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Abstract

The topics of Matrix Spectral Factorization in conjunction with results from Realization
Theory are applied here to simulating a stationary multi-input/multi-output (MIMO) linear
system from a specified power spectral density matrix. Matrix Spectral Factorization provides
the appropriate transfer function matrix and Realization Theory specifies the corresponding pa-
rameters of a linear system having this transfer function. This approach can be used to correctly
capture the cross-correlations that exist in a multichannel vector random process. Aspects of the
solution to this problem are illustrated using an original representative example problem with
a closed-form answer. Existing software programs for accomplishing Matrix Spectral Factoriza-
tion are identified and one has been successfully validated using the known closed-form solution
mentioned above. This computer program along with a mechanization of the novel simplified
realization algorithm (offered for the first time here as an original theoretical contribution) can
now be applied to application data (but the resulting real world answers will, in general, consist
of long unwieldy representations rather than the nice closed-form expressions offered here in
a simple example that was expressly chosen to ease the documentation effort and to serve as
a convenient test case). Besides multichannel spectral estimation, other important apparently

_ disparate applications (some old, some new) of the same solution methodology are summarized
here including applicability to the complex case (to handle polarization issues related to coher-
ent phase processing), multiport network synthesis, MIMO Wiener filtering, MIMO matched
filtering, exact (rather than approximate) estimators for situations involving presence of mul-
tiplicative noise, robust control and estimation (i.e., H*), and in re-expressing second order
statistics of an ARMA process as those of a simpler but mathematically equivalent AR process
of slightly higher dimensions.

1 Introduction

A high level presentation is pursued here to boil down and reduce the results to a form that
is understandable to the non-specialist. The topic of Matrix Spectral Factorization is particularly
amenable to this type of broad brush handling now since the original breakthrough papers of [1], [2]
as well as all the later papers on this topic are concerned with actually constructing a solution rather
than with merely proving that such a solution exists. A similar situation exists with Realization
Theory and its results. The illustrative numerical examples provided herein are original and of
low-dimension and of closed-form so as to not obfuscate the theoretical results‘bein'g conveyed
here yet these examples are nondegenerate and nontrivial so that they are still representative of
the computational effort that must be expended in going from tractable single channel spectral
factorization [10] to the more formidable Matrix Spectral Factorization handled here as it arises for
the multichannel case. These same numerical examples have been used to serve as a reasonable basis

*This work was sponsored by the United States Department of the Air Force.
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for relative comparisons between intermediate options as well as facilitating software verification as
a test case of known analytic closed-form solution (used in the same vein as occurs in [40], {41]).
Of particular interest is a new theoretical result given in Section 3 and cast here in the role of a
supporting algorithm. Part of the contribution of Section 3.2 is in providing a new result that allows
a multichannel vector Auto-Regressive Moving Average (ARMA) process to be recast as a simpler
more tractable AR process, but of slightly higher vector dimensions.

2 The Thrust of the Investigation

The techniques to be investigated here arc applicable to situations where second order statistics
of a random process are available in either the time-domain or in the frequency domain, respectively,
as the correlation matrix or the power spectral density matrix already having been specified. The
techniques investigated here will be applied to a particular low dimensional example for concreteness.
Handling the particular 2 x 2 example (introduced below) is representative of what must be done in
the general multi-input/multi-output (i.e., multichannel) case. The multichannel case is orders of
magnitude more challenging than the single channel case treated in [10], which is one of the reasons
why a concrete example is being used to illustrate the necessary computations. The 2 x 2 example
retains the sufficient generality of having non-vacuous cross-correlation in order that it not be trivial
or degenerate as merely the conjunction of two independent single channel examples. For perspective,
if simple closed-form results were not available, the simplified discussion pursued here would not be
feasible because the computational aspects for the multichannel case would be overwhelming and
the general expressions would be long and unwieldy. This is the reason why results from actual data
are not used in this illustrative example. However, several computer programs for accomplishing
Matrix Spectral Factorization are identified in [42, Chapter 3], and these programs can handle the
complexities of real world application data once they are validated (perhaps through using the
examples of known solution, as successfully done in [42, Chapter 3] for the software corresponding
to [17]). )

Given a specified rational power spectral density matrix (i.e., the elements being ratios of poly-
nomials), it is desirable to implement a computer simulation or emulation of a random process that
has this same specified rational power spectral density matrix. Suppose that a typical representative
autocorrelation function matrix example of immediate interest is
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then the associated power spectral density matrix (obtained as the Bilateral Laplace ! transform of
Eq. 1) is
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where the “abscissa of convergence” in Eq. 2 is for |Re(s)| < 1. Further, suppose that it is desired to
model the above continuous-time power spectral matrix using a continuous-time multi-input/multi-
output linear shaping filter driven by white noise. The proper shaping filter to be used to accomplish

1Throughout this discussion, s is the complex bilateral Laplace transform variable as in the Laplace transform
kernel exp (~st). The Bilateral Laplace transform is closely related to the Fourier transform (i.e., s = jw) but is more
convenient for the manipulations to be performed here of spectral factorization.



this can be obtained by applying standard Matrix Spectral Factorization algorithms {1], [2], to yield
Dyy(s) = WT(=s) W(s). ®3)

A right hand superscript 7' on a matrix denotes the transpose of the matrix. Since the relationship
between the input spectral matrix, ®,,(s), and the output spectral matrix, ®yy(s), for a strictly
stable linear time-invariant system is

Byy(s) = H(~s) Tus(s) HT(s) (4)

where
H(s) — anot necessarily square transfer function matrix of

the linear system;

it is convenient to treat the modeling as involving a zero mean, uncorrelated Gaussian white noise
input (having spectral matrix being the identity matrix)

®,:(5)=1In (5)

as driving the linear system to yield the following degenerate simplification of Eq. 4 as representing
the output spectral matrix by
Syy(s) = H(~s) H (s) . (6)

By an obvious association between the factors of Eq. 3 and the representation of Eq. 6, it is seen
that an appropriate transfer function to model the power spectral matrix ®,,(s) is

H(s) = WT(s). (M

That each approach to Matrix Spectral Factorization or that the final result of computations does
in fact yield a valid solution can easily be verified or confirmed merely by multiplying the asserted
solution matrix by its conjugate transpose to again obtain the original power spectral density matrix
of Eq. 2 as a check. Additionally, one should then proceed by checking both the solution matrix
and its inverse to be certain that no poles occur in the right half s-plane or on the jw-axis, otherwise
the result does not correspond to a stationary system.

Once the transfer function matrix H(s) is thus completely specified (as illustrated for the example
of Eq. 2in Appendices B, C, and D of [42] using alternative factorization approaches), it is frequently
of interest to then go further to specify the constant parameter system matrices C, F, G of an
associated linear system:

gt—z(t) = F 2(1) + G (2) (®)
y(t) = C 2(t) 9

that can subsequently be used to realize or synthesize (either digitally or as an analog circuit) the
transfer function matrix via the well-known relationship [7, p. 389]

H(s)=C((sI-F)'G. (10)

The accepted standard approach to obtaining the requisite matrices C, F, G of minimum degree
is via a generalized Hankel Matrix using the method of Kalman and Ho [6], [7, pp. 390-392] as
discussed in Appendix A or as an update [22], [32]; however, approaches based on the Hankel
matrix are notoriously numerically ill-behaved for computer computation of the answer. However,
an original algorithm for cutting through and simply specifying the parameters C, F, and G explicitly
is illustrated here in Section 3 as applied to the completion of the modeling of the example of Eq. 2.
After providing this plausible new candidate solution approach, it is made rigorous through recourse



to guarantees provided by the theoretical conclusions of the existing Kalman-Ho technique (without
the need to actually exercise the Kalman-Ho technique itself), which is less computationally tractable
than the one we demonstrate here.

Once the linear system parameters (C, F,G) of the underlying dynamical system are available
by the above described techniques, it is then a routine matter to use the historically well-known
Monte-Carlo simulation techniques to emulate a Gaussian vector random process that possesses the
desired matrix autocorrelation function or, equivalently, the desired power spectral density matrix.
The Gaussianess that is also the associated goal for the generated output process may be obtained
by any one of four standard approaches [30, Section 26.8.6a} within the random number generator
used as the input driver. It is well known that random processes with identical power spectra can
have ample function reallzatlons of n’adl ally dlfferent character in the tlme domain., T he m:nn
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Well-known necessary and sufficient conditions for being able to perform a factorization of an
n x n modified Lambda-matrix &(s) are [1] that the following four conditions be satisfied: (1)
the elements of ®(s) are ratios of polynomials in the complex variable s (i.e., elements of ®(s) are
rational functions); (2) the matrix must be such that ®(s) = ®(3), where the vinculum denotes
taking the complex conjugate; (3) the matrix must be such that ®T(—s) = ®(s) (denoted as the
property of being an Hermitian matrix or of being paraconjugate-Hermitian); (4) the matrix must
be such that the following property of being positive real holds where ®(s)|;=ju = ®(jw) must
be positive semidefinite (denoted as ®(jw) > 0) for all real scalar w. The above mathematical
conditions guarantee that the act of matrix spectral factorization can be performed successfully
for a matrix satisfying these conditions. Conditions 2 through 4 in the above list are satisfied by
every power spectral density matrix and any arbitrary general power spectral density matrix can
be approximated arbitrarily closely by a matrix that satisfies condition 1 in addition to satisfying
conditions 2 through 4.

As pointed out in [4, Eq. 6, p. 283], a necessary and sufficient condition for a matrix ®yy(s) to
be the power spectral density matrix of some wide sense stationary vector random process y(t) is
that €7 ®,,(jw)c > 0 for every complex n-vector ¢ # 0 for all real scalar w. This condition is the
most severe of several conditions that must be satisfied in order that a modified Lambda-matrix be
classified as being positive real (as defined in [3, p. 117] and [5, p. 171]). However, the fact that a
matrix ®,,(s) satisfies this last condition is not equivalent to the matrix being “positive real” since
in order to be so, several other conditions must also hold such as ®,,(s) being analytic in Re(s) > 0,
which is not satisfied by arbitrarily general power spectral density matrices.

However, an arbitrary power spectral density matrix satisfies the above conditions 2 through 4
and it may be uniformly approximated arbitrarily closely (via Wierstrass’ approximation theorem)
by rational functions to also satisfy condition 1 in addition to conditions 2 through 4. This objective
of approximating stationary spectral densities-in the frequency domain by rational functions can be
practically accomplished using any of the following techniques: (1) interpolation; (2) approximation
based on a Fourier series expansion; (3) approximation based on a Laguerre series expansion; (4)
approximation of the logarithmic curve of the power spectral density by intersecting straight line
segments (each explained in [9, Chapt. V}]).

The requisite computed matrix power spectrum can be obtained from sample averages, then
converted to the frequency domain via FFT’s. An alternative well-known shortcut [8, Section 13-3]
is to routinely FFT and record the accessible evolving sample functions, then shift and average the
resulting FFT’s of these sample functions directly in the frequency domain to obtain the correspond-
ing power spectra in one fell swoop, thus circumventing the intermediate step of needing to explicitly



calculate the autocorrelation function in the time-domain. For numerically derived data (not yet
approximated or fitted by the ratio of polynomials), a computational test of positive definiteness,
rather than the analytical closed-form test utilized above, is available in [12].

2.2 Results of Applying Several Alternate Approaches to Matrix Spectral
Factorization

The results of three different standard continuous-time analytical approaches in {1], [2] to Matrix
Spectral Factorization are considered here as applied to the typical 2 x 2 example test problem of
Eq. 2. This is done for the purpose of comparing the form of the various solutions (and to be aware
of the relative computational complexity or computational burden to be incurred with each different
approach for this same example).

For the specific example of Eq. 2, Matrix Spectral Factorization using Youla’s first approach
(detailed in [42, App. B]) yields the following factor as an answer

—a=(VT[2)  =3=(/T[2)
W( ) C+s)(+s)  (2+s)(1+s) (11)
s) = )
—1/2 3/2
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which checks since for the factor in Eq. 11, the product W7 (—s) W(s) is again the specific power
spectral matrix of Eq. 2.

Again for the specific example of Eq. 2, Matrix Spectral Factorization using Youla’s second
approach (detailed in {42, App. C}) yields the following factor as an answer

Vi-s 1—s
2+5)(1+s) (V2435)(2+s)
W(s) = R (12)
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This result also checks since W7 (—s) W(s) equals the original ®,,(s) of Eq. 2.

Again for the specific example of Eq. 2, Matrix Spectral Factorization using Davis’ approach
(detailed in [42, App. D]) yields the following factor as an answer

~ 1+ (VT/4)s  (1/2) + (V7/4)
Wis) = W%TS[ s/4 (ﬁ/2)+(1/4)z]' 9

This answer checks as being a valid factorization since W7 (—s) W(s) again equals the ®,y(s) in
Eq. 2. For perspective, unabashedly performing Matrix Spectral Factorization by machine, even
for simple problems, usually results in long unwieldy expressions for the answers. This original
example handled here collapses to concise expressions not just for one but for three different solution
approaches and is therefore a viable candidate to use in validating software implementation of Matrix
Spectral Factorization for machine calculation, as further addressed in Section 2.6.

By observation, each of the above three alternate factorizations yield a 2 x 2 matrix result which,
together with its inverse, is analytic in Re(s) > 0. Thus each of the three factorizations above has
the requisite properties and is a valid solution with which to proceed to realize or synthesize using
the methods of Realization Theory as addressed in Section 3.



2.3 Relationship Existing Between Nonunique Alternative Factorizations

Matrix Spectral Factorizations are not unique and may differ by a “paraconjugate unitary” ma-
trix pre-multiplying factor. A paraconjugate unitary matrix, V(s), is a matrix having the following
property that

VI(=s) V(s) =1 (14)

where I, is the n x n identity matrix.

Notice that if one factorization of ®,,(s) of Eq. 2 involves W (s) as
Byy(s) = Wi (=s) Wa(s) , (15)

then for any other Wy(s) such that Wy(s) is related to Wy(s) as

Wz(s) = VI(S) Wl(s) s (16)
with V;(s) satisfying the condition of Eq. 14 as a paraconjugate unitary matrix, it follows that
Wi (=s) Wa(s) = W{(=s) V{(=5) Vi(s) Wi(s) (17)
= W (-s) I, Wi(s) (18)
= WI(~s) Wi(s) (19)
= Byy(s) (20)

where, in the above, Eq. 14 was used in going between Egs. 17 and 18 and via Eq. 15 in going
between Eqs. 19 and 20. Therefore, by the simplified derivation offered above, W(s) would be
another valid factorization % of ®yy(s).

That the set of paraconjugate unitary matrices, V(s), possessing the property or characteristic
of Eq. 14 is neither vacuous nor trivial (as say being something as simple as the identity matrix) is
illustrated next for the specific example of factoring the matrix portrayed in Eq. 2.

Via Eq. 16, the W (s) that was obtained by Youla’s first approach as Eq. 11, in the role of Wi(s),
to factorization and the W(s) that was obtained here by Davis’ factorization procedure as Eq. 12,
in the role of Wa(s), are related by

ve) 1 —o = (VT/2) -8 = (VT/2) ] - 1 [ VZ 4+ (V13/4)e  (VZ/2) + (VTi/4)s ] .
@+8)(1+9) -1/2 3/2 @+ +9) | vBese (VTE/2) + (V3/4)e

The matrix V(s) can be solved from the above equation via a matrix inversion to yield the following
constant matrix

_Yid _ 2
V(s)::V = {-);é +Z§4@ .

However, the claim following Eq. 5 of [11] asserting that the V(s) must be a constant matrix is
not true. Even though Youla does treat some situations where V(s) is a constant matrix (such as
following Eq. 27 on p. 176 of [1] and at the end of the proof of Theorem 3 on p. 182 of [1]), in
the general case V(s) is not constant, a situation completely characterized in [1, Eqgs. 164-164b)
by Youla for the general case. Since [11] was very influential in its assertion that V(s) must be a
constant matrix and subsequently has been technically propagated and frequently parroted by all
others that followed, it is important that this mis-assertion be refuted. A V'(s) that is not constant
is offered here now.

2While factorizations are usually square and of the same dimension as the original ®yy(s), it is not mandatory
that matrix factors always be square.



The V(s) of Eq. 16 that relates the two factors of Eq. 12, in the role of Wa(s), and Eq. 13, in
the role of W;(s), is definitely not a constant matrix and serves as an exact matrix counterexample
to the more recent assertions of [11, following Eq. 5] that V(s) must always be a constant matrix.
The V(s) in this case is

21
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2.4 Attempting to Exploit a Relationship Between Matrix Spectral Fac-
torization and Matrix Riccati Equation Solution

Rather than deal with the complexities of symbol manipulation as encountered in Matrix Spectral
Factorization, many researchers realized by the beginning of the 1970’s that there is a link between
this problem and that of matrix Riccati equation solution [10, pp. 177-182], [11], [12]. However,
Riccati equation solution, involving only numerical integration or application of a Newton-Raphson
iterative procedure [7, pp. 358-363] (as a variant of the predecessor Kleinman’s algorithm for the
same purpose), is a much more straightforward problem since the matrices involved have only real (or
complex) numbers as entries rather than ratios of polynomials of a complex variable, as encountered
in Matrix Spectral Factorization. Yet [10], [12], and [45] only handle scalar one-dimensional spectral
factorization problems via recourse to multidimensional matrix Riccati equations. Reference [11]
ostensibly deals with the multidimensional Matrix Spectral Factorization problem via translation to
a Riccati equation setting but encounters a barrier of a matrix inequality that needs to be satisfied
and [11] then acknowledges that it is difficult to come up with a mechanism to force compliance [11,
Section 3] even though some techniques were hypothesized in the conclusion section in [11, p. 414] but
never demonstrated. 3 Thus the identification of an appropriate computer algorithm mechanization
or program for accomplishing Matrix Spectral Factorization will be deferred to Section 2.6.

2.5 Update on Other Theoretical Developments Along the Principal Path
of Automated Machine Calculation of Spectral Factors

Efficient greatest common denominator (GCD) extraction is central to most approaches to Matrix
Spectral Factorization and is utilized in [15] (which serves as the basis for a modern implementation of
Matrix Spectral Factorization being undertaken by Systems Engineering, Inc. [21]). An issue related
to GCD extraction is “polynomial decomposition” such as that of [19]. Recent variations offer an
algorithm for accomplishing this decomposition into proper polynomial factors or subfunctions in
“polynomial time” rather than in “exponential time” as previously claimed for the algorithm of [19].
Perspectives on computational developments for determining when two polynomials are relatively
prime beyond just using the fairly well-known “Euclid’s algorithm” involve use of the “Cayley-
Hamilton” theorem on “a square matrix satisfying its characteristic equation” as contorted into a
slightly modified form, as discussed in [33].

Matrix Spectral Factorization, as discussed so far, is to be performed on either Lambda-matrices
(polynomial matrices) or on modified Lambda-matrices whose entries are, respectively, either poly-
nomials in a complex variable s with real rational coefficients or ratios of such polynomials. Factors
interfering with or prohibiting our attaining otherwise straightforward operations counts for the
Lambda-matrix operations arising in Matrix Spectral Factorization are: (1) aggregate number of
polynomial entries to be dealt with (determined by dimension of the matrix); (2) need to computa-
tionally assess the degree of each polynomial entry; (3) complicating factors in manipulating several
polynomials in performing elementary operations of addition, multiplication, subtraction, and divi-
sion (as also encountered in MACSYMA) such as in determining when a resulting coefficient of a

3 Additional perspective on this challenging problem is offered in [18].



specified fixed exponent of s is actually zero as contrasted to appearing to be zero due to the effects
of round-off and truncation resulting from numerous operations as they affect the representation of
numbers for the particular machine; (4) removing common factors that may occur in numerator and
denominator to express results in simplest terms; (5) finding the least common denominator (LCD)
of all the entries in a modified Lambda-matrix so that it may be multiplied throughout by this and
therefore be converted to a more conveniently manipulated, exclusively polynomial Lambda-matrix,
much more amenable to reduction to Smith Normal Form. Such are some of the issues along with
others one is faced with in seeking to quantify the computational burden of Matrix Spectral Fac-
torization that don’t usually arise in other more conventional algorithms involving just numbers as
entries in a matrix instead of symbol manipulation.

2.6 Computer Programs to Alleviate the Tedium and Minimize Human
Error

Modern approaches to numerical computation of matrix factorizations were originally based on
the observations of [11] that relate the Matrix Spectral Factorization problem to the solution of a
matrix Riccati equation along with being required to satisfy a matrix inequality that was historically
more difficult to enforce compliance with, as discussed in Section 2.4. Reference [20] seeks a more
efficient computational approach for obtaining the greatest common denominator or divisor (GCD)
that is needed for pre-multiplication in order to convert a modified Lambda-matrix (having entries
consisting of ratios of polynomials) into Lambda-matrices (consisting of only polynomial entries)
and thus easier to work with and/or easier to reduce to Smith Normal Form.

The 1971 approach of [7, Section 15.3, pp. 360-363] uses a Newton-Raphson iteration to solve the
factorization problem (which had previously been observed in [11] to be equivalent to a steady-state
matrix Riccati equation solution). The 1974 recursive Matrix Riccati equation solution technique
of [27] does not require positive definiteness in the matrix to be factored. (This is a situation that
frequently arises in network synthesis applications of Matrix Spectral Factorization but never arises
in power spectral estimation applications.)

Despite the many new computer programs currently under development for accomplishing Ma-
trix Spectral Factorization, most are either just getting started [45] * or are in a state of flux that will
likely take considerable time for the transients to die down sufficiently to avail a usable trustworthy
product. For the sake of conservatism and so that software to accomplish the objectives of Matrix
Spectral Factorization with a demonstrated satisfactory track record and adequate documentation
[17] at both the theoretical level and at the user level will be immediately available, software imple-
menting the approach of [17] was procured in 1987 and successfully used, as exhibited in [42, Chap
3.

That similar considerations arise for both continuous-time and discrete-time formulations of
the Matrix Spectral Factorization problem is evident from explanations including and following
[16, Eq. 1] and from [17). The discrete-time case involving the Z-transform complex variable z
can either be handled directly via [14], [17] or via an easy conversion to the same form as would
be encountered in the continuous-time case via a bilinear transformation (also known as a linear
fractional transformation):

_s+1
ET S
that re-expresses results in terms of the complex transform variable s. The inverse transformation
of Eq. 22 (of similar form with signs on the 1’s reversed) maps the inside of the unit circle in the
z-plane into the left half s-plane. Concern about poles being present on the jw-axis in the s-plane

(22)

4Please notice that the only example of spectral factorization depicted in [45] is scalar (SISO) although the matrix
(MIMO) case is ostensibly being pursued there.



being indicative of nonstationary systems now translate into worries in the discrete-time case about
the presence of poles on the unit circle of the z-plane. Once the answers are obtained from the
software, the transformation must be reversed, again a tedious burden and likely error source in
hand calculations. However, the software of [17] performs these nasty little conversions for the user.

Tuel’s Matrix Spectral Factorization program entitled “Wiener”, as part of [17], can factor poly-
nomial matrices of dimension 6 x 6 or less with order or degree not exceeding 20 for each polynomial
entry or matrix element. The total software package requires approximately 10, 000 computer words
of storage on an IBM mainframe as host. Thus, Tuel’s particular implementation of Matrix Spec-
tral Factorization is bounded a posteriori or “after the fact” despite the difficulty encountered in
predicting the associated computer burden beforehand, as discussed in Section 2.5.

3 Using Realization Theory to Convert Specified Transfer
Function Matrices into State Variable Models and Asso-
ciated Parameter Quantifications

Given a specified rational power spectral density matrix (i.e., the elements being ratios of
polynomials), using Gaussian white noise as the input, it is desirable to implement a computer
simulation or emulation of a random process that has this same specified rational power spectral
density matrix. The next step is to go from the transfer function to the specification of the parameters
of the underlying linear system that has this same transfer function. Realization Theory is the tool
that accomplishes this. It is highly desirable that the resulting linear system be of minimal degree for
the reasons offered in the first paragraph of Section 3.1. An apparently straightforward approach to
how this linear system parameter specification can be accomplished will now be discussed in Sections
3.1.1 and 3.1.2 and made rigorous in Sections 3.1.3 and 3.2 and the results will be applied to the
problem of simulating the multidimensional power spectrum of Eq. 2. An alternate conventional
Realization Theory-based solution approach is also offered in Appendix A but it is less direct and
more complicated to apply computationally than what is offered in Sections 3.1 for the application
considered in this article. However, recourse is made to an interrelationship between the rigor
available with the approach of Appendix A to ultimately also grant full rigor to the novel original
approach of Sections 3.1.1 and 3.1.2

3.1 Taking an (Initially) Somewhat Heuristic but Direct Approach

As pointed out in [23, p. 324], [24], it is émpossible to tell the order of the system simply from a
cursory inspection of a specified transfer function block diagram since it is well known that a block
diagram frequently exhibits more than the minimum number of integrators required to simulate
the system. A design incorporating more integrators than are absolutely necessary is extremely
undesirable not only from the obvious economic point of view (relating to the greater expense
incurred in implementing additional integrators) but also from a stability viewpoint as explained
next. Transfer functions represent the observable and controllable portion (in the sense of Kalman)
and any unobservable integrators could possibly be going unstable without any obvious clues being
externally visible until it is too late and something blows up internally and components are damaged.

A somewhat straightforward procedure to use in seeking an efficient simulation would be to
obtain the per channel underlying differential equations describing the system directly from the
transfer function and then proceed to obtain the desired final analog computer flow diagram directly
from these intermediate differential equations. Even use of this method may initially indicate that
differentiation of the input is needed, which is a situation that calls for use of more than the minimum
number of integrators. “Differentiation of the input” (corresponding to having encountered zeroes
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Figure 1: Two-Input/Two-Output Transfer Function Implementation of the Spectral Factor of Eq.
11.

of the transfer function) can be eliminated by applying the techniques found in [23, pp. 334-
335] (and generalized here in Section 3.2 to handle multi-inputs). After applying this indicated
technique to each individual channel, the inputs of the system-describing differential equations will
no longer be differentiated and the resulting analog computer flow diagram so constructed from the
reformulated or transformed differential equations that avoid “differentiation of the input” is less
likely to have excess integrators. The per channel results are then aggregated as £ = Frorar = +
Grorar w ;y = Hrorar %, where Frorar = diag[F1, Fs, ..., Fn), Grorar = [G1,...,Gn),
Hrorar = diag[Hy, ..., Hp], and « is the augmented state vector of dimension n = 3 ;- n;. This
is a new realization result different from the earlier results of Gilbert [28], of Kalman ([25], [26]),
and of Kalman and Ho [6] that essentially resorts to block diagram algebra and honed intuition
so familiar to classical control engineers (and easily implemented in a rule-based expert system
using just 12 main rules [51, Section 7.5]) instead of the more mathematically esoteric (as well as
less numerically stable) Hankel matrix-based approach, simply summarized in Appendix A. The
obvious check is that the original transfer function matrix should satisfy the following as an identity:
‘H(s) = HroraL (sI — Fror AL)‘1 Grorar. For concreteness, the above mentioned technique is
demonstrated next as applied to two different realizations or simulation implementations of systems,
both having Eq. 2 as the output power spectral density matrix. Although initially advertised in
Sections 3.1.1 and 3.1.2 as being merely heuristic, the results discussed in the second paragraph of
Appendix A are used in Section 3.1.3 to make this original approach fully rigorous.

3.1.1 Heuristic Approach: Example 1

By the Matrix Spectral Factorization method used to obtain the result of Eq. 11, the resulting
transfer function matrix is its transpose. The matrix transfer function block diagram, corresponding
to the associated spectral factor that is to be the matrix transfer function via the standard association
of Eq. 7, is depicted in Fig. 1. From the transfer function block diagram, the system differential
equations are obtained which, unfortunately, also happen to contain differentiation of the inputs as
the more general situation that is most likely to be encountered in practice. For this example, these
differential equations are:

i +30+2y =~ — V7/2 21 — (1/2) 22, | (23)
Go+3 0242y = —&1 — VT/2 21 +(3/2) 22, (24)

d

where in the above the use of - above a variable denotes differentiation with respect to time as 4.

10



In the next few steps, the procedure alluded to above and outlined in [23, pp. 334-335] for
removing the differentiated input occurring in the differential equations is now applied here. Let

wy = Yy and we = Y1 — k1 z1; (25)
then
‘Lbl = wsy + kl x, (26)
and substituting the above in Eq. 23 and rearranging, yields
Wy = (—-1 - kl) oy — (ﬁ/2+3 kl) ) - (1/2) o —2wy — 3wy, (27)
which upon taking
ky=-—1, (28)
yields
. 7
w2:—2w1-—3w2+(6——é——) 321—(1/2)1}2. (29)
Similarly, let
r1 =y and ry = Y2 — k2 7315 (30)
then
L =ro+ ks zy, (31)
and substituting the above in Eq. 24 and rearranging with
ko = —1, (32)
yields
. 7
rg = —2 7'1—-31'2-}-(6—%:) 231+(3/2) Z9. (33)

The analog computer block diagram which summarizes this procedure is offered in Fig. 2, where
z, and z, are independent Gaussian white noises with unit variance. Notice that only four integrators
are required for this simulation!

The resulting augmented system, using the technique mentioned near the end of 2"¢ paragraph
of Section 3.1, can be reexpressed in vector /matrix form as

wy 0 1 0 0 wy -1 0
d|lw | [ -1 -3 0 0 wa (6-v7)/2 —1/2 3
| | 0 0 o0 1 rno | T -1 0 Ty |’ (34)
ra 0 0 -2 -3 2 | 6-v7)/2 3/2
with '
- wl
100 07| we
y‘[0010_ mo| (35)
T2

The stability of this augmented system can easily be checked by applying the Routh-Hurwitz
criterion to the characteristic equation for the system matrix Fy in Eq. 34. The characteristic
equation is

A1 0 0

0 = detPA—Rl=det| 2 AF3 0 0
0 0 A -1 56)
0 0 2 (A+3)

A 4623 + 1322 + 12X + 4.

11



N w

1 Y1

Figure 2: Implementation Detail of Transfer Function Realization of Matrix Factor Solution of Eq.
11.

The corresponding Routh-Hurowitz array, from which stability may be inferred, is

M1 13 4

26 12

A1 4 (37)
Al | L8

x| 4

Since there are no changes in sign along the first column to the right of the vertical line in the above
Routh-Hurowitz array, the interpretation from its use is that there are no zeroes of the characteristic
equation that have real parts greater than or equal to zero. Therefore, this particular augmented
system of Eqs. 34 and 35 is stable (and, as a consequence, is a stationary random process).

By the Kalman rank test on the controllability Grammian, for the augmented system (F1,G1)
to be a controllable pair, it must be that

rank[Gl F1G1 F12G1 FfGl] =4, (38)

It is sufficient to just test the 4 x 4 matrix that results from adjoining the first two indicated
components as:

-1 0 (B-vD)/2 -1/2 :
det [G’lfFlGl]:det 6=V e ((36‘?/\%727 gg =5VT - 150,
6-vD/2 3/2 (VT/2)~-7 -9/2
(39)

12
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Since this determinant is nonsingular, we have that Eq. 38 holds. This in turn assures that (F1,G1)
is a controllable pair so the system of Eq. 34 is controllable.

By a similar Kalman rank test on the observability Grammian, for (Cy, F1) to be an observable
_ pair, it must be that

rank [C{" cFIeT (Fh2eT - (FlT)scg’] = 4. (40)
and since
1 000
: 0010
[CIT:FITCIT]= 0100 (41)

0 001

has four independent columns, it follows that Eq. 40 does in fact hold. Therefore, the augmented
system (Fy,C1) is an observable pair so the system of Eqs. 34 and 35 is observable.

Further,

—1 _  adjlsI-F] __ adjlsI-F,
(SI - Fl) - detLIl—-Fll = (5243542)
(s2+3s+2)2°
(s+33(.2 +3842) —2(s2 435 42) ) o
(2% + 30 +2) (s2 435+ 2) 0 o
[ o (+3)(s2+3s42) =2(s?2+3542)
o o (o2 + 3¢ 4 2) o(s? + 35 4 2) (42)
s+3 -2 0 0
_ 1 1 s 0 0
= FEEmEE | 00 0 s+3 -2

0 0 1 s

Further pre- and post-multiplying the result of Eq. 42 by the observation matrix of Eq. 35 and the
noise gain matrix of Eq. 34, respectively, again yields the transfer function of Eq. 11, transposed,
as a type of check on the correctness of these calculations.

3.1.2 Heuristic Approach: Example 2

By the Matrix Spectral Factorization method used to obtain the result of Eq. 12, the resulting
transfer function matrix is its transpose. From the theory of the stochastic identification problem
already illustrated in Section 3.1.1, we must similarly find the C3, F2, and G such that

2—s 0
{ (“i;fi*’j Vi=22 ]=02(sI—Fz>-‘Gz- (43)
(V2+s)(2+3)  (V2+35)(2+3)(1+3)

By exactly the same method as used on the first factorization solution matrix (interpreted as a
transfer function matrix specification), the differential equations for the y; (i=1,2) are found to be:

h+30+2 = —& + V22, (44)
Yy + {3 + \/5] Y2 + [2 + 3\/5] G+ 2V2ys = —3+T — 28+ VT (45)

By again applying the method outlined in [23, pp. 334-335], as already applied to the first differ-
ential equation in Section 3.1.1, removes the differentiated input in Eq. 45 by use of the following

13



substitutions:

wy = Y2,
wy = yY2— k121,
w3 = Yo — k121 — kazy — k322, (46)
with
k1 = —-1,
k2 = 3+\/§))
ks = -2 (47)

(the k;’s being chosen to eliminate the derivative terms of the input). The resulting state variable
representation is:

'Lbl 0 1 0 wiy
w3 —2v/2 —(2+43vV2) —-(3+V2) w3
0

-1
+[ 3+v2 -2 } [21] : (48)
(-8 —3v2) (6+2V2+7) ?

The method outlined in [23, pp. 334-335], when applied to the differential equation in Eq. 44,
removes the differentiated input by use of the following substitutions:

n = Y,
Y1 — kiz1, v (49)

T2

with
ki =-1. (50)

The resulting state variable representation is

1.‘1 _ 0 1 ™ -1 0 1
[1"2]_[—2 —3][rz]+[3+\/§0 x3 | (51)
The full augmented system formed from these uncoupled state variable representations, using the
technique near the end of the 9nd paragraph of Section 3.1, is:

1'“1 0 1 0 0 0 ™
] -2 -3 0 0 0 o
‘lbl = 0 0 0 1 0 wh
1212 0 0 0 0 1 Wwo
w3 0 0 —-2/2 —(2+3v2) —-(3+V2) w3
(52)
-1 0
3+V2 0
DA |
3++2 -2 2

—8+v2 (6+2V2+V7

14



1000 "2
yz[0010 ]“’1 : (53)

In the general theory for obtaining (C,F,G) from the factor W7(s) (which this second example
closely follows), it is demonstrated that the augmented system is stable if and only if all of the
individual subsystems are stable. Since the eigenvalues of the individual subsystems are obtained
from the denominators of the elements of W7 (s) and W7(s) is analytic in Re(s) > 0 (as one
of the properties inherited by valid Matrix Spectral Factorization solutions), it is known that all
the subsystems are stable. ‘L'herefore, the augmented system F; is stable. Also, from the general
theory for obtaining (C, F,G) from W7T(s) by this method, it is demonstrated that (C, F) is an
observable pair and that (F, G) is a controllable pair. Therefore, it is unnecessary to check (Hy, F3)
for observability or to check (F2, G3) for controllability since the general theory applies here to assure
that they are in fact already observable and controllable pairs, respectively, by virtue of how they
were constructed.

We have that

0
0

w3

s+3 1 0 0 0
-2 s 0 0 0
» 0 0 32 +(3+V2)s+(2+3V2) 34342 1
[sI-F)]"" = (s+Vv'2) s+v2 s+vV2 | . (54)
0 0 —2352 22+(3+V2)s s
(s+V2) ( 3\4/-_\/)5 /3 s+;/§
—-2v/2s —(243V2)s—2V2 s
0 0 a+62 s+V2 s+v2
and the final check on (Cs, F3, G?) is that
CalsI- R G . [s+3 . y ST
2181 = Iz 2 T s 2 4H(34+V2)s+(243V2)  s434v/2 1 2
0 0 s+V2 ss+\/'2' s+V2
12""32;6:'3; 0 T
= 1—s /7—2s = W2 (3)
(V2+s)(243)  (VZ+8)(2+5)(1+s)
(55)

Since from the above, WI (—s)Wa(s) = ®y,(s), the triple (Cs, F2,G2) is also a valid implementation
of a particular representation of a solution to Eq. 2.

3.1.3 Demonstrating These Realizations to be Minimal

Using a result of Gilbert [28], it is possible to easily test the above two realizations (obtained by
the novel direct approach) for irreducibility. The supporting definitions and necessary theorems are
presented below without proof (but a reference is supplied where the requisite proof may be found
for each).

Theorem 1: Every stationary impulse-response matrix
h(t,7) = h(t — 1), (56)
having the property that

h(t — 7) = P(t)Q(t) for all t, T (57)
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has constant irreducible realizations. 3 All such realizations are strictly equivalent [26,
p. 160].

For the restricted class of stationary impulse-response matrices, we have the following:

Definition: For a realization (C, F,G) of W7 (s), the transfer function matrix H(s) cor-
responding to the matrix h(t — 7), is reducible if and only if it has the following property:
there exists a nonsingular matrix 7" such that proper submatrices (obtained by deleting
a set of rows and the correspondingly numbered set of columns from T' F T~; then
deleting the same set of rows from T' G and the same set of columns from C T') of
T F T-1, respectively, also constitute a realization of WT(s). Otherwise the realization
is irreducible {25, p. 523).

The following theorem shows that any two irreducible realizations of W7 (s) are strictly equiva-
lent.

Theorem 2: Any two irreducible realizations (C, F, G) and (C’ B, G) of a proper rational
matrix W7 (s) are related as

F=TFT!, (58)
G =TG, (59)
C=cCT1, (60)

where T is a nonsingular matrix.

For any two realizations related by a nonsingular constant matrix, as in the above Theorem 2,
we have that

WT(S) = C'(sI—F)—IG = CT—I(SI_—.—TFT"I)’ITG
= CI' [T(sI-F)T7Y| TG = C(sI-F)7'G (61)
= WT(s).

In other words, W7 (s) is invariant under a change of the underlying coordinates describing the state
vector z in the state space R™ (i.e., WT(s) is a coordinate-free description). Hence, we may select
coordinates with respect to which F has a suitable canonical form [25, p. 526]. This is exactly what
is being suggested by the technique that is being applied to the examples of Sections 3.1.1 and 3.1.2
(and at the beginning of Section 3.2) so that a suitable canonical form is obtained and demonstrably
shown to be observable, controllable, and stable. The following theorem assures that the realizations
described in Sections 3.1.1 and 3.1.2 are irreducible.

Theorem 3: A linear dynamical system is an irreducible realization of an impulse-
response matrix if and only if the system is completely controllable and completely
observable [26, p. 153]. ’

In what follows, for the examples of stochastic or random process modeling previously appearing
in Sections 3.1.1 and 3.1.2, each realization of both alternative factorizations will be shown to be
irreducible by a relatively easy test proposed by Gilbert [28, p. 141] based on matrix partial fraction
expansion [35]. Gilbert’s test is also concisely summarized by Kalman [26, p. 180, Theorem 11} as
the following theorem.

5 Trreducible realizations are ones that are of minimum or least degree (i.e., requiring use of the smallest number
of state variables or, equivalently, integrators).
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Theorem 4: Assumptions: No element of the transfer matrix W(s) has multiple poles.
WT (s) has a total of ¢ distinct poles s1, 52, . . ., 84, with corresponding matrices R(1), R(2), ..., R(q),
where

R(k) £ lim (s — se) W (s). (62)
Conclusions:

i The dimension of irreducible realizations of W(s) is

n= zq: Tk, (63)
k=1
where
rp = rank [R(k)]. (64)

ii Each matrix R(k) may be factored (for example, by using an SVD algorithmic
implementation) into

R(k) = H(k)G(k) (k=1,2,...,9), (65)

where H (k) is an (s x ri) matrix and G(k) is an (v X m) matrix, both of rank .

iii Finally, WT(s) has the associated irreducible realization being:

F = diag [sll,.l,.. . ,sqI,.q] , (66)
G =[G(),....G@I" (67)

and
H=[H(1),...,H(q)], (68)

where in the above, I, = (r X r) identity matrix.

Returning now to apply Gilbert’s test from the above Theorem 4 to the following numerical
example of Section 3.1.1 having the matrix factor

_ 1 —-s—=7/2 -1/2
WO~ Gramra | - vin o ] )
yields
Ry = im @+l =[ VP72 0] (10)
R = im (4w = [ 17O ()
with
ry = rank [R(1)], (72)
ro = rank [R(2)], (73)
and for this example
2 "
Zri:2+2=4. (74)

The conclusion of Gilbert’s test states that W (s) cannot be realized using a square F' of dimension
less than n = E?zl r; = 4. Since Fy is 4 X 4, this realization is minimal.
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Somewhat surprisingly, applying Gilbert’s test to the example of Section 3.1.2 yields

. 1 0 0
R(1)= lim (V2+5)W () = @ - V21— ) [ —1 VT+2V2 ] ’ (75)
. 1 1 0
)= Jim (1+8)W5 () = 5 [ 0 Vi+2 ] ) (76)
. 1 -2 0
R(3) = lim,(2+5)W; (s) = @-v3) [ -1 V744 ] ’ (77)
with
r, = rank [R(1)] = 1, (78)
ro = rank [R(2)] = 2, (79)
rs = rank [R(3)] = 2, (80)
and 5
Y om=1+2+2=5. (81)

Since W7 (s) cannot be realized using any F of dimension less than n = 2, 7i =5, the Fj exhibited
is evidently also a realization that is a minimal realization for this particular factor. Although both
factors used in Sections 3.1.1 and 3.1.2 correspond to the same underlying specified output power
spectral density matrix, the two final models are of different dimensions.

The observation that once any realization of an impulse-response matrix (or, equivalently, a
transfer function matrix) is specified or given (as done above as the preliminary step), then [32,
Theorems 6.5, 6.6] claims that it can be used to reduce a nonminimal realization to one that is
minimal. Our experience is that the result of our preliminary step have always already been minimal
so we haven’t had to further invoke using the Kalman-Ho procedure. This is the crux that makes
the technique offered in Section 3 rigorous. Now, according to [32, p. 117}, since both of the
above considered realizations are minimal or irreducible realizations for their particular transfer
function matrix instantiations or factorizations of the same underlying power spectrum of Eq. 2,
one should then apply Occam’s razor ruthlessly and choose the simpler of the two realizations
(being the representation of Eqs. 34, 35 having the lesser dimension of 4 rather than 5) to actually
implement for emulating the power spectrum of Eq. 2.

3.2 A Final Algorithm that is Rigorous

Insights gained from the results of the previous two modeling examples of Section 3.1 are useful
in establishing general properties of the algorithm that was invoked both in Sections 3.1.1 and 3.1.2
for getting rid of differentiated input (i.e., for getting rid of the MA portion of an ARMA process to
result in just a pure AR process of slightly greater dimension). This approach is formally generalized
here and demonstrated to be a totally rigorous approach from which to validly obtain a state variable
model which is a minimal realization (by virtue of convenient supporting results now available and
presented in Appendix A). The main innovative theoretical contribution of this article is summarized
below.

Consider the scalar constant coefficient linear differential equation of order n; represented by the

following;:
(ni—1) n;

s 4 Z ay® = Zibjsx§3)7 : (82)

£=0 s=0j=1
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where the superscript in parentheses denotes the order of the derivative with respect to time, ¢.
Define auxiliary variables z; (i = 1,...,n;) such that:

zZy = y——Zkaj, (83)

zz = (1) Zk’l -’” ZkZJ"’J —y() szmi 52 m)’ (84)

m=1j=1

2 = YD Zka, 2™, (85)

m=1j=1
£41 r

Zep1 = Yy — sz (t-H m) (86)

m=1j=1

e, = YD - Ezkfm gm—m) (87)

m=1j=1

where, for each j, the sequence {ky,; }ni—; must yet be specified. Determining just what the sequence
of constants {km; }ri—, must be in order that all the differentiated input terms of the z;’s be removed
so that the resulting differential equation in z;’s may be represented in standard state variable form
is the goal of the analysis of this section.

From the above, it can be seen that
-—21 = y(l) Zkl .’L'( ) = = 23 +Zk2].’b‘1, (88)

indeed, the general expression can be seen to be
r
"“Zt — y( ) Z Zk (l+l—M) = Zg41 + Zk(l+1)jzj y (89)
m=1j=1 j=1

or

d r
-7 = A + §k(l+1)j:cj for 1<£<(n; —1). (90)

Obtaining expressions for the y;’s from the equations above, we have that

r
Yy = z1+2k1ja:j, (91)

v = 4+ }:ka 2™, (2

m=1j=1

£41 r
vO = 2+ szm] SHI ™, (93)

m=1j=1
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y(m—l) = 2z, + Zkaj ‘sn.‘—m) (94)

m=1j=1

Using all of the above expressmns for the y()’s and substituting into the original differential equation
of Eq. 82, we obtain an expression involving & £ 2n,; this expression is:

(ni-1) ng r
zn. + Z kajx("'“ ™=y = 3 ay®+ Y S b,al. (95)
m=1j=1 £=0 8=04=1

Now by working with the above expression to eliminate all expressions involving y’s and to maneuver
it into a more manageable form by performing changes of the dummy index of summation and by
performing interchanges in the order of summation, the resulting expression is:

d (ni—1) (1) r 41
Ezzn.. = - Z ag | ze41 + EZI&?U (+

t=1 j=1

+€:Zr:b,~,a:(’ Eka, a{riti=m

s=o j=1 m=1j=1
(ri—1)
- Z Zegpr +
£=0
r (ni—1) (¢+1)
[ 33T arkyx(*t" ‘)+stx(s) Zk ja{iEi= "‘>} (96)
j=1 =0 t=1 s=0

Regrouping two of the terms of the above summation, we have that

d (ni-1)
Tm =T Z ApZe41
r (ﬂ."‘l) 4 ) . (n'-—l) n; n; .
+30 |- D Dk~ 3o ackqer1)@i + bjozj + 9 bjszy) ka, g{mitt=m)
ji=1 £=1 =1 £=0 s=1 m=1

Making a change of the dummy index of summation and regrouping terms, we have that

d (n,'—l) ("z)
;Ezn,- = - Z azze+1+z Jo-zazk(e+1)1 zj

(=0 i=1 £=0

i=1 t=1 m=1 m=1

r (ni—1) ¢
+ {Zl S D akyx{ " ”+Zb(n,+1 X “‘)+}:k g “‘)]}
i=1

However, we want to have the following hold

(ni-1) (ni—1)
Z am+1+z bjo— Y ackesny;| %5, (97)

£=0
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5o we must require that the term in braces in the above unnumbered equation preceding Eq. 97
be absent (which occurs when it is equivalent to zero) as enforced when the following condition or
constraint is satisfied:

(nij—1) ¢
5:[ Z Zaﬁkw x4 4 ij(n.+1 m)xn‘+1 ™+ Zk (n‘+1 m)jl =0. (98)

j=1 £=1 t=1 m=1 m=1

Therefore, we must find or discover which values of the finite sequence or collection of constants
{km;j}5i_, (whose specification is at the discretion of the user) are required in order that the condition
of Eq. 98 holds. Furthermore, the above equation implies that for each fixed j, it must be the case

that
(nl_l) £
- D St S wle o

=1 t=1 =1

Separating terms in a:;-“ in the above, we obtain

=1 t=1 m=2 ms=2

(ni—1) ¢ n; n;
[ 3 Y ackix{ 0+ 3 by = 3 ke o binx™ — k™| =0

(100)

Since there are only two terms in :cg-""), it must be that
bjn, = kyj for each j. (101)

Another change in the dummy index of summation results in

(mi—-1) ¢ it (ni—1) ( (n;i~1) .
Z Zalk _,X( + )+ Z bJ(n.—-m Jn, Z k(m+1)jxj"‘ ™| =0. (102)
m=1

£=1 t=1

Letting
ni—m=s (103)

in the above, results in

(ni—1) ¢ (n;—1)
Z Zazij(‘“ 04 Z {bjs"k(n,—s+1)_l}x =0. (104)

=1 t=1

Finally, when
t=£+1-3s, (105)

the result is
(nx—l) £ (n,—l)
- > > akgg- —oix® + Z {bjs — kem—sp 1y | =0 (106)
f=1 s=1

Permuting the order of summation in the first term yields

(ni=1) [(ni—1)
Z Z aek(e+1-s) + bjs — Kni-s+1)j xj(S) =0. (107)
s=1 {=s
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This implies that for each fixed s, we have that

(ni-1)
(ni—st1); = bjs — Z ack(ry1-s)j - (108)

{=s

Thus each of the kny;’s for (1 < m < n;) is now specified for each j via the finite recursion of Eq.
108, as initiallized with Eq. 101.

The above procedure, as generalized here for handling multiple inputs, allows us to recast or
re-represent the general system-describing differential equations of Eqs. 82 (having differentiated
inputs) in the equivalent state variable form devoid of differentiated inputs as follows

F oy ] 0 1 0 e e 0 F
z9 0 0 1 o ... 0 2
d 23 0 0 . : 23
dt - : : 0 1
0 1
L #ni . —ap —ay —az -+ o —Qup,1 | L Zn;
k21 koo kor o
k31 k32 kar o
(9% kg2 [ 2
+ : : : : ’ (109)
"n;l "n.-2 kn"r .
[510 - y:o—l) u“(z-}.x)l] [520 - 21:0—-1) “lk(£+1)2] cee ["ro - 5:‘;1) “l"(t+l)r] zr

where the k,,,;’s are found as recursively specified above in Egs. 101, 108. Recall that this procedure
will be repetitively used in conjunction with the procedure near the end of the 2nd paragraph of
Section 3.1 in achieving realizations.

Although it does not arise in the application of interest in our underlying application, the un-
modified approach of this section cannot handle the case when the MA portion has a degree that
exceeds that of the original AR portion in Eqs. 82. This degenerate case of an excess MA component
can still be handled by decomposing the ARMA process into the sum of an ARMA process (where
p = ¢) and a process that is exclusively or purely MA. The pure MA component or portion can be
handled by the recent technique of [39].

An alternate interpretation can be applied to our above generalization of a very old trick from
differential equation manipulation, as offered next. Notice that within the realm of random processes
(where the inputs to Eq. 82 are Gaussian white noises), the straightforward transformation offered
here essentially converts a scalar ARMA process into an equivalent vector AR process. Typically,
AR processes are usually much simpler to work with (especially with regard to spectral estimation).
When this result is used in conjunction with the approach illustrated in Sections 3.1.1 and 3.1.2, then
the above described method is applicable for converting multi-input/multi-output ARMA processes
into AR processes. This is the difference between this new more general method offered for the first
time here and more standard methods for getting rid of differentiated input terms such as that offered
in 1987 in [36, Eqs. 1 and 2]. The approach of [36] is only applicable to single-input/single-output
(SISO) transfer functions of the form '

Tdbyz7 b4 4 bgz™?

h =
1,1(z) 1+a12’1+--«+apz‘1’ )

(110)
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where the numerator and denominator polynomials in Eq. 110 are Hurwitz and additionally [36]
assumes that p = ¢ to yield the realization result in terms of so-called “phase-variable” or “companion
form” [37] that:

0 -+« oo aen 0 bp+1
1 —a :

Tpp1 = . o LS €ntl (111)
0 1 —Qay bl

with y, =[0,---,0,1] z, ,

while for the application of interest here we seek approaches that can handle more general vector
channels (such as the original technique developed within Section 3.1).

The approach of [36] above can be seen to be controllable because it results in an AR system
matrix that is in “phase variable” canonical form and this representation is reasonably well-known to
be controllable ([37]) and being controllable and also obviously observable, it is a minimal realization
as established by the Kalman/Gilbert results that are reviewed in this context in Section 3.1.3. The
approach of [44, Eqgs. 3.9-13 to 3.9-16] offers an equivalent AR model for the (scalar single channel
SISO) ARMA process and just “hopes for the best” without establishing that the resulting model
is well-behaved (controllable, observable, stable) and satisfactory in this role. The structure to date
has defied establishing controllability and observability for the equivalent AR representation of [44].
The beauty of the approach trailblazed herein for multi-input/multi-output (multichannel) ARMA
process re-representation as an equivalent AR process is that the resulting AR system matrix is also
demonstrably minimal, as explained in the last paragraph of Section 3.1.3. The significance of this
result is that in pursuing model-based spectral estimation in a situation where the structure of the
model is unknown a priori, we can now (without loss in generality) replace the more general ARMA
structural assumption (otherwise requiring separate handling of AR and MA portions as a horribly
nonlinear optimization) by a more benign and routinely tractable AR assumption (of slightly higher
but finite vector dimension). This completes the novel contribution of this article.

4 Conclusions

Given a specified power spectral density matrix, the objective is to correctly emulate it in simu-
lations with as little complexity as possible. The use of Matrix Spectral Factorization in conjunction
with the results of Realization Theory have been investigated here and are shown to achieve this goal
using explicit closed-form solutions to illustrate the main technique. A goal within the application of
interest is to correctly emulate the cross-correlations of the original vector or multichannel random
process and the approach presented here will handle this objective. The computer program identified
in Section 2.6, along with a mechanization of the novel original realization algorithm (offered in Sec-
tion 3), can now be applied off-line to actual application data to specify realistic model parameters
as a prelude to actual implementation for emulating second order statistics of the random process
(either in simulation or in hardware).

From a control and estimation theory viewpoint, an initially unexpected result was that the
realization of Section 3.1.1 and the realization of Section 3.1.2 are both minimal or irreducible despite
the differences in the degree of the underlying state variable models for the two cases being 4- and
5-states, respectively. If both realizations were from the same transfer function matrix, only the
model of lesser state size could have been a minimal realization; however, the two realizations
were an outcome of different matrix spectral factors so both realizations are valid minimal ones as
demonstrated in Section 3.1.3.
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Following the introduction in Section 1 to set the stage, the thrust of this investigation was
laid out in Section 2. Section 2 also offered additional insights in scoping the problem of Matrix
Spectral Factorization and this effort culminated with the validation activity for computer software
computations (detailed in [42]). Section 3 completes the investigation by demonstrating how the
state variable representation of the model can be rigorously obtained from the transfer function
matrix (that is the transpose of any particular valid factor resulting from performing Matrix Spectral
Factorization). All really detailed supporting analytic discussions are relegated to Appendices A to
I of [42] in order that the engineering impact of this investigation be easily understandable.

The approach that was pursued with more fervor in [43, Sections 3.3, 3.4] (including results
obtained from use of actual application data) uses multichannel extensions of high-resolution Max-
imum Entropy Method (MEM) techniques in conjunction with Levinson recursion, as is currently
standard, as also reported in the application of the concurrent associated classified project report.
Despite this departure from what we used in practice, the Matrix Spectral Factorization approach
reported here was retained as a back-up alternative approach for possible analog implementation in
case realizations become more practical in this domain because of recent breakthroughs in MMIC
technology rivaling those already present within the domain of VLSI digital implementation. For the
sake of completeness, another candidate random process emulation approach has emerged within the
last two years [46], based on Akaike’s Canonical Variate Analysis (CVA), and now implemented by
Integrated Systems Inc. as an adjunct to M ATRIX,, using the numerically stable Singular Value
Decomposition (SVD).

A Kalman-Ho Technique of Specifying Linear System Pa-
rameters (C, F,G) Using Realization Theory

The Kalman-Ho algorithm [6] for the construction of a minimal (irreducible) realization makes
use of Hankel matrices (to be defined below) via the following structural observations. Starting from
(almost) first principles, recall that the inverse Laplace transform of the resolvent matrix (sI,, — F)~1!
is the matrix exponential as in

LH(sIn—F) '} =€ = iﬁ“’i,—j . (112)

The definition of the matrix exponential (based on the Taylor series expansion) accounts for the
term on the right hand side in Eq. 112. Upon taking the Laplace transform throughout Eq. 112,
we have that

(s~ F)™' = £{e™} = LYR Fh
' (113)
= Z?:_o F"C{z_! = Z?:.o F'SlT
or, simply
(L-F)'=)" Fi (114)
=0

as a representation that is, perhaps, somewhat less familiar to the reader than that of Eq. 112.
Upon pre- and post-multiplying Eq. 114 by C and G, respectively, we have that

- .
- ; 1
C(sl, -F)™'G =) _[CFG] 5 (115)
i=0
and the left hand side of Eq. 115 can be recognized to be the expression for the transfer function

matrix H(s) in Eq. 10 for a physical interpretation of Eq. 115 in the frequency domain.
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Analogously, we could have branched out from the familiar Eq. 112 by pre- and post-multiplying
by C and G, respectively, to obtain a time-domain physical interpretation of the impulse-response
matrix as

Pty _ i~ U
Cef'G =) CFG . (116)
1=0
The whole point of this discussion is to call attention to the presence of the product CF:G in both
Egs. 115 and 116 as fundamental invariants that completely characterize the system. Now defining
a sequence of matrices J; as follows

Jo = CF°G=CI,G=CG (117)
J1 = CF'G (118)
Jo = CFG - (119)
ji = CF'G, (120)

then the associated Hankel matrix H; ;, defined as follows

Jo Ji - Jia
W Ty e T

Hij=1 . S :J ) (121)
Jicr Ji e Jigj-2

may be investigated to determine whether a system is realizable. 6 Details on how to do this (based,
respectively, on the associated j-observability and j-controllability Grammians

GSFGEF2GE-.-EFJ'-1] ‘ (122)
C o 1
CF
) (123)

and their requisite projective subspaces, an invocation of Sylvester’s theorem on how a matrix
satisfies its own characteristic equation, thus allowing an matrix infinite series, such as arise in Egs.
112 to 116, to be reexpressed as a finite series with an upper limit of the sum now being n—1 (where
n is the dimension of the underlying system matrix F)) are relegated to [32, Chapter 6].

More germane to our particular problem is the construction of a realization, given a specified
transfer function matrix H(s) as the starting point. First expand it or represent it as

H(s) = i.],'—l—. ) (124)

st
i=0

6 Where such investigations are nontrivial is when only H; ; is provided (as obtained or derived by actual measure-
ments yielding a string of deterministic data uncorrupted by noise) without prior access to the information of Egs.
112 to 120.
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(corresponding to Eq. 115), then use the J;’s that can be obtained from the associated Hankel matrix
array of Eq. 121 that is subsequently constructed. Finally (via Theorems 6.7 and 6.9 of [32]), the
explicit constructive procedure of Kalman and Ho is available directly from the Hankel matrix of
Eq. 121. Again emphasizing that the critical step before the Kalman-Ho realization procedure [6]
can commence is to first extract the J;’s (from Eq. 124) and use these to form the Hankel matrix
of Eq. 121. The submatrix-based Kalman-Ho procedure is concisely summarized as an algorithm
reported on two pages of [32, pp. 126-127].

B Other Applications of Matrix Spectral Factorization

Matrix Spectral Factorization continues to be of interest to many specialists for the following
applications:

e Putting a problem involving serially time-correlated additive noises into standard Kalman filter
form (which assumes only uncorrelated white additive noises) by modeling the second order
statistical structure of the time-correlated Gauss-Markov noise via spectral factorization and
then using state augmentation [44, pp. 133-135], [29, pp. 146-14T].

e Pre-whitening for multichannel applications as a prelude to performing matched filtering (see
Chapts. 1, 3, 6, 7, 9, 11, 14 of [31] for ramifications in radar applications) when the additive
noise is not originally white but is serially correlated in time.

e In conjunction with Realization Theory [6], [28] as a basis for constructing reduced-order
models of lesser computational burden which still adequately “capture the essence of the
true system” for purposes of modeling/emulation, control, or estimation. Recent techniques
used to accomplish the realizations include continued-fraction expansions and linear fractional
transformations.

¢ Modeling and control for flexible structures, as is being pursued by NASA for the Space Station
(21].

e In the design of optimal feedback controllers for linear discrete-time multivariable stochastic
systems [34].

o Establishing stability of a system or of a digital filtering algorithmic mechanization.

e In multiport network synthesis [3, pp. 190-193] as applied to such practical problems as pro-
viding a balanced lossless reciprocal feed network between several transceivers and a common
antenna [3, p. 235]. (An explicit step-by-step connection between the property of being
“bounded real”, as is necessary for passive MIMO circuits to satisfy in order to be realized,
and the property of being “positive real”, as valid power spectral density matrices need to
satisfy, is carefully established in Section 1.3 of [42].)

e As an ezact solution to handling the effect of multiplicative noise in certain otherwise linear
(or bilinear) applications [13] using Kronecker products rather than attempting to use Lie
group techniques (apparently without sufficient supporting computational software yet being
available for numerically realizing the Lie group approaches for practical problems of realistic
dimensions),

e Complex random processes (as arise in handling PP and OP or VV and HH polarization
components in radar) can also be routinely handled by the original solution method identified
in [42, pp. 11, 12 and bottom of p. 25] by decomposing the associated power spectral density
matix, consisting of ratios of polynomials now having complex rather than real coefficients as
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in Sections 2 and 3 here, into pure real and pure imaginary parts (in the manner discussed in
[42, Section 1.4] and [43, Section 3.3.1] using the technique of [38]), then applying the usual
techniques already covered herein separately to each. The computational burden for handling
complex processes in this way is merely double what it would be for comparable real processes.
For example, in considering target cross-correlations across three adjoining radar range gates,
the state size to be used for both PP and OP to capture all possible cross-correlations would
need to be 6, which is within the capabilities of the software of Section 2.6.

e In lieu of Linear Quadratic Gaussian (LQG) optimal control now encountering practical im-
plementation difficulties when system parameters change or when unmodeled higher order fre-
quency response characteristics cause the system response to unfortunately deviate from the
design goals, the techniques of Robust Control (also known as H® techniques) have emerged
in an attempt to bridge the gap between optimal control theory and practice. There are
several paths to establishing H* solutions (such as via min-max game theory, or via use of
two coupled non-standard Riccati equations, etc.) and oversimplified benchmark problems
have been agreed upon at 1990 control conferences to serve as a common design challenge
to narrow the field of entries and select the most expedient solution approach, as sought in
[50]. (Since the benchmark problem is still a single channel SISO problem, it is recommended
that the closed-form two channel example of Sections 2.2, 3.1.1, 3.1.2 would better serve as
the basis for an easy MIMO benchmark problem.) Recently, it has been recognized that the
Matrix Spectral Factorization approach also leads to H* control solutions [47], [48] and, more-
over, the frequency domain has historically offered an alternative apprlo%cl\? optimal control
design (via either the 1976 approach of Youla, Bongiorno, and J ab&o 74 the approach of
Rosenbrock). Recently, others [49] have now recognized the connection between the topic of
Realization Theory and that of H* control.
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