy- v ik-1)0%iy.i, < 1(72‘7307---@_1 + a:f).
ik€Z
ablogy, e < 1. 32
Hence &2 (32)

3a 2
E[X) = X(knd)| Proof: Let S;,,....;, represent the length of the support interval

- E : E : Dic i T2 . . of the p.d.f. ofX'; conditioned on receiving the codewords- - - , ;.
L0y =10tk Y KLQ, b 1t - . . > .
10€EZy  iRE€Eu It follows_ _from the Lipschitz assumption ofi that the p._d.f. of
X1 conditioned on the codewords, - - - , ¢; has a support interval
< : 72 Z Z Pz‘o,-~,ik_105i0,---,ik_1 402 with length not greater thad'yS + 2u, and the support interval

i0€2y ik 1€Zu of Y;1, conditioned on the same set of codewords has length not
1 greater tharC'yS + 2u + 2v. Hence, each of the characteristics set
< <§72> o2 4+ 302 is an interval with length not greater tha6'sS + 2u + 2v)/2". If
4 * o-*

thei 4+ 1th codeword is receivedy; must lie within4+v or —v of
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the associated characteristic set. Hence [16] D. Williamson, “Finite wordlength design of digital Kalman filters for
state estimation,1EEE Trans. Automat. Contrvol. 30, pp. 930-939,
5,;01...7,jj+1 < (TS,;OV..._’,‘]. + 2u + 20)/2" + 2v. 1990.

[17] E. Wong and B. HajekStochastic Processes in Engineering Systems.

Let New York: Springer-Verlag, 1985.
[18] Z.Zhang and T. Berger, “Estimation via compressed informatitiEE

I, = iél}§§_5i0,~-,ij- Trans. Inform. Theoryyol. 34, pp. 198-211, 1988.
0, g
Then

Tig1 < (7T + 2u + 2v) /2" + 2v.

The sequencd; is bounded ifr < 2". Since the variance of
X conditioned on the codewords, - - -, i; is bounded bny, the
theorem, therefore, holds. O

Remark: If V; = U; = 0, then the equal-partition coder-estimator

seguence converges in the quadratic mean if the inequalityhmids.
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Abstract—This paper presents the necessary and sufficient condi-
X. CONCLUSION tions for a third-order single-input/single-output linear system to have a

In this paper, a new class of state estimation problems wiflgnovershooting (or monotone nondecreasing) step response. If the trans-

communication bandwidth constraints is proposed. These problep?]rsfunctlon of an overall system has real poles, a necessary and sufficient

le the i f . . ih the i f inf . condition is found for the nonovershooting (or monotone nondecreasing)
couple the issue of estimation with the issue of information Cong_tep response. In the case of complex poles, one sufficient condition and

munication. Although the estimation problem investigated here tigo necessary conditions are obtained. The resulting conditions are all
by itself quite simple, it serves to illustrate the complexity anéh terms of the coefficients of the numerator of the transfer function.

the

Extension of this work to more sophisticated estimation proble %

intricacy of these finite communication bandwidth problem imple calculations can be used to check a system for the nonovershooting
r monotone nondecreasing) step response. Another feature is that the

nditions in terms of pole-zero configurations can be easily derived from

and feedback control problems will be reported in subsequent Rge present results.

ers.
P Index Terms—tinear system, PID controller, step response.
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