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The Paper under review: by Henderick C. Lambert, entitled “Cramer-Rao Bounds for Target Tracking Problems Involving 

Colored Measurement Noise” is extremely well written and takes the reader along for a nice ride so I had to be extra careful because, 

as an analyst, I was enjoying it so much. Maybe too much (looking only at minutiae) so I stepped back and took a second more critical 

look. I suggest modifying title of paper to be “Cramer-Rao Bounds for Tracking Targets Corrupted by Colored Measurement 

Noise” as being a little shorter too. 

My vote is to publish but also to give the author an opportunity to, perhaps, modify his transcript based on the suggestions,  

objections, or request for clarification offered below. I only seek improvement to a paper that is already pretty good. My biggest 

concern is Issue #6 below, which may be a show stopper. 

Idea #1: 

I will simplify here to make a strong point and hopefully, by doing so, more directly “cut to the chase”:  

1. Rigorous and easy to evaluate CRLB procedures exists for lower bounding covariance of estimation 

error in situations where there is no process noise present and consequently associated covariance of 

process noise is identically the zero matrix as Q=0 (this benign situation, which reaps extremely 

lucrative tractability of CRLB calculation as a consequence, arises in the mathematical model for targets 

in a ballistic trajectory but only during the exoatmospheric mid-course phase). This is enough for 

defense strategies that seek to intercept targets only in this regime (like NMD). 

2. Rigorous, but more numerically challenging evaluation methodologies, have recently been developed 

that claim to extend CRLB methodology to handle cases where there is non-zero process noise present. 

This is a more general case (reflecting atmospheric buffeting associated with reentry drag, or midcourse 

maneuvering, or with a projectile undergoing late stage maneuvering). However, practical evaluations 

along this line occur less frequently in the open literature. (Tichavsky, Muravchik, and Nehorai [10] 

provide a rigorous methodology for performing CRLB evaluations when Q is not identically zero. Those 

investigators that preceded them were apparently somewhat off the mark in various ways.)  

Author H. C. Lambert indicates that he plans to only use the first path above so things should proceed more 

easily and clearly.  

Author Lambert does an excellent job of surveying the CRLB literature and in handling things diplomatically. 

He covers both options above. I wish that he would clarify the above distinction for the reader so that the reader 

is aware from the start of the existence of the above dichotomy hinging on the answers “yes” or “no” regarding 

the presence (or absence) of Q=0 since it is the key to a full understanding. 

Idea #2: 

Historically, when serial time-correlation arises in either the measurement noise or in the process noise or both, 

it can be simply handled by merely including the structure of time correlations within the system model by 

“state augmentation”. See details for doing so in: 

 Kerr, T. H., “Multichannel Shaping Filter Formulations for Vector Random Process Modeling Using 

Matrix Spectral Factorization,” MIT Lincoln Laboratory Report No. PA-500, Lexington, MA, 27 Mar. 

1989 (in an Appendix). 

 Gelb, A. (ed.), Applied Optimal Estimation, MIT Press, Cambridge, MA, 1974 (Sec. 4.5, pp. 133-136). 

On page 4, last paragraph, author Lambert states that the nature of correlation in the measurement noise is 

assumed to be prescribed by a known dynamic model. Since how to do so from fundamental measurements 

collected is a missing link here, the first reference above in Idea #2 demonstrates how to find the corresponding 
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unknown dynamics model when the colored measurement noise correlation function matrix is known or, 

equivalently, for stationary processes, its power spectral matrix is known, as determined from the statistics of 

the measurements obtained. Other places that demonstrate how it may be found are: 

 Kerr, T. H., “Emulating Random Process Target Statistics (using MSF),” IEEE Transactions on 

Aerospace and Electronic Systems, Vol. AES-30, No. 2, pp. 556-577, Apr. 1994. 

 Kerr, T. H., “Comments on ‘Precision Free-Inertial Navigation with Gravity Compensation by an 

Onboard Gradiometer’,” AIAA Journal of Guidance, Control, and Dynamics, Vol. 30, No. 4, pp. 1214-

1215, Jul.-Aug. 2007. 

While use of state augmentation is a simple routine tactic to reduce the problem to again be one that has only 

Gausian White Noises for process noise and sensor measurement noise, with known covariance specified (and 

perhaps now with zero measurement noise covariance unless the measurement noise also had a WGN 

component too that would remain unchanged), this approach has three drawbacks: (1) dimension of the system 

model is increased; (2) system has new components of process noise covariance that are not identically zero 

(only a drawback with regards to the above Idea #1, Option 2), (3) effective measurement noise covariance is 

now the zero-matrix R = 0, which is sometimes a numerical problem for Kalman-like filter tracking 

formulations if [Hk Pk|k-1 Hk
 T

+ Rk] is singular and not invertible as a consequence. This aspect also occurs 

within the CRLB formulation as well. Author Lambert avoids dealing with this more general situation by 

assuming noise structure of Eq. 2 that will have presence of non-zero GWN measurement noise covariance R 

even after serial time-correlated noise term is extracted and associated with the system or plant. 

Idea #3: 

Historically, Arthur Bryson and his student L. J. Henrikson (as referenced by Lambert) in 1968 were able to 

handle estimation with serial time-correlated noise without increasing the dimension of the system. This is 

the tact that Lambert says he will follow by handling the situation of serially time-correlated measurement noise 

using the first methodology (Idea #1 Option 2, above) by adapting the previous well-know pre-whitening 

approach by Bryson and Henrikson. 

Another place where estimation with serial time-correlated noise was successfully handled without increasing 

the dimension of the system was in: 

 Meditch, J. S., Stochastic Optimal Linear Estimation and Control, McGraw-Hill, NY, 1969. 

Stated Goal of this Paper: 

Main topic addressed in this paper, according to the title, is how to handle serially time-correlated measurement 

noise in CRLB evaluation (which by Idea #2 is historically associated with presence of non-zero process noise) 

within an “easy” CRLB evaluation (Option 1 in Idea #1, above) where no process noise is present. Lambert 

states that he will use the result of Idea #3 above. So everything is plausible and we looked forward to the end 

result.  

Objection #1: Single numerical example in Section V, pages 20-23 is for a measurement noise component 

being a random walk. Random walk is extremely serially time-correlated and its variance increases with time so 

it is not a stationary process. 

The simplest possible non-degenerate numerical example that is serially time-correlated over a finite interval 

rather than over an infinite interval would seek to illustrate with a first order Markov process as the 
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measurement noise in order to be consistent with what the title of the paper currently says is to be provided at 

the end of the rainbow. 

Issue here centers around what actually constitutes “colored” noise. Colored noise is not being Gaussian White 

Noise (GWN) and the author Lambert agrees (at the bottom of page 1) that he is interested in handling 

temporally correlated noise (a.k.a. serially time-correlated noise). A Random Walk process is temporally 

correlated as merely the integral of GWN (with no bounding time constant to drag cross-correlations over 

successive discrete sampling time steps as a 1
st
 order or higher order stationary Gauss-Markov process would do 

in the role of the colored noise) but is correlated over all ensuing time steps and its variance increases with time. 

Using a Random Walk is much worse (harder to handle). (See Issue #6, below.) 

Several precedents exist that support my interpretation of what type of example is needed here: 

 Stear, E. B., and Stubberud, A. R., “Optimal Filtering for Gauss-Markov Noise,” International Journal 

of Control, Vol. 8, No. 2, pp. 129-130, 1968. 

 Bryson, A. E. and Johansen, D. E., “Linear Filtering for Time-Varying Systems using Measurements 

Containing Colored Noise,” IEEE Trans. on Automatic Control, Vol. AC-10, No. 1, pp. 4-10, Jan. 1965. 

Issues and Concerns: 

Historically, measurements were represented as being collected in a large super-vector with the earliest or initial 

one at the top and the remainder ordered sequentially down until the last or most recent is at the bottom. 

In Eq. 68, Lambert’s convention is opposite to what everyone else has historically used by being exactly 

opposite. No benefit accrues or loss incurred by his doing so. However, Lambert uses the opposite convention 

for measurements in Eq. 45. He probably should at least be internally consistent. Please see next complaint 

below, where this aspect may hurt. 

Issue #1: Lambert takes the difference of two Fisher forms, which has a risk of incurring something that lacks 

being positive definite. Usually analysis steps are followed to ensure that positive definiteness is maintained, 

otherwise problems can ensure. Sums of positive definite matrices are positive definite. Sum of positive definite 

and positive semi-definite is positive definite, etc. In the paper, there was no reason presented (that I could see) 

to offer this unpleasant intermediate form in Eq. 48 involving a difference. Perhaps this can be avoided 

somehow. 

Navigation Analysis (more conveniently accessible to readers than somewhat new Ref. 

[48]): 

1. Biezad, D. J., Integrated Navigation and Guidance Systems, AIAA Education Series, Reston, VA, 1999. 

2. Siouris, G. M., “Navigation: Inertial,” Encyclopedia of Physical Science and Technology, 2
nd

 Edition, V. 10, pp. 

595-647, Academic Press, NY, 1992. 

3. Britting, K. R., Inertial Navigation System Analysis, Wiley-Interscience, NY, 1971. 

4. Huddle, J.R., “Inertial Navigation System Error Model Considerations in Kalman Filter Applications,” Control 

and Dynamic Systems: Advances in Theory and Applications - Nonlinear and Kalman Filtering Techniques, Vol. 

20, Academic Press, NY, pp. 294-340, Part 2 of 3, 1983. 
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5. Maybeck, P. S., Stochastic Models, Estimation, and Control, Vol. 1, Academic Press, N.Y., 1979 (Chapter 6). 

6. Gelb, A. (ed.), Applied Optimal Estimation, MIT Press, Cambridge, MA, 1974. 

Issue # 2: citing on page 5, next to last sentence, and on page 18 first sentence, author Lambert says that his methodology 

may be extended to include the effect of navigation errors. He references a relatively new report (his [48]) for how to do 

so as if it is merely an afterthought and how it can be done is too recent to be considered now and addressed thoroughly. 

The above references listed here above by me have historically said how. The problem is that when INS errors are 

accounted for, typically the process noise covariance is no longer zero and the easy case Option 1 of Idea #1 above for 

evaluating CRLB is no longer applicable. Author Lambert would then need to use the less tractable Option 2. It would be 

nice if he admitted this at the time he brought up handling navigation errors and dismissing it as just a minor extension of 

what he has provided in his paper since such extensions require use of the other more involved approach of Idea #1 

Option 2. 

Issue #3: Author Lambert states on page 3 that the following approach utilizing nuisance parameters: 

 Miller, R. W, and Chang, C. B., “A Modified Cramer-Rao Bound and Its Application,” IEEE Transactions on 

Information Theory, Vol. IT-24, No. 3, pp. 398-400, May 1978.  

amounts to a Monte-Carlo sampling technique (like a Metropolis-Hastings or Metropolis-Gibbs sampling and re-sampling 

associated with attempting to use Particle Filters, as supporting theory that became known much later). However, if one 

compares how many samples are necessary to participate in the averages for a rigorous interpretation, as discussed in 

some of the recent papers by Frederick Daum in the last 10 years on Particle Filters for practical applications, one realizes 

that the amount of numerical computation is daunting by being overwhelming and untenable for most situations. Author 

Lambert could, perhaps, also make that point in his paper to bring the relevance of the above reference up to date despite 

the fact that it is an excellent piece of analysis with extremely appealing illustrative examples that were analytically 

tractable in closed-form. For more general applications, without the benefit of being simple enough for closed-form 

answers, it would likely be very challenging to average enough data to get useful results. 

Issue #4: To prevent readers from incorrectly assuming that the results of Eqs. 40 to 44 are original and new, I suggest 

referencing oldest occurrences of their use within an estimation context as occurs in: 

 Section 1-19 of Liebelt, P. B., An Introduction to Optimal Estimation, Addison-Wesley, Reading, MA 1967. 

 Appendix 7B: Some Matrix Equalities in Jazwinski, A. H., Stochastic Processes and Filtering Theory, Academic 

Press, N.Y., 1970. 

Issue #5: To prevent readers from getting the wrong idea on page 4 about how Tichavsky et al can handle “random 

dynamics” please avoid this internal short hand code and, instead, say handle “process, plant, or model dynamics with 

random disturbances (i.e., Q non-zero)”. Otherwise, the reader may expect entries in the system matrix may be random 

and that is not the case. Sorry to “nickel and dime” you but sometimes managers (and other readers) view something and 

misinterpret it to be exactly what you said rather than “what you meant”. 

Issue #6: Most serious issue here - On page 23, first sentence at top of page: “components of the measurement vector, yk, 

…, are assumed to have the same statistics as well as being independent of each other. This assumption which is 

needed to invoke CRLB calculation is at odds with the presence of a random walk, which is non-stationary, with a 

variance that increases with time. (Please see Gelb Fig. 3.8.5 or Maybeck on this aspect for verification.) Also is contrary 

to trends depicted in Figs. 1 and 2 (unless we only see a time segment before it is large enough to discern the increase by 

eye). Please address or finesse. This could be a show-stopper. It is a non-issue if Random Walk component were replaced 



5 

 

instead with merely a first order or higher stationary Gauss-Markov process. We realize that it is “necessary to play the 

ball where it lies” if that is what constitutes the application situation. 

May Wish to Reference How to Handle Jamming Considerations: 

1. Myers, L., Improved Radio Jamming Techniques: Electronic Guerilla Warfare, ISBN 0873645200, Paladin Press, 

Boulder, CO, 1989. 

2. Chapter 8 of Bar-Shalom, Y., Blair, W. D., (Eds.), Multitarget-Multisensor Tracking Applications ad Advances, 

Vol. III, Artech House Inc., Boston, MA, 2000. 

Another view of image registration (the application specifically addressed as motivation in 

this paper) to perhaps be acknowledged as a competitive approach: 

 Yetik, I. S., Nehorai, A., “Performance Bounds on Image Registration,” IEEE Trans. on Signal 

Processing, Vol. 54, No. 5, pp. 1737-1749, May 2006. 

Other significant Cramer-Rao Lower Bound citations (overlooked), perhaps, of interest: 

1. Jazwinski, A. H., Stochastic Processes and Filtering Theory, Academic Press, N.Y., 1970. (Provides expression 

for CRLB for Q=0-matrix.) 

2. Balakrishnan, A. V., Kalman Filtering Theory, Optimization Software, Inc., NY, 1987. (Clarifies difficulties 

between situation of evaluating CRLB for Q being zero matrix versus not being zero matrix.) 

3. Joshi, S. M.,  Control of Large Flexible Space Structures, Lecture Notes in Control and Information Series, Vol. 

131, Springer-Verlag, NY, 1989 (see Section 4.1.1, pp. 165-170). 

4. Eldar, Y., “Uniformly Improving the Cramer-Rao Bound and Maximum-Likelihood Estimation,” IEEE 

Trans. on Signal Processing, Vol. 54, No. 8, pp. 2943-2956, Aug. 2006.  

5. Au-Yueng, C. K., Wong, K. T., “CRB: Sinusoid-Sources' Estimation using Collocated Dipoles/Loops,” 

IEEE Trans. on Aerospace and Electronic Systems, Vol. 45, No. 1, pp. 94-109, Jan. 2009.  

6. Kay, S., Xu, C., “CRLB via  the Characteristic Function with Application to the K-Distribution,” IEEE 

Trans. on Aerospace and Electronic Systems, Vol. 44, No. 3, pp. 1161-1168, July 2008. 

7. Smith, S. T., “Statistical Resolution Limits and the Complexified Cramer-Rao Bound,” IEEE Trans. on 

Signal Processing, Vol. 53, No. 5, pp. 1597-1609, May 2005. 

8. Smith, S. T., “Covariance, Subspace, and Intrinsic Cramer-Rao Bounds,” IEEE Trans. on Signal 

Processing, Vol. 53, No. 5, pp. 1610-1630, May 2005. 

9. Gini, F., Regianini, R., Mengali, U., “The Modified Cramer-Rao Lower Bound in Vector Parameter 

Estimation,” IEEE Trans. on Signal Processing, Vol. 46, No. 1, pp. 52-60, Jan. 1998. 


