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I. INTRODUCTION

The topic of Cramer-Rao (CR) lower bounds for
nonlinear filtering applications is treated here as being
timely since the subject was raised in [1, 2, 26-32, 42,
47] and continues to be utilized in applications (e.g.,
[28, 29, 32]). In [47, p. 98], the trajectory estimation
problem is identified as being one of nonlinear
estimation or nonlinear filtering as is fairly well known.
It is acknowledged in [47, p. 98], that completely
rigorous treatment of nonlinear filtering for completely
general nonlinear state-variable representations
of systems and measurement structures (actually
only rigorously described by integral equations but
symbolically denoted differentially by

X = f(x,w,f)
1
y =8(x,v,1) M

(where w(r) and v(z) are zero-mean independent
“derivatives” of Brownian noises, independent of the
initial condition on x, and x and y represent the system
state and corresponding measurement sensor output,
respectively, in a continuous-time representation

where x denotes differentiation of x with respect to
time, ¢)) would involve manipulations of stochastic
integrals (of the type known as either Ito, Stratonovich,
or, as added here, of McShane [71] as a unifying
simplification [70]). However, for the more restrictive
but fairly prevalent special case of nonlinear systems of
the form of

x = £(x,1) + B(E)w(r)

@
¥y =20x1) + N@v()

where only additive noises are present and B(t)
and N(z) are specified weighting matrices, it
frequently suffices to merely engage in “formal” (i.e.,
nonrigorous) manipulations of white noise processes
as a convenient mathematical fiction that avoids the
unwieldly baggage of stochastic integrals as being
“trees that might otherwise obscure the view of the
forest”. This simplifying philosophy is also subscribed
to here and has been justified to an extent (with the
notable exception of [91], which observes that the
continuous-time formulation of an extended Kalman
filter (EKF) involves a differential equation that
should be interpreted as an “Ito integral” and as a
consequence must include an additional term beyond
what is usually prescribed for an EKF formulation)
through use of mean-square calculus and the associated
weaker convergence arguments (|39, 55]) than would
be available if measure-theoretic and “martingale”
arguments associated with rigorous handling of
stochastic integrals were invoked. (Also see [63, 64, 66,
67, 69, and 86] for three other alternative approaches
to handling stochastic integrals.)
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The use of a CR lower bound methodology is
considered here as a gauge of the quality of tracking
filter performance. A high-level overview of the
CR lower bound methodology and its benefits and
limitations are as follows.

The statistically rigorous CR inequality [54, pp.
154-155] provides a lower bound on the mean-square
estimation error achievable. No matter what estimator
is ultimately selected, none can do better than what the
rock-bottom nonnegative CR lower bound indicates
(where such a bound exists, as is routinely available
in many cases of practical interest [43]). Whether the
bound is tight or not is another question that depends
on problem structure for an answer [73]. Just as
standard approaches to quantifying the performance of
linear Kalman filters are susceptible to inadvertent or
intentional modeling errors (e.g., use of over simplified
“truth” models or the omitting of relevant states or
instances of inadequate parameter selection), CR
bounding techniques (as well as any other simulation
approach) are susceptible to such oversights. In such a
case, the Jower bound could be either too high or too
low.

In a particular application, the structural form of
the CR lower bound is first obtained analytically, then
explicitly evaluated using computational techniques that
are usually implemented on a computer.

The simulation performance of any estimator
selected for the particular application can be “gauged
for goodness” as ascertained by its relative proximity
to the CR lower bound. Alternate estimator designs
can be traded off by proximity to the CR bound
(as the best that can be done) versus computational
burden associated with implementation. It is precisely
this aspect of CR lower bounds that is of interest in
most nonlinear filtering applications. Additionally,
Monte-Carlo evaluation of estimator performance is
required for the subsequent comparison with the CR
lower bound for tightness of proximity as a “gauge of
goodness.”

The CR lower bound is of particular interest
when the physics or geometric structure underlying a
particular parameter identification problem prohibit
estimation to the degree of accuracy sought or
specified. That such an unfortunate circumstance is
present in a particular application is reflected by
the corresponding increase in size of the CR lower
bound to reflect this fundamental decrease in the
absolute accuracy achieveable. With such an obvious
indication, the estimator is therefore not faulted
for lack of estimation accuracy which is beyond its
control. Otherwise, with no CR bound indication of
a comprising situation being present, the estimator
would probably be blamed. The utility of CR bounds
as situation-dependent gauges for setting realistic
estimation algorithm performance specifications or
“fair” goals should be obvious.

This important topic of CR lower bounds is
discussed here to offer critical comments and less
well-known caveats on proper use/calculation of CR
bounds in evaluating nonlinear filter performance that
should be of interest to sonar/acoustic applications
specialists and practitioners handling this evaluation
aspect. This critique of CR bounding techniques is
being undertaken here only because of the author’s
extensive long-term familiarity with this area of
evolving technology (viz., [5], also see [2, 6, 7,
Acknowledgments].

Unlike the relatively pleasant situation for both
optimal Kalman filters and reduced-order Kalman
filters where well-known rigorous techniques exist
for evaluating the filter performance for applications
involving only linear system and measurement
models [8-10], there is currently no convenient
single all-embracing method for evaluating the
covariance of estimation error a priori for general
nonlinear estimation applications. There are a few
exceptions, a few tractable special case, degenerate,
nonlinear filtering applications such as [11], with
updated corrections as [12] and certain nonlinear
systems of fairly restrictive special structure as
identified in [13-17, 61, 62, and 68]. These have
extensions and hopes for wider applicability via a
contorted form of linearization in [18], as compared
with how difficult the general nonlinear filtering
problem is as explained in [25] and with a novel
approximate finite-dimensional methodology
offered in [53, 62, 78] with supporting niceties
in [84], and a nice adaptive EKF in [36]). In the
linear case, the associated Riccati equation can be
solved explicitly off-line a priori for the covariance
of mean-square estimation error. In the general
nonlinear case, the differential or difference
equations that describe the estimation error are
inextricably mixed with higher order moments that
in turn satisfy differential or difference equations
involving even higher order moments [19]. Only
fairly drastic truncation of higher moments or less
severe truncation of cumulants (semiinvariants)

{20, pp. 7-10] allows a simultaneous solution of
the coupled set of matrix differential equations as
an approximation to the actual error in estimation.
However, the associated expense of the indicated
large scale computations may preclude completion
of such a horrendous evaluation task; thus, there
is great motivation for a tractable alternative. One
such prospective alternative is to employ the CR
lower bound as an evaluation gauge of goodness
of the results obtained from a likely suboptimal
nonlinear filtering implementation as would be tested
against through extensive realistic Monte-Carlo
simulations.

The familiar fundamental scalar version of the CR
lower bound inequality associated with the estimation
or identification of an unknown parameter x is [21,
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5]

5 { [%lnpmx)]z} -

where the random variable £ is an estimator of the
parameter x and the measurement y(¢) is a function of
the unknown parameter x as

y(@©) =g(x1v() “)

E[(x - 2)*| x]} 2

and A
¥(x) S E[# | x] = x + $(x) ®)

where ¢(x) is the bias in the particular estimator 2,
p(x }y) is the conditional probability density function
of x given y and v(r) is the measurement noise. The
original CR formulation of (3a) is emphasized here as
a reminder that many recent generalizations of the CR
lower bound focus attention only on the denominator
term of the right side of (3a) while totally ignoring
the significant effect of the important numerator

term (cf., [22, 42, 47]). The correct multidimensional
generalization of (3a) (from M.LT. lecture notes
derived by Dr. Nils Sandell) should be

Bl = 9 =) 1412 |1+ o]

{(2) ()erro]

x (1 + a%qb)r. (3b)

On the question of tightness of CR-type bounds,
few estimators can actually achieve the CR lower
bound [73]. If a maximum likelihood estimator (MLE)
exists for the particular problem, it is theoretically
guaranteed to achieve its CR lower bound only
asymptotically (as the amount of measured data
collected and processed increases without limitation).
Unfortunately, MLEs are usually only asymptotically
unbiased estimators. However, for some particularly
nice problem structures where the unknown parameter
being sought enters the measurements linearly and the
noise is additive and Gaussian (as identified in [46, 5,
p- 99, 21, p. 252, 45, eq. (1)), the CR bound is achieved
by MLE in processing each finite length segment of
data, while the magnitude of the CR lower bound
associated with these nice problems just decreases as

-1
X

the length of data record processed increases (cf., [33]).

This well-known conclusion compares favorably with
[33] which also claims achieving CR bounds for finite
data length and has the requisite linear structure, as
described above. Also see [92], [93] for follow-up.

Several different generalizations of the above
classic CR bound exist for the multiparameter

estimation/identification case (e.g., [5, 22, pp. 63-85,
33, 43]). Some early CR bound evaluation approaches
utilized “extraneous” parameters, or “nuisance”
parameters, or fiddle factors that were obviously
perceived by many to be somewhat unsavory subjective
“tuning factors” (or “fudge factors™) and as such
were controversial. Kullback’s information-theoretic
approach to statistical inference by utilizing the
“discrimination information number” has also been
interpreted (see [75]) to be a generalization of the
CR inequality. Moreover, the interrelationship of CR
bounds to other lower bounds such as those of Zacks
and Barankin have in fact been unraveled [23] and

a useful physical interpretation of the CR bound has
been provided [24] as a structural sensitivity measure
of an associated likelihood function to changes in

the underlying parameters to be estimated. The
relevance of such likelihood functions to the target
tracking bearing estimation problem is exemplified in
[28]. The constant value on the right side of (3a) is
known explicitly as the CR lower bound and, as such,
serves as a conservative bound on the mean-square
estimation error that is incurred no matter what type
of estimator £ is used, as reflected on the left-hand
side of (3a) and in a possible bias effect term in the
numerator on the right-hand side.

The usual well-established statistical-based CR
bound of (3a), as used for merely bounding the
goodness of estimating or identifying a constant
(but unknown) parameter or in estimating constant
realizations of a random vector at a specified time as
the parameters to be determined [22], has recently
been extended by a significant leap to now bound
the goodness of state estimates as time evolves.

It is this fairly recent extension that is perceived

here to be somewhat controversial. However, even
with this tremendous jump in the asserted range of
applicability, the same name as being a CR bound
was ultimately retained (although a variation in its
name termed a Bobrovsky-Zakai bound [1] was

in vogue for awhile as a distinction). The ultimate
retention of the name as a CR bound, although
perhaps inadvertent, serves to bolster confidence
(perhaps unjustified) in its use in this new area of
applicability by serving to remind others of ties to the
more familiar well-established completely rigorous
CR-bound for the constant and random parameter
cases. Since some type of performance evaluation
methodology was sorely needed for nonlinear filters,
the sonar/acoustic application area was quick to adopt
use of the novel CR bounds for nonlinear estimation
problems (e.g., [27-29] with clarifications on the
tightness of these bounds being offered in [31, 42] as
obtained by exploiting specific special case nonlinear
filters having an exact finite-dimensional realization)
and almost no investigation of recent vintage is without
a CR evaluation of this new type (e.g., [32]). Less
well-known quirks, softspots, and caveats in the use of
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the two new CR lower bounds [1, 2] (as acknowledged
to be utilized in [28 and 29], respectively), are
discussed in Section III. The indicated impact of

this entire subject on sonar/sonobuoy applications is
offered in Section IV. Evidently, radar practitioners
who sometimes encounter similar nonlinear filter
formulations have not yet succumbed to the lure of
this type of CR evaluation (e.g., [34, 35]) to the same
degree or along the same lines as pursued by the
sonar/sonobuoy practitioners.

Il. REPRESENTATIVE APPLICATION EXAMPLES
THAT UTILIZE THESE NEW CR BOUNDING
TECHNIQUES

An approach is provided in [28] to the delay
estimation of a noise-like random signal as observed
at two or more spatially separated receivers that
funnel their information to a centralized facility to
process for subsequent target detection and target
tracking using an EKE. The methodology employed
in [28] is to extend the bound of [1] and provide
estimation performance evaluations as a function
of the signal-to-noise ratio (SNR) range anticipated
for the particular application. The bound of [1] is
extended in [28] in a fashion similar to how it was
handled earlier in [30], (although unacknowledged
in [28], where they start the derivation from scratch
again). Somewhat startling was the fact that the now
well-known close interrelationship between Barankin
and CR bounds [23, 60, 77] was not invoked in [28],
but plotted separately for the same span of magnitudes
of SNR being considered.

A milestone discussion [29] of passive bearings-only
target tracking applications (involving a ship-borne
towed array) makes several significant contributions
by providing an intuitive physical (and rigorous
mathematical) understanding of the following.

1) The EKF (used as a practical approximation to
a true nonlinear filter for this nonlinear application)
is adversely affected unless an appropriate “modified
polar” coordinate system (described below) is adopted
as the convention to use; otherwise “filter divergence”
(i.e., a disparity between the accuracy assessment of
the estimate and its true accuracy) inevitably occurs.
2) Selection of the most appropriate
states to be used in the EKF was eventually
narrowed down to the preferred choice of:
(B = bearing of target
= bearing-rate of target
£ = range-rate of target divided by the
range-to-target
= reciprocal of the range-to-target.
3) Explicit maneuvers of the friendly tow ship
are required to enhance the “observability” of the
otherwise obscured or inaccessible 1/r state to thereby

~ |

N

facilitate more accurate target estimation. (For further
insights into the observability availed in this type of
application and how to handle it to an advantage see
[3, 4, 34, 36, 37].)

As in most recent applications of Kalman filtering
techniques (e.g., [27, 28]) to the fundamental nonlinear
geometry of several different sonar applications,

[29] proceeds to evaluate the realistic simulation
performance of this approximate implementation

of a nonlinear filter as gauged against the idealized
optimal performance availed by the CR lower bound
of [2]. It is claimed in [2] that this exact lower bound
is provided from the EKF covariance propagation
equations when linearized about the true trajectory
(that is in fact unknown to the application filter,
which must instead obtain an approximation to the
requisite information by linearizing about its estimate
of the true trajectory). However, no system process
noise is allowable in this CR bound formulation of
[2]. Practitioners rarely elaborate on how they were
able to apply the bound of [2] to their applications
involving process noise. More is said in Section III
about limitations encountered in CR lower bound
formulations of [1] and [2] as they are currently being
used for nonlinear estimation performance evaluation
in sonar/sonobuoy applications.

lll. QUESTIONABLE ASPECTS OF SOME
CONVENTIONAL APPROACHES USED TO
OBTAIN LOWER BOUNDS FOR NONLINEAR
FILTERING PERFORMANCE

A promising approach is suggested in [1] for lower
bounding the best possible estimation error to be
incurred during nonlinear estimation by comparison
in a CR lower bound inequality of the form

E[(xi — 2:(n))(xi — 2N = U7 ©)

where p(x,y) is the joint probability density function
(pdf) of vector random variables x and y, and

d
Vrlij=E { ai lnp(x,y)-g; lnp(x,y)} (7a)

Xi

- -{ 36; Inp(.y)} - (7o)

A CR lower bound of this form was already well
known to be useful in parameter identification [21,
22, p. 72, 5] and depends only on system structure
and on SNR present. Reference [1] considers both a
discrete-time nonlinear system of the form of

Xn41 = fn(Xn) + BYn+1,
Yn = gn(xn) + V NOém

0<n<N-1 (8
0<n<N ©)
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X

- -£{ aa; Inp(.y)}. (7o)
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(a special case of (2) in Section I) and the following
associated Gaussian linear system:

Zn41 = GnZp + PYne1,  O0SRSN-1  (10)
Yn = hpz, + VNO ns

A . . . .
where 7, =zero-mean Gaussian white unit covariance

0<n<N (11)

process noise, but effective system process noise
. NP a .
covariance in (10) is 32, £, =zero-mean Gaussian

white unit covariance measurement noise, but effective
measurement noise covariance in (11) is No, and

A
A = ftn(Xn) (12)
No
2
where the vinculum denotes expectation and the
following notation is used for convenience:

24
h; =

[ (xn) = @n]? + [8n(x)]? (13)

.
’
U=xp

fn )2 @)
a4

: a0
§n(Xn) = 5-8n(4) -
and similarly for higher derivatives.

Reference [1] proceeds to “prove” in its Theorem
1 that the linear Gaussian construction of (10)—(14)
above provides a pdf, p,(x,y), that is “equivalent”
to the pdf of the original system of (8), (9). This
equivalence that is sought is denoted in [1] by

Pg(x,y) ~ p(x,y) (15)

where the subscript g signifies that the particular pdf
is associated with the Gaussian linear system and
where the N + 1 term sequence {x,}"_, is denoted
by the augmented vector x (and similarly for y and
). Unfortunately, the concept of equivalence of pdfs
that is invoked was not clarified in {1} (mutual absolute
continuity of both probability measures being one
possible but rather stringent interpretation that would
allow a conclusion favoring the existence of pdfs as
measure-theoretic Radon-Nikodym derivatives [38]).
Unfortunately, there appear to be a few typos within
the steps of the proof of [1] that if left unresolved

or uncorrected appear to be logical contradictions

or incompatibilities. These minor problems are now
discussed. Within [1, eq. (8)] for i = j = N, the
following should appear

P PY)
OxnOxn  pg(x,y)

_ \/1_\73€Nf;’1~/(?CN)1:[0[2;’1\/(”)]2 + h%v. 16)

However, [17, eq. (8)] is missing the numerator factor
/Ny as a minor oversight.

According to the directions prescribed prior to
[1, eq. (9)], taking expectations of (16) with respect
to p(x,y) provides the objective that the evaluation
of Jr as required to establish that J, as defined in
the Lemma on [1, p. 786] is nonnegative definite.
Moreover, as stated in [1], “since x is independent
of A;+1 or (;, the terms containing second derivatives
vanish,” thus performing the indicated expectation of
(16) with respect to p(x,y) yields {1, eq. (5)]

o 9 , pxy) }
JInny = —E In 17a
[Tww {(')xN Oxn  pg(x,y) (172)
_0-BnaMP+hE
= Ny .
Upon substituting the definition of the deterministic
h% from (13) into (17b) yields

(17v)

[N+ %lfm(xzv) —anP + gnP
Uivw = : A (18a)
= lin(en) - an2 2 0. (18b)

Note that (18b), derived here by adhering exactly to
the indicated steps of [1], differs from the final result
of [1, unnumbered equation following eq. (9¢)]

No
2
by only the absence of the factor Np that appears

in [1] as an apparent typo; however, the requisite
nonnegative definiteness is established, nonetheless.

The seemingly slight incongruity of having only a
missing factor between (18b) and (19) would ordinarily
be considered of not much consequence except that it
is precisely this presence (herein noted as unexplained)
of the factor Ny in the lower bound that is used in [1]
to conclude general tightness of the lower bound. In
[1, Section V], a scalar special case is investigated and
the behavior as the controversial parameter Np — 0 in
the numerator is noted to be better (tighter) than an
earlier bound for the same special case. This argument
is apparently adversely affected by the correct result of
(18b), which is devoid of any Np term.

On the other hand, if there were no term Ny
present in the denominator of (17b), then there would
be no incongruity between the result of (18b) and the
result of [1] (repeated here as (19)) because then the
numerator Ny could not divide out with a nonexistent
term of N in the denominator. However, the form of
p(yn | x,) as utilized in [1] and depicted following [1,

eq. (7)] as

vy = =z [an@En)— anf? >0 (19)

oo 1 [V = g (X))
p(yﬂlx")-mex}){-T} (20)

does in fact clearly show the proper effect of the
presence of the measurement noise as the term Np,
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appearing in the denominator of the exponent. Once
logarithms are taken, (20) is consistent with (16),
clearly indicating that a term Ny should rightly appear
in the denominator of (17b) and that (18b) offered
herein is the correct expression (and therefore (19)
is incorrect). This same error of [1] persists unchanged
in [85, paragraph prior to Appendix]. .

The symbol J in (19) (and in [1]) is well kno
by somewhat universal convention to be the Fisher
information matrix. However, just obtaining the correct
form of the expression and establishing that it is
nonnegative definite is not enough to guarantee that
it can be inverted as needed in the CR lower bound
comparisons of (6) (corresponding to [1, eq. (2)].
The utility of the nonnegative definiteness result of
(18b) (as stated in [1, Theorem 1] and utilized within
the Lemma on [1, p. 786]) is that attention can be
focused on tightness comparisons on an equivalent
inequality between mean-squre estimation errors
Py, for the linear Gaussian system of (10), (11) and
the mean-square estimation errors P in nonlinear
estimation for the system of (8), (9), respectively, as

P, <P

(as also quoted in [1, Theorem 1].

Apparently there is a lack of a precise definition
of “equivalence of pdfs” in [1] and some contrary
physically motivated intuition [25, 65, 72] that it is not
very likely that a linear Gaussian dynamical system can
provide a pdf that is equivalent (in any meaningful
sense since multimodal pdfs can occur in arbitrary
nonlinear systems and outputs can have nonzero
means although inputs had zero means while the
linear system will always yield a unimodal Gaussian of
zero mean)! to that emanating from a fairly arbitrary
general nonlinear system of the form of (8) and (9).

A later attempt in [85] to be more precise in the
definition of equivalence as being “mutually absolutely
continuous” [85, following eq. (11)] still does not
explicitly explain how it is established for the two
measures under scrutiny but instead cites two 1960
papers by J. V. Girsanov and A. V. Skorokhod. Despite
this unpleasant state of affairs, other researchers [27,
30, 42] have continued to work with CR lower bounds
for nonlinear filtering applications to get tighter lower
bounds than were offered in [1]. Apparently progress
is being made in the discrete-time multidimensional
formulation [30], where a linear system is specified
such that its associated Fisher information matrix Jr

is greater (in the matrix positive definite sense) than
Jn 1 (the Fisher information matrix associated with

the general nonlinear system). This relationship is

!In this same vein, it is well known (via R. 8. Lipster and A. N.
Shiryayev) that weak solutions of stochastic differential equations with
a unit diffusion coefficient and a square integrable drift coefficient are
the only processes the measure of which is absolutely continuous with
respect to the Wiener measure [72].
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represented by [30, eq. (6b)]

Jp > JINL. (21
However, the target objective of a comparison that

is being sought [30, eq. (3)] with the covariance of
nonlinear filtering error Py, (in analogy to (6)) is

1[0
PyL>[0| LYyL [,—] : (22)
Therefore, use of J;, > 0 in a comparison with Py,
would have the following ordering:

Pu 20103 7] > 018 2] @

As noted [30, prior to eq. (5)], Jy, may perhaps not be
invertible in practice, giving rise to only the following
comparison being tractably available

Py > [0| L) [2] > 0.

7 @4

It is speculated in [30] that nonlinear estimator
design could eventually be performed by ignoring
inversion entirely and just comparing the resulting J
for tightness to the easily accessible J;, as

J>Jp. (25)
Unfortunately, usually only the Ps are readily available
from Monte-Carlo simulations unless an information
filter form is implemented.

On the other hand, [2] offers a completely different
approach to the problem of specifying a CR lower
bound for nonlinear estimation by considering a -
continuous-discrete system without process noise of
the following form

i = f(x,u,t)
2y = h(xk,k) + v

(26)
27)

where u(t) is the deterministic control, and vy is the
zero-mean white Gaussian noise of covariance level
R;. However, the following two main results appeared
previously as [39, eq. (7.43) and (7.49)] (combined with
[39, eq. (7.50)]), respectively. These two results were
derived as [2, eq. (13)] and {2, eq. (14)], respectively,

Je = (6 ) haaG 1)+ HIRD'H, (28

and
Fi) ' = (e Pi19b_ ) '+ HIR'H,  (29)

where ¢, is the transition matrix associated with

the linearization of f(x,u,r) about the state x and
deterministic control u, as a corresponding Jacobian
matrix evaluated along the true trajectory (known in
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However, the target objective of a comparison that
is being sought [30, eq. (3)] with the covariance of
nonlinear filtering error Py, (in analogy to (6)) is

Puw> 01 LVE [ 2. @)

Therefore, use of J;, > 0 in a comparison with Py
would have the following ordering:

Pu2 0111 2] > 010 2] @

As noted [30, prior to eq. (5)], /v, may perhaps not be
invertible in practice, giving rise to only the following
comparison being tractably available

0
P> [0) LY [7—] >0. (24)
n
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design could eventually be performed by ignoring
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Unfortunately, usually only the Ps are readily available
from Monte-Carlo simulations unless an information
filter form is implemented.

On the other hand, [2] offers a completely different
approach to the problem of specifying a CR lower
bound for nonlinear estimation by considering a
continuous-discrete system without process noise of
the following form

I =f(x,u,t) (26)
Zr = h(xex) + vi 27

where u(r) is the deterministic control, and v is the
zero-mean white Gaussian noise of covariance level
Ri.. However, the following two main results appeared
previously as [39, eq. (7.43) and (7.49)] (combined with
[39, eq. (7.50)}), respectively. These two results were
derived as [2, eq. (13)] and [2, eq. (14)), respectively,

e = @ )T h-1(o7) )+ HIR'H,  (28)
and
P ' = ($r1Peoabt_) '+ HIRD'H,  (29)

where ¢ is the transition matrix associated with

the linearization of f(x,u,t) about the state x and
deterministic control u, as a corresponding Jacobian
matrix evaluated along the true trajectory (known in
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simulations). Furthermore, the device following [2, eq.
(4)] of having an additional fictitious measurement?

vo ~ N(0,So) (30)

is contrary to the formal definition of a dynamical
system [40, Section 4-5] being required to have a
measurement dimension that is time invariant. (At
issue here is not a time-varying observation matrix
but a time-varying dimension of the measurement
noise and its associated covariance matrix, which

of necessity is required to be nonsingular.) Use of
this fictitious measurement has the adverse effect of
possibly introducing a subjective or arbitrary bias in
the calculation of Jx using [2, eq. (9)] as

_ [ 9xo T ~1{ 0x¢
J"“(ax—x) %o (a*“)

+§§' .Q_{(l THTR“IH -?f-(—)- 31
oxx) T He\Gry ) OD

k=0

20 = xo + Vo,

(Equations (28) and (29) are just convenient recursive
restatements of (31).) The first term in (31) contains
the effect of this fictitious measurement and can be
potentially finagled to be arbitrarily large. Thus, in
situations corresponding to identification where the
Fisher information matrix would ordinarily be singular
(e.g., [42, Section VI, Part A, 43, 44]), the first term
in (31) could be artificially induced to reflect a more
benign structure than actually exists,

Snyder and Rhodes [58] offer a CR bound for the
case of the system of (8) being completely linear in x
(ie., pn(Xn) = F(n)X,) and for this special case, the
results of [1] and [58] coincide [S6, p. 453]. Moreover,
the finite-dimensional nonlinear filter utilized in
tightness arguments between alternative bounds in
[42] corresponds to the following bilinear system with
nilpotent Lie algebra of the following form as treated
in [14].

System: v
IR i R B
b ) N 0 —Bilxz \/67 wo ) (32)
Measurements:
z
5 R W
z X2 V2
Additional nonlinearity:
y==7y+x1-x2 (34

It is noted here that the above system of (32), (33) is

ZInclusion of an additional measurement is reminiscent of familiar
procedures for converting Fisher models to Bayesian models as
highlighted in [41, Section 5.3}. The distinction is that expectation for
Fisher models should only be with respect to the noise vy (with xg
assumed unknown), while expectation should be with respect to both
x and v for the Bayesian approach.

linear and observable and the associated underlying
pdfs are Gaussian and the conditional expectation

as an optimal estimator of the state can be extracted
from a standard linear Kalman filter. The effect of the
additional output nonlinearity of (34) is essentially

a nonlinear transformation after the fact, that is

much easier to handle in forming an estimate of

the noiseless y(¢) than could be done in a general
nonlinear filtering problem [85]. It is claimed here that
even this special case is especially nice and degenerate
as being unrealistically easy to handle. Even when the
measurements are nonlinear but the underlying system
is linear, the situation is much more tractable (viz.,
observability can be successfully handled [81]) than

in the general nonlinear case.

The Zakai-Ziv bounds of [57] are based on rate
distortion theory and were applicable to autonomous
nonlinear systems (i.c., nonlinearity cannot be a
function of time) with additive white Gaussian system
and measurement noise. The results of Galdos
[56] also use rate distortion theory to extend the
applicability of the results to a more general nonlinear
filtering context. Comparisons are made in [56] of this
bound to other “conventional” CR-based lower bounds
for nonlinear filtering. However, it is the contention
in [75], that Kullback’s rate distortion theory itself and
the discrimination information number in particular as
a basis for statistical hypothesis testing harken back to
yet another generalization of CR lower bounds.

The tightness of another CR-based lower bound
of Galdos [30] is claimed in [30, paragraph prior to
Section III] to be tighter than the CR-bound of [1], but
this has been disputed in the evaluations of [31] by the
thesis student of one of the authors of [1]. However,
conclusions of relative tightness of alternative CR
bounds based on evaluations of a particular tractable
finite-dimensional nonlinear filter special case (as
pursued in both [42] and [31] with different special
cases and different rankings resulting) should probably
be viewed as somewhat suspect just as was the case
in early comparisons of alternative optimization
approaches and alternative parameter identification
approaches 20 years ago. Specific test problems or
examples can be selected to “stack the deck” and
make a particular approach “win”. Unfortunately, the
“winning” could be highly test-case dependent.

Another worry concerning the bound of [30] is
the assumption that the dimension of the system and
measurements are identical. While a contrived method
is offered in [30] for creating this situation for any
general problem, the resulting system could have a
singular observation noise covariance matrix which
reference [30] requires to be nonsingular and attempts
to argue away any occurrence to the contrary.

Other alternative CR bounds of note are those
of Rhodes and Gilman [59] that are applicable to
nonlinear filtering for systems whose dynamics and
measurement models have fairly mild nonlinearities
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that are close to linear with any discrepancies being
confined within a cone or tight sector. The Naval
Research Laboratory has recently further pursued such
an approach.

Historical approaches to using CR lower bounds
to conservatively gauge the uncertainty incurred
in autoregressive (AR) parameter estimation
previously encountered a barrier of having to perform
multitudinous differentiations in order to obtain the
intermediate result of computing the associated Fisher
information matrix. However, the recent result of [90]
circumvents this prior computational burden via a neat
identity that allows mere shift-matrix operations to
suffice (as long as the underlying process is stationary).
Unfortunately, the form of the CR bound utilized
in [90] assumes that the AR parameter estimator
being utilized is unbiased, which is not the case for all
applications.

Additional benefits of using the evaluation
technique of [89] are that an explicit formula for
the lower bound is available that does not involve
‘numerical integration as most other evaluation
approaches do. Indeed, in some applications one
is interested not so much in the AR parameters
themselves as in some useful function of these
parameters such as in the center frequency, bandwidth,
and power of narrowband spectral lines. Another
beneficial aspect of [89] is in providing a simplified
methodology for computing CR lower bounds on such
general functions of the AR coefficients (and additive
noise intensity). See follow-on in [92], [93].

The approaches of [79, 80, 89, and 90] are
great from both the important aspect of providing
significant rigorous results and from the aspect of
being sufficiently tutorial that they are easy to read.
However, the CR bounds utilized in [79, 80, 89, and
90] are apparently related to the fundamental geometry
of the underlying time-invariant problem and do not
include a consideration of the transient time-varying
case, hence [79, 80, and 89] do not embrace techniques
such as the CR bounds under scrutiny here that have
been utilized in evaluating the performance of various
approximate nonlinear filter formulations for the
sonar/sonobuoy application.

IV. CONCLUSION

In summary, the purpose of Section III is to
caution the nonlinear filtering practitioners and
applications engineers about less well-known caveats
associated with two different CR bound extensions
that have been developed relatively recently [1, 2] for
the application of performance evaluation in nonlinear
filtering scenarios. Such CR-like bounding techniques
currently enjoying fairly widespread utilization appear
to have been somewhat uncritically embraced for
sonar-related applications as if these new bounds had
automatically inherited the full rigor of their namesake,
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namely, the structurally simpler CR bounds arising in
the identification of constant parameters, where similar
comparisons and inequalities arise.

While [1 and 2] gave the impression of being
iron clad, more recent investigations of CR-bounding
technology by, say, Galdos [56] and Chang [42], also
truthfully acknowledge the soft spots in the analysis
such as in [56, paragraph following eq. (28)] where
Galdos admits that “the ordering result of Appendix
B is but a conjecture and that it is difficult if not
impossible to ascertain whether it actually holds”, while
Chang admits in [42, Section C] that his two matrix
bounds B; and B, are not as tight as a true CR bound
and that any hypothesized ordering between B; and B,
has eluded a rigorous proof. It is indeed unfortunate
that sonobuoy practitioners apparently resort back to
[1] or [2] for evaluating nonlinear filter performance
instead of using the most up-to-date investigations of
[56, 30, 42] for applying CR bounds that go further to
say how the evaluation should be implemented and
what to be wary of. Further rigorous investigations in
this important area would indeed be useful.
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