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I. Introduction

A DETAILED derivation of the equations is provided here, which
subsequently allows rigorous setting of decision thresholds for

the two-confidence-region (CR2) approach to failure detection. The
CR2 approach itself is defined and described analytically in Ref. 1,
with statistics derived in Ref. 2 and further refined in Refs. 3 and
4. This CR2 approach (for one and two dimensions) was histori-
cally used onboard U.S. submarines in monitoring the ships inertial
navigation system (SINS)/electrostatically supported gyro monitor
(ESGM) inertial navigation systems (INS) to detect the presence of
ramp failures, a prominent failure mode observed to sometimes oc-
cur within the ESGM as it was originally being introduced onboard
these boats 30+ years ago. The hybrid SINS/ESGM navigation sys-
tem consisted of the existing SINS, an INS with conventional me-
chanically rotating gyros and having a second redundant SINS as a
warm standby system,5 in conjunction with the newer ESGM. The
ESGM was generally more accurate (but initially more susceptible
to failure).

In general, failure detection requires continuous vigilant monitor-
ing of the observable output variables of the system. Under normal
conditions, the output variables follow known patterns of evolution
within certain limits of uncertainty introduced by slight random
system disturbances and measurement noise in the sensors. When
failures occur, the output variables deviate from their nominal state-
space trajectories or evolutionary pattern. Failure-detection tech-
niques are based on “spotting these deviations from the usual in the
observable output variables” in some way.

Failure detection is a challenging event-detection problem that
has been receiving attention only since the late 1960s, a represen-
tative sampling being Refs. 1–4 and 6–12 and their bibliographies,
especially the extensive one in Ref. 10. For airborne navigation
systems, Ref. 10 goes further by combining failure detection with
the idea of using decentralized Kalman filters by including and in-
corporating existing, somewhat autonomous subsystems to offer a
hierarchy of operational performance and accuracies that includes
fail-safe behavior for a “limp-home” minimum capability. The prob-
lem of tracking a maneuvering target by radar or by optics (or by

Received 29 December 2004; revision received 4 July 2005; accepted
for publication 1 August 2005. Copyright c© 2005 by Thomas H. Kerr III.
Published by the American Institute of Aeronautics and Astronautics, Inc.,
with permission. Copies of this paper may be made for personal or internal
use, on condition that the copier pay the $10.00 per-copy fee to the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923; include
the code 0731-5090/06 $10.00 in correspondence with the CCC.

∗CEO/Principal Investigator, TK-MIPTM R&D Software Development
Department, 9 Meriam St., Suite 7-R/P.O. Box 459. Senior Member
AIAA.

other similar acoustic transducers) is mathematically dual to that of
failure detection.13

The CR2 approach to failure detection places one ellipsoidal
confidence region about the nominally unfailed trajectory corre-
sponding to the H0 hypothesis and a second ellipsoidal confidence
region about the Kalman estimate based on processing the actual
measurements. When these two confidence regions are disjoint, im-
plying a non-H0 situation, then a failure is declared. The recent
alternate more general test for ellipsoid overlap in Ref. 14, based
on numerically solving the symmetric generalized eigenproblem
using a Choleski factorization and the symmetric QR algorithm
because λAx

¯
= Bx

¯
⇔ [λA − B]x

¯
= 0 ⇒ x

¯
T [λA − B]x

¯
= 0 ⇔

x
¯

T A[λI − A−1 B]x
¯
= 0 (the last being the cornerstone of Ref. 14)

as a simplifying relationship revealed in Ref. 15, can also benefit
from these earlier CR2 results.

The associated underlying integral evaluation, examined in de-
tail here starting from Eq. (29), enables a statistical analysis for the
CR2 approach involving calculation of this detection algorithm’s
fundamental performance tradeoff characterized by what is known
as receiver operating characteristics (ROC),16 from which the op-
erating point is set or fixed by specifying the value of the decision
threshold to be used. The underlying mathematical evaluations con-
veyed herein are exercises in appropriately substituting variables
and evaluating several intermediate integrals in creative ways and
in constructively applying Cauchy’s residue theorem, and, although
this last step is initially somewhat tedious and unwieldy, we feel
that it still warrants documenting because evidently others also seek
to use it (as identified and commented on in Refs. 7–9). The CR2
failure-detection approach is predicated on the system of interest
being adequately described or modeled in continuous time as a state
variable representation [Ref. 17, Eq. (4–39)]:

dx(t)

dt
= f (x, t) + g(x, t)w(t) (1)

along with discrete-time sensor data measurements being available
of the following algebraic form:

z(tk) = h[x(tk), tk] + v(tk) (2)

where w(t) and v(t) in the preceding are independent zero-mean
Gaussian white noises of known, specified covariance intensity Q
and R, respectively, and also independent of the Gaussian initial con-
dition, where the associated noise covariance intensity matrices Q
and R are symmetric and, respectively, positive definite and positive
semidefinite and can be time varying. The initial covariance must
also be symmetric and positive definite because the initial condition
is x(t0) ∼ N [x̄(0), P0]. Technical regularity conditions require that
observability and controllability be satisfied by the system and its
noises in Eqs. (1) and (2) or, at least, less restrictive conditions of
detectability and stabilizability. The functions f (x, t) and g(x, t)
are assumed to be bounded and measurable and satisfy a global
Lipschitz condition, and h[x(t), t] is continuous in x and t . A fail-
ure is modeled as an additional term, +νδ(t − t f ), on the right-hand
side of Eq. (1), where t f is the initially unknown time of failure
onset and the initially unknown vector ν conveys the consequential
effect of the failure on the other states of the system and δ(·) is the
Dirac delta function.

The system is assumed to be outfitted or equipped with an ad-
equate, perhaps reduced-order, Kalman filter18 matched to a lin-
earized version of the system. For INS involving a constellation
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of gyros and accelerometers, even though the mechanization itself
is nonlinear (e.g., space stable, local level, or strapdown), the un-
derlying error model is linear,19 and, as such, possesses an optimal
estimator that can be obtained as the output of a linear Kalman filter,
usually implemented in indirect feedback form (Ref. 17, Chap. 6).

The CR2 algorithm itself makes use of a proper subset of the state
estimates x̂ and corresponding associated subset of the covariance
of estimation error P1(t) (computed from the underlying discrete-
time matrix Riccati equation), which are available as outputs online
from the Kalman filter at each discrete time step k. The subset
constitutes the particular states being monitored for failures. For
the ESGM, the states of interest were the three INS gyro drift rates
being monitored for the presence or absence of a gyro ramp failure.
The covariance output of an associated matrix Lyapunov equation
P2(t) (corresponding to the covariance or uncertainty of the system
without any sensor measurement being available) is also assumed
to be available within the CR2 algorithm.

II. Overview of the CR2 Approach to Failure Detection
At a particular fixed discrete time step k, the defining equations

that need to be evaluated for the completely general n-dimensional
case in order to specify the probability of false alarm Pfa(k) and
probability of correct detection Pd(k) are provided in Ref. 2. Both
are expressed in terms of the underlying Gaussian densities assumed
to be present under the simple hypotheses H0 and mixed hypothesis
H1 and are also expressed in terms of the measured signal-to-noise
ratio, having the following structural form:

SNR(k)
�=

√
dT (k)P−1

x̃ x̃ (k)d(k) (3)

and in terms of the computed scalar CR2 test statistic and in its
relationship to the [possibly time-varying decision threshold K1(k)],
where in the preceding:

d(k)
�= the mean deterministic response of the Kalman filter

to an hypothesized specific failure mode ν̄ (4)

where the time evolution of the vector d(k) can be evaluated explic-
itly from a joint system and filter simulation using the truth models
for system and Kalman filter but with the system and measurement
noise sample functions zeroed out (i.e., Q ≡ 0, R ≡ 0) and only ν̄ as
the particular failure mode of interest being activated. Specification
of the particular system error modes of concern should be available
from a failure modes and effects analysis.

The following quantities are fundamental in detection theory and
need to be evaluated for all practical applications. We treat the evalu-
ation of Pfa(k) and Pd(k) separately in what follows, corresponding
to the different form of the underlying probability distribution func-
tions (PDF) under H0 and H1, respectively, as

(no-failure) H0 : x̃i (k) ∼ N (0, [Px̃x̃ (k)]i i ) (zero mean)

(5)

(failure) H1 : x̃i (k) ∼ N (d(k), [Px̃x̃ (k)]i i ) (nonzero mean)

(6)

where, in the preceding:

x̃(k) = x(k) − x̂(k) (7)

x̂(k)
�= E[x(k)|Z(k)] (the conditional mean being the optimal

estimate17) (8)

E[x(k)] = E [E[x(k)|Z(k)]] , (a property of conditional

expectation) (9)

E[x̃(k)] = E[x(k)] − E[x̂(k)] = E[x(k)] − E [E[x(k)|Z(k)]]

= E[x(k)] − E[x(k)] = 0 (10)

0 = E[x̃(k)x̂T (k)] = E[x(k)x̂T (k)] − E[x̂(k)x̂T (k)]

= E[x(k)x̂T (k)] − P1(k) (11)

which, when Eq. (7) is multiplied by its own transpose and uncon-
ditional expectations taken throughout, yields:

Px̃x̃ (k) = P2(k) − P1(k) (12)

where the cross terms dropped out as a consequence of the Hilbert
space projection theorem result of the left-hand side of Eq. (11). The
following has been rigorously established earlier in Ref. 1, lemma
5.1 by taking the synchronous difference between the two respective
matrix difference equations, Lyapunov and Riccati, which describe
their evolution (in discrete time) by demonstrating that the difference
is always positive definite as it evolves in time:

P2(k) − P1(k) > 0 for all k > 0 (13)

In the preceding expressions of conditional expectation, the nota-
tion Z(k) denotes the sigma algebra generated by the sequence of
measurements received z(i) for 0 ≤ i ≤ k (also interpreted as the
subspace spanned by the discrete measurements received up to time
k).

A mechanization of a failure-detection solution using the CR2
approach is of the following form:

Decide that no failure occurred (indicative of H0 holding) at time
step k, when:

�(k) ≤ K1(k) (14a)

Decide that a failure occurred (indicative of H1 holding) at time
step k, when:

�(k) > K1(k) (14b)

III. Evaluation of Pfa(k) for the CR2 Detection Test
For CR2, a detection is declared when the scalar test statistic �(k)

exceeds the decision threshold setting K1(k) as depicted in Eq. (14)
so that the probability of false alarm corresponds to the following
situation for the n-dimensional case:

Pfa(k)
�= Prob[�(k) > K1(k)|H0]

=
∫

· · ·
∫

�(k) > K1(k)

N [0, Px̃x̃ (k)] dx̃ (15)

The preceding expression is difficult to evaluate for general dimen-
sion n. However, it is relatively easy to evaluate for the scalar case
(in Sec. III.A) but very challenging even for the case of n = 2 (in
Sec. III.B). In both cases, simpler expressions are needed for the
test statistic in order to enable explicit evaluation of the integrals
encountered corresponding to Eq. (15) and to ultimately enable
specification of the requisite decision threshold K1(k), which corre-
sponds to a value of Pfa(k) imposed as a constraint to satisfy system
performance specifications.

For the SSBN ESGM application of interest that funded this
investigation,20 only gyros and accelerometers with one or two in-
put axes are involved so that the corresponding version of CR2 only
needs one- and two-dimensional CR2 mechanizations, respectively,
to monitor their behavior. We therefore restrict attention here to eval-
uating the Pfa(k) and Pd(k) for just the one- and two-dimensional
cases as the simplification in vogue rather than pursue the more
general n-dimensional case (which remains an open question for
later generations to tackle and solve). In a three-dimensional world,
the ESGM had two gyros, each with two input axes, one of the
four input axes being redundant, so that the gyro with nonredundant
input axes (i.e., both input axes participating in the computed nav-
igation solution) used a two-dimensional version of CR2 and the
other gyro (with only a single actively used input axis participating
in the computed navigation solution) needed to be outfitted with
only a one-dimensional version of CR2. The statistical analysis and
calculation of the scalar CR2 test statistic for the two-dimensional
case is much harder to handle than that for the one-dimensional case,
as will become quite evident in Secs. III.B, III.C, and IV.B.
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A. CR2 Pfa(k) Calculations Simplify Nicely for the Scaler Case
The constrained optimization problem and associated scalar

Lagrange multiplier that define the scalar CR2 test statistic both
have a closed-form exact solution for the one-dimensional case as,
respectively, Eqs. (20) and (21) of Ref. 2. From Ref. 2, Eq. (23), the
scalar CR2 test statistic for the one-dimensional case is

�(k)
�= [x̂i (k)]2[√

[P2(k)]i i + √
[P1(k)]i i

]2
(16)

which, when substituted into Eq. (15), yields

Pfa(k) =
∫

x̂2
i

> K1(k) · (
√

P2 +
√

P1)2

Nx̂ (0, [P2(k) − P1(k)]) dx̂i

=
∫

u2 > K1(k) · (
√

P2 +
√

P1)/(
√

P2 −
√

P1)2

exp

[−u2

√
π

]
du

= 1 − 1

2
erf

{√
K1(k)

2
·
√[√

P2(k) + √
P1(k)

][√
P2(k) − √

P1(k)
]}

(17)

To obtain the decision threshold K1(k), given a fixed value of Pfa(k)
to be maintained at each check time, involves using tables to solve
for the constant b in the following equation:

Pfa(k) = 1 − 1
2
erf

[
b
/√

2
]

(18)

which, by substituting as depicted in Ref. 2, Eq. (39a), the CR2
decision threshold for the one-dimensional case is

K1(k) = b2 ·
{[√

[P2(k)]i i − √
[P1(k)]i i

][√
[P2(k)]i i + √

[P1(k)]i i

]}
(19)

The preceding is a time-varying decision threshold that can be used
to maintain a constant specified instantaneous false alarm rate. (A
methodology is provided in Ref. 3 for specifying a decision thresh-
old using random process level-crossing theory so that a particular
probability of false alarm exists over an entire specified time interval
and not just instantaneously at each discrete check time k.) Real-
time online mechanization of CR2 for one dimensions uses only
Eqs. (16), (18), and (19) and the two comparison tests of Eq. (14).

B. Evaluating CR2 Pfa(k) for the Challenging Two-Dimensional Case
The expression for the scalar CR2 test statistic for n = 2 is con-

siderably more complex than for the one-dimensional case. It is
obtained by first solving the scalar iteration equation for the associ-
ated Lagrange multiplier [Ref. 1, Eq. (34), Ref. 8, Eq. (1)]:

λn + 1 = 1

/{
1 + wT (k)[(1 − λn)P2(k) + λn P1(k)]−1 P1(k)[(1 − λn)P2(k) + λn P1(k)]−1w(k)

wT (k)[(1 − λn)P2(k) + λn P1(k)]−1w(k)

}
for λ0 = 0.75 (20)

where w(k)
�= x̂1(k) − x̄(k). This iteration equation converges geo-

metrically fast as a contraction mapping (Ref. 1, theorem 5.1) to a
unique solution λ̄(k), which is then substituted back into the accom-
panying Lagrangian saddle point solution for the minimum x∗(k) of
the constrained optimization problem that serves as the scalar CR2
test statistic:

�(k) = �(λ̄, x∗(k)) = λ̄(1 − λ̄)[(1 − λ̄)P2(k) + λ̄P1(k)] (21)

The preceding expression along with K1(k) is used in the limits
of the integral representing the Pfa(k). For the case of n = 2, the

integrals of Eq. (15) become

Pfa(k) =
∫ ∞

K1(k)

pL|H0
(�) d�

=
∫ ∞

K1(k)

[
1

|a1| pχ2

( ·
a1

)
∗ 1

|a2| pχ2

( ·
a2

)]
dL (22)

=
∫ ∞

K1(k)

[
exp(−L/2a2)

2π
√

a1a2

∫ L

0

e−bx

√
x(L − x)

dx

]
dL (23)

=
∫ ∞

K1(k)

[(
1

4π
√

a1a2

)

×
∫ π

−π

exp

{
−1

2

[
1

a2

+ b + b sin θ

]
L

}
dθ

]
dL (24)

=
(

1

4π
√

a1a2

)∫ π

−π

[∫ ∞

K1(k)

× exp

{
− 1

2

[
1

a2

+ b + b sin θ

]
L

}
dL

]
dθ (25)

=
(

exp{−K1C/2}
2πC

√
a1a2

)∫ π

−π

[
exp{−(bK1/2) sin θ}

1 + (b/C) sin θ

]
dθ

(26)

=
(

exp{−K1C/2}
2πC

√
a1a2

)∫ π

−π

[ ∞∑
i = 0

(−bK1/2)i (sin θ)i/ i!

1 + (b/C) sin θ

]
dθ

(27)

=
(

exp{−K1C/2}
2πC

√
a1a2

) ∞∑
i = 0

[
(−bK1/2)i/ i!

]
·
∫ π

−π

(sin θ)i

1 + (b/C) sin θ
dθ (28)

=
(

exp{−K1C/2}
πC

√
a1a2

) ∞∑
i = 0

[(K1b)i/ i!]

×
∫ ∞

−∞

xi

{[x2 + 2(b/C)x + 1](1 + x2)i } dx (29)

=
(

exp{−K1C/2}
e0

)[
e0 + e1 K1 + e2 K 2

1 + e3 K 3
1

+ e4 K 4
1 + e5 K 5

1 + · · · ] (30)

where in the preceding [Ref. 2, Eqs. (B.1-11–B.1-13)]:

ai > 0 for i = 1, 2 (31)

b
�= a2 − a1

2a2a1

> 0 (32)

C
�= 1

a2

+ b = 1

a2

+ a2 − a1

2a2a1

= a2 + a1

2a2a1

> 0 (33)

C > b (34)

1 > (b/C)2 > 0 (35)
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and ∗ denotes the operation of convolution. Because the integrand
of Eq. (22) is positive as are those of Eqs. (23) and (24) as PDFs
and, as such, have a finite integral when integrated over K1(k) to
∞, use of Fubini’s theorem21 allows the rigorous interchange of
the order of integration, resulting in Eq. (25). [The inner integral in
Eq. (24) was originally to be integrated from −π/2 to π/2, but that
is equivalent to the more convenient version from −π to π when
divided by two.] After integrating out the variable L in Eq. (25)
to obtain Eq. (26), Eq. (26) can be rewritten using the series ex-
pansion of the exponential, as in Eq. (27). Because the resulting
series of continuous functions in Eq. (27) is a uniformly conver-
gent series by the Weierstrass M-test,22 the order of integration
and summation can be rigorously interchanged in Eq. (27) to re-
sult in Eq. (28). Using the half-angle substitution23 of x = tan (θ/2)
for which θ = 2 arctan x and dθ = 2 dx/1 + x2 in Eq. (28) yields
Eq. (29). Going from Eq. (29) to obtain the result of Eq. (30) is
very challenging and tedious because it involves fairly long inter-
mediate expressions, but they eventually collapse into shorter more
manageable expressions, as summarized next.

C. Obtaining a Tractable Series Needed for Handling
the Two-Dimensional Case of CR2

The following integral that arose as Eq. (29)

Pfa(k) =
(

exp{−K1C/2}
πC

√
a1a2

) ∞∑
i = 0

[
(K1b)i/ i!

]
×

∫ ∞

−∞

xi

[(x2 + 2(b/C)x + 1)(1 + x2)i ]
dx (36)

can be evaluated over a closed path involving a semicircle and the
real axis in the complex plane using the Cauchy residue theorem24

in conjunction with some limiting arguments to make the upper-
half-plane semicircle have a radius that goes to infinity (and the
corresponding real axis segment go from −∞ to ∞), as explained
next.

Notice that the general integral of Eq. (29) has poles at the values
of z, where the following two polynomials have zeros:

0 = z2 + 2(b/C)z + 1 (37)

0 = (z2 + 1)i (38)

specifically, the roots of interest, which fall within a closed infinite
semicircle in the upper-half complex plane, occur at the following
values of z:

z = −b/C + j
√

1 − (b/C)2 (39)

z = +j (of multiplicity i) (40)

and the negative imaginary roots of both of these quadratic polyno-
mials lie outside of the closed upper semicircle and therfore play no
role in the numerical evaluation via a sum of the enclosed residues
in the counterclockwise direction. The contribution of the path in-
tegral along the infinite semicircle is zero because the degree of the
denominator is more than two greater than that of the numerator
so that the real integrals of Eqs. (29) and (36) are equivalent to the
complex path integrals over the simply connected region enclosed:

2πj
∑

Res =
∮

zi dz

[(z2 + 2(b/C)z + 1)(1 + z2)i ]

= lim
R → ∞

∫ π

0

jRi + 1ej(i + 1)θ dθ

[[R2ej2θ + 2(b/C)Rejθ + 1](1 + R2ej2θ )i ]

+ lim
R → ∞

∫ +R

−R

xi dx

[[x2 + 2(b/C)x + 1](1 + x2)i ]

= 0 +
∫ ∞

−∞

xi dx

[[x2 + 2(b/C)x + 1](1 + x2)i ]
(41)

where the integrand is analytic within the contour described except
at the just-mentioned simple poles.

Evaluation of the integrals of Eq. (36) for the first six terms, using
the Cauchy residue theorem, yields the first three easy evaluations
that demonstrate how the evaluations will be performed next for the
remaining three harder cases:

I0
�=

∫ ∞

−∞

dx

{[x2 + 2(b/C)x + 1]} = 2πj · 1

j2
√

1 − (b/C)2

= π√
1 − (b/C)2

(42)

I1
�=

∫ ∞

−∞

x dx

{[x2 + 2(b/C)x + 1](1 + x2)}

= 2π

[
1

2
√

1 − (b/C)2(−2b/C)
+ 1

2(2b/C)

]
(43)

I2
�=

∫ ∞

−∞

x2 dx

{[x2 + 2(b/C)x + 1](1 + x2)2}

= 2πj

[
1

2j
√

1 − (b/C)2(−b/C)2

]

+ 2πj

(
d

dx

{
x2

[x2 + 2(b/C)x + 1](x + 1j)2

})∣∣∣∣
x = 1j

= 2πj

[
1

2j
√

1 − (b/C)2(−b/C)2

]

+ 2πj

{−2x4 − 2(b/C)x3 + j[2(b/C)x2 + 2x]

[x2 + 2(b/C)x + 1](x + 1j)3

}∣∣∣∣
x = 1j

= 2π

[
1

2
√

1 − (b/C)2(2b/C)2
− 1

2(2b/C)2

]
(44)

Continuing in like manner, but sparing the reader much of the long
unwieldy intermediate expressions, yields

I3
�=

∫ ∞

−∞

x3 dx

{[x2 + 2(b/C)x + 1](1 + x2)3}

= 2π

{
1

2
√

1 − (b/C)2(−2b/C)3
+ 1

2

[
1

(2b/C)3
+ 1

8(2b/C)

]}
(45)

I4
�=

∫ ∞

−∞

x4 dx

{[x2 + 2(b/C)x + 1](1 + x2)4}

= 2π

{
1

2
√

1 − (b/C)2(−2b/C)4
− 1

24

[
1

(2b/C)2
+ 8

(2b/C)4

]}
(46)

I5
�=

∫ ∞

−∞

x5 dx

{[x2 + 2(b/C)x + 1](1 + x2)5}

= 2π

{
1

2
√

1 − (b/C)2(−2b/C)5
+ 1

24

[
1

(2b/C)52

+ 1

(2b/C)324
+ 3

(2b/C)28

]}
(47)

Although the preceding results were originally derived by long hand,
they fortuitously possessed a type of internal error cross check by
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the imaginary contribution of the enclosed residues collapsing to be
identically zero.

As derived and defined in Ref. 2 [lemma 1, Eq. (B.1-2)], a useful
auxiliary matrix is

S(λ̄, k)
�= [P2(k) − P1][(1 − λ̄)P2(k) + λ̄P1] (48)

which can be used as an intermediary in specifying the requisite
parameters a1, a2, b2, and C , from which ultimately the parameters
e0, e1, e2, e3, e4, e5 are defined [Ref. 2, Eqs. (41–44)]. It is also es-
tablished in Ref. 2, [Eqs. (B.2-12–B.2-13)], by the simple algebraic
manipulation of inequalities, that

C > 0 (49)

ei > 0 for all i = 0, . . . , 5 (50)

To solve Eq. (30) for the unknown K1(k), a useful contrivance is
to decompose it into two separate algebraic equations to be solved
simultaneously as

y1(K1)
�= e0 + e1 K1 + e2 K 2

1 + e3 K 3
1 + e4 K 4

1 + e5 K 5
1 (51)

y2(K1)
�= e0 Pfa(k) · exp[C K1/2] (52)

Notice that the vertical intercept of the two equations is ordered as
e0 > Pfa · e0, and the exponentially increasing term initially starts be-
low the quintic at K1 = 0 but ultimately grows to intersect it because
the exponent is purely positive and the exponential will eventually
dominate the quintic polynomial even though it starts below it. A
successive approximations implementation of these two equations25

can be used to easily solve this problem evaluation for the unknown
K1(k), as depicted in Ref. 2 (Fig. 4). Convergence is obvious from
the figure cited. This successive approximations approach is iter-
ated to convergence for each successive k to yield a time-varying
decision threshold that yields a constant false alarm rate (CFAR)
implementation of the CR2 test. Real-time online mechanization of
CR2 for two-dimensions uses only Eqs. (20), (21), (51), and (52) and
the two comparison tests of Eq. (14). The best grouping to minimize
the associated computational burden in terms of operation counts is
also identified in Refs. 1 and 8 [Eqs. (4) and (5)].

IV. Evaluation of Pd(k) for the CR2 Detection Test
For CR2, the probability of correct detection corresponds to the

following situation for the n-dimensional case:

Pd(k)
�= Prob[�(k) > K1(k)|H1]

=
∫

· · ·
∫

�(k)>K1(k)

N (d(k), Px̃x̃ (k)) dx̃ (53)

Similar to the situation for evaluation of Pfa(k), the preceding ex-
pression is difficult to evaluate for general dimension n. However,
it is easy to evaluate for the scalar case (in Sec. IV.A) and tractable
but more challenging for the case of n = 2 (in Sec. IV.B).

A. CR2 Pd(k) Evaluation Simplifies Nicely for the Scaler Case
In complete analogy to what was done in Sec. III.A and the sim-

plifications that accrued for the one-dimensional case, the integral
of Eq. (53) reduces to the following closed form (with constituent
parts that are known and easy to evaluate):

Pd(k) = 1 −1

2
erf

{[
SNR(k)√

2

]
+
√

K1(k)

2
·
√[√

P2(k) + √
P1(k)

][√
P2(k) −√

P1(k)
] }

− 1

2
erf

{[
SNR(k)√

2

]
−

√
K1(k)

2
·
√[√

P2(k) + √
P1(k)

][√
P2(k) − √

P1(k)
]}
(54)

where in the preceding, the expression for the signal-to-noise ratio
of Eq. (3) simplifies as

SNR(k) = |d(k)|√
P2(k) − P1(k)

(55)

B. Evaluating CR2 Pd(k) for the Challenging Two-Dimensional Case
For the two-dimensional case, after performing an offset by the

indicated mean and scaling by the covariance matrix present in the
Gaussian distribution, Eq. (53) simplifies as

Pd(k) = 1 −
∫ ∫

G

Nu(0, I ) du (56)

where G is the following elliptical region:[
u + [P2 − P1]−

1
2 d(k)

]T
Ā−1(λ̄)

× [
u + [P2 − P1]−

1
2 d(k)

] ≤ K1(k)

λ̄(1 − λ̄)
(57)

where the integral here represents the volume under the circular (in-
dependent) bivariate Gaussian surface enclosed by an offset ellipse
and can be evaluated using existing tables.26 A circular approxima-
tion to the preceding elliptical region is offered in Ref. 2 [Eq. (54)]
and enables these integrals of a circular bivariate Gaussian surface
to be evaluated over an offset circle, as found in more generally
available tables.27,28 This completes how to characterize the CR2
performance in terms of its associated ROC, where the particular
Pfa(k) and Pd(k) associated with the operating point utilized [as
defined by the particular threshold value K1(k)] occur as parame-
ters in the more realistic nonideal three-state switches used in as-
sociated system reliability/availability diagrams (e.g., Ref. 4) vice
use of an ideal single-state switch [corresponding to Pfa(k) = 0 and
Pd(k) = 1]. The results of applying CR2 to real SINS/ESGM sensor
data are depicted in Ref. 2 (Fig. 3) and in the predecessor contractor
reports. Only failure magnitudes corresponding to SNR 
 12.5 dBm
or more above the background noise of the coarser SINS will have
good detection behavior, a standard benchmark number in radar de-
tection as well. A favorable aspect of this particular SINS/ESGM
application is that deducing the exact time of ESGM gyro ramp
failure onset is not particularly important because a ramp starts out
small at its inception no matter what the magnitude of its slope and
at that time does not have any adverse impact on total navigation
accuracy; however, as time elapses, it will eventually become large
enough to be detected as it exceeds the larger background noise of
the SINS and is then a threat to the overall system accuracy that is
to be protected by use of CR2 failure detection.

There are detailed figures intuitively depicting all aspects of CR2
diagrammatically in Refs. 1–3. The fundamental characterizations
of CR2 found in Refs. 1 and 2 are particularly amenable to being
visualized graphically because the underlying test for the overlap
of two ellipsoidal confidence region sheaths at a particular check
time k is geometrical in character and is solved by embedding the
n-dimensional problem within an (n + 1)-dimensional space. A re-
cent test for n-dimensional ellipsoid overlap,14 which avoids CR2’s
restrictive hypothesis as the condition of Eq. (13) and so is more gen-
erally appicable, also embeds the problem in (n + 1)-dimensions in
order to elegantly solve the general n-dimensional overlap prob-
lem, as pointed out in Ref. 15. This recent overlap test can also be
applied within the more complete failure detection, identification,
and reconfiguration methodology offered in Ref. 10, which utilizes
decentralized Kalman filters, but which previously avoided using
CR2 because it had its own overlap test of sorts that was coarser or
less refined than what is now available by using the more general
overlap test of Ref. 14.

V. Conclusions
We have summarized the rigorous mathematics underlying the

CR2 approach to failure detection, with particular attention being
given here to the evaluation of the complex integrals, which, up to
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now, had received short shrift in other associated CR2 documenta-
tion. This evaluation was crucial in order to evaluate Pfa(k) from
which K1(k) can then be specified and afterwards consequently
firms up the associated Pd(k), which all arises in characterizing the
CR2 performance in terms of ROC (and CFAR values of Pfa and as-
sociated Pd incurred for failure magnitudes to be protected against,
as are usually identified in an associated failure modes and effects
analysis for the system of interest). We also reminded the reader
that mathematical model structures identical to those encountered
for failure detection arise in tracking uncooperative maneuvering or
evading targets (using radar or passive or active optics or even sonar
or other acoustic trackers).
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